for sdram_phy in ["sdrphy", "ddrphy"]:
if hasattr(soc, sdram_phy):
- sdram_phy_header = initsequence.get_sdram_phy_header(getattr(soc, sdram_phy))
+ sdram_phy_header = initsequence.get_sdram_phy_header(getattr(soc, sdram_phy).settings)
write_to_file("software/include/generated/sdram_phy.h", boilerplate + sdram_phy_header)
mem_header = cpuif.get_mem_header(soc.memory_regions, getattr(soc, "flash_boot_address", None))
write_to_file("software/include/generated/mem.h", boilerplate + mem_header)
# LASMICON
if ramcon_type == "lasmicon":
- self.submodules.controller = controller = lasmicon.LASMIcon(phy, sdram_geom, sdram_timing, **kwargs)
+ self.submodules.controller = controller = lasmicon.LASMIcon(phy.settings, sdram_geom, sdram_timing, **kwargs)
self.comb += Record.connect(controller.dfi, self.dfii.slave)
self.submodules.crossbar = crossbar = Crossbar([controller.lasmic], controller.nrowbits)
# MINICON
elif ramcon_type == "minicon":
- self.submodules.controller = controller = minicon.Minicon(phy, sdram_geom, sdram_timing)
+ self.submodules.controller = controller = minicon.Minicon(phy.settings, sdram_geom, sdram_timing)
self.comb += Record.connect(controller.dfi, self.dfii.slave)
else:
raise ValueError("Unsupported SDRAM controller type: {}".format(self.ramcon_type))
from misoclib.mem.sdram.core.lasmicon.multiplexer import *
class LASMIcon(Module):
- def __init__(self, phy, geom_settings, timing_settings, **kwargs):
- if phy.settings.memtype in ["SDR"]:
- burst_length = phy.settings.nphases*1 # command multiplication*SDR
- elif phy.settings.memtype in ["DDR", "LPDDR", "DDR2", "DDR3"]:
- burst_length = phy.settings.nphases*2 # command multiplication*DDR
+ def __init__(self, phy_settings, geom_settings, timing_settings, **kwargs):
+ if phy_settings.memtype in ["SDR"]:
+ burst_length = phy_settings.nphases*1 # command multiplication*SDR
+ elif phy_settings.memtype in ["DDR", "LPDDR", "DDR2", "DDR3"]:
+ burst_length = phy_settings.nphases*2 # command multiplication*DDR
address_align = log2_int(burst_length)
self.dfi = dfi.Interface(geom_settings.mux_a,
geom_settings.bank_a,
- phy.settings.dfi_d,
- phy.settings.nphases)
+ phy_settings.dfi_d,
+ phy_settings.nphases)
self.lasmic = lasmibus.Interface(
aw=geom_settings.row_a + geom_settings.col_a - address_align,
- dw=phy.settings.dfi_d*phy.settings.nphases,
+ dw=phy_settings.dfi_d*phy_settings.nphases,
nbanks=2**geom_settings.bank_a,
req_queue_size=timing_settings.req_queue_size,
- read_latency=phy.settings.read_latency+1,
- write_latency=phy.settings.write_latency+1)
+ read_latency=phy_settings.read_latency+1,
+ write_latency=phy_settings.write_latency+1)
self.nrowbits = geom_settings.col_a - address_align
###
self.submodules.bank_machines = [BankMachine(geom_settings, timing_settings, address_align, i,
getattr(self.lasmic, "bank"+str(i)))
for i in range(2**geom_settings.bank_a)]
- self.submodules.multiplexer = Multiplexer(phy, geom_settings, timing_settings,
+ self.submodules.multiplexer = Multiplexer(phy_settings, geom_settings, timing_settings,
self.bank_machines, self.refresher,
self.dfi, self.lasmic,
**kwargs)
]
class Multiplexer(Module, AutoCSR):
- def __init__(self, phy, geom_settings, timing_settings, bank_machines, refresher, dfi, lasmic,
+ def __init__(self, phy_settings, geom_settings, timing_settings, bank_machines, refresher, dfi, lasmic,
