* values.c: Rename to ...
* value.