with_bandwidth=False):
- assert(phy.settings.nphases == len(dfi.phases))
+ assert(phy_settings.nphases == len(dfi.phases))
# Command choosing
requests = [bm.cmd for bm in bank_machines]
choose_cmd.want_reads.eq(0),
choose_cmd.want_writes.eq(0)
]
- if phy.settings.nphases == 1:
+ if phy_settings.nphases == 1:
self.comb += [
choose_cmd.want_cmds.eq(1),
choose_req.want_cmds.eq(1)
fsm = FSM()
self.submodules += fsm
- def steerer_sel(steerer, phy, r_w_n):
+ def steerer_sel(steerer, phy_settings, r_w_n):
r = []
- for i in range(phy.settings.nphases):
+ for i in range(phy_settings.nphases):
s = steerer.sel[i].eq(STEER_NOP)
if r_w_n == "read":
- if i == phy.settings.rdphase:
+ if i == phy_settings.rdphase:
s = steerer.sel[i].eq(STEER_REQ)
- elif i == phy.settings.rdcmdphase:
+ elif i == phy_settings.rdcmdphase:
s = steerer.sel[i].eq(STEER_CMD)
elif r_w_n == "write":
- if i == phy.settings.wrphase:
+ if i == phy_settings.wrphase:
s = steerer.sel[i].eq(STEER_REQ)
- elif i == phy.settings.wrcmdphase:
+ elif i == phy_settings.wrcmdphase:
s = steerer.sel[i].eq(STEER_CMD)
else:
raise ValueError
choose_req.want_reads.eq(1),
choose_cmd.cmd.ack.eq(1),
choose_req.cmd.ack.eq(1),
- steerer_sel(steerer, phy, "read"),
+ steerer_sel(steerer, phy_settings, "read"),
If(write_available,
# TODO: switch only after several cycles of ~read_available?
If(~read_available | max_read_time, NextState("RTW"))
choose_req.want_writes.eq(1),
choose_cmd.cmd.ack.eq(1),
choose_req.cmd.ack.eq(1),
- steerer_sel(steerer, phy, "write"),
+ steerer_sel(steerer, phy_settings, "write"),
If(read_available,
If(~write_available | max_write_time, NextState("WTR"))
),
steerer.sel[0].eq(STEER_REFRESH),
If(~refresher.req, NextState("READ"))
)
- fsm.delayed_enter("RTW", "WRITE", phy.settings.read_latency-1) # FIXME: reduce this, actual limit is around (cl+1)/nphases
+ fsm.delayed_enter("RTW", "WRITE", phy_settings.read_latency-1) # FIXME: reduce this, actual limit is around (cl+1)/nphases
fsm.delayed_enter("WTR", "READ", timing_settings.tWTR-1)
# FIXME: workaround for zero-delay loop simulation problem with Icarus Verilog
fsm.finalize()
return Cat(Replicate(0, self.address_align), address[:split])
class Minicon(Module):
- def __init__(self, phy, geom_settings, timing_settings):
- if phy.settings.memtype in ["SDR"]:
- burst_length = phy.settings.nphases*1 # command multiplication*SDR
- elif phy.settings.memtype in ["DDR", "LPDDR", "DDR2", "DDR3"]:
- burst_length = phy.settings.nphases*2 # command multiplication*DDR
+ def __init__(self, phy_settings, geom_settings, timing_settings):
+ if phy_settings.memtype in ["SDR"]:
+ burst_length = phy_settings.nphases*1 # command multiplication*SDR
+ elif phy_settings.memtype in ["DDR", "LPDDR", "DDR2", "DDR3"]:
+ burst_length = phy_settings.nphases*2 # command multiplication*DDR
address_align = log2_int(burst_length)
nbanks = range(2**geom_settings.bank_a)
A10_ENABLED = 0
COLUMN = 1
ROW = 2
- rdphase = phy.settings.rdphase
- wrphase = phy.settings.wrphase
+ rdphase = phy_settings.rdphase
+ wrphase = phy_settings.wrphase
self.dfi = dfi = dfibus.Interface(geom_settings.mux_a,
geom_settings.bank_a,
- phy.settings.dfi_d,
- phy.settings.nphases)
+ phy_settings.dfi_d,
+ phy_settings.nphases)
- self.bus = bus = wishbone.Interface(data_width=phy.settings.nphases*flen(dfi.phases[rdphase].rddata))
+ self.bus = bus = wishbone.Interface(data_width=phy_settings.nphases*flen(dfi.phases[rdphase].rddata))
slicer = _AddressSlicer(geom_settings.col_a, geom_settings.bank_a, geom_settings.row_a, address_align)
refresh_req = Signal()
refresh_ack = Signal()
from migen.fhdl.std import log2_int
-def get_sdram_phy_header(sdram_phy):
+def get_sdram_phy_header(sdram_phy_settings):
r = "#ifndef __GENERATED_SDRAM_PHY_H\n#define __GENERATED_SDRAM_PHY_H\n"
r += "#include <hw/common.h>\n#include <generated/csr.h>\n#include <hw/flags.h>\n\n"
- nphases = sdram_phy.settings.nphases
+ nphases = sdram_phy_settings.nphases
r += "#define DFII_NPHASES "+str(nphases)+"\n\n"
r += "static void cdelay(int i);\n"
#define command_prd(X) command_p{rdphase}(X)
#define command_pwr(X) command_p{wrphase}(X)
-""".format(rdphase=str(sdram_phy.settings.rdphase), wrphase=str(sdram_phy.settings.wrphase))
+""".format(rdphase=str(sdram_phy_settings.rdphase), wrphase=str(sdram_phy_settings.wrphase))
r +="\n"
#
"CKE" : "DFII_CONTROL_CKE|DFII_CONTROL_ODT|DFII_CONTROL_RESET_N"
}
- cl = sdram_phy.settings.cl
+ cl = sdram_phy_settings.cl
- if sdram_phy.settings.memtype == "SDR":
- bl = sdram_phy.settings.nphases
+ if sdram_phy_settings.memtype == "SDR":
+ bl = sdram_phy_settings.nphases
mr = log2_int(bl) + (cl << 4)
reset_dll = 1 << 8
("Load Mode Register / CL={0:d}, BL={1:d}".format(cl, bl), mr, 0, cmds["MODE_REGISTER"], 200)
]
- elif sdram_phy.settings.memtype == "DDR":
- bl = 2*sdram_phy.settings.nphases
+ elif sdram_phy_settings.memtype == "DDR":
+ bl = 2*sdram_phy_settings.nphases
mr = log2_int(bl) + (cl << 4)
emr = 0
reset_dll = 1 << 8
("Load Mode Register / CL={0:d}, BL={1:d}".format(cl, bl), mr, 0, cmds["MODE_REGISTER"], 200)
]
- elif sdram_phy.settings.memtype == "LPDDR":
- bl = 2*sdram_phy.settings.nphases
+ elif sdram_phy_settings.memtype == "LPDDR":
+ bl = 2*sdram_phy_settings.nphases
mr = log2_int(bl) + (cl << 4)
emr = 0
reset_dll = 1 << 8
("Load Mode Register / CL={0:d}, BL={1:d}".format(cl, bl), mr, 0, cmds["MODE_REGISTER"], 200)
]
- elif sdram_phy.settings.memtype == "DDR2":
- bl = 2*sdram_phy.settings.nphases
+ elif sdram_phy_settings.memtype == "DDR2":
+ bl = 2*sdram_phy_settings.nphases
wr = 2
mr = log2_int(bl) + (cl << 4) + (wr << 9)
emr = 0
("Load Extended Mode Register / OCD Default", emr+ocd, 1, cmds["MODE_REGISTER"], 0),
("Load Extended Mode Register / OCD Exit", emr, 1, cmds["MODE_REGISTER"], 0),
]
- elif sdram_phy.settings.memtype == "DDR3":
- bl = 2*sdram_phy.settings.nphases
+ elif sdram_phy_settings.memtype == "DDR3":
+ bl = 2*sdram_phy_settings.nphases
if bl != 8:
raise NotImplementedError("DDR3 PHY header generator only supports BL of 8")
mr0 = format_mr0(cl, 8, 1) # wr=8 FIXME: this should be ceiling(tWR/tCK)
mr1 = format_mr1(1, 1) # Output Drive Strength RZQ/7 (34 ohm) / Rtt RZQ/4 (60 ohm)
- mr2 = format_mr2(sdram_phy.settings.cwl, 2) # Rtt(WR) RZQ/4
+ mr2 = format_mr2(sdram_phy_settings.cwl, 2) # Rtt(WR) RZQ/4
mr3 = 0
init_sequence = [
# the value of MR1 needs to be modified during write leveling
r += "#define DDR3_MR1 {}\n\n".format(mr1)
else:
- raise NotImplementedError("Unsupported memory type: "+sdram_phy.settings.memtype)
+ raise NotImplementedError("Unsupported memory type: "+sdram_phy_settings.memtype)
r += "static void init_sequence(void)\n{\n"
for comment, a, ba, cmd, delay in init_sequence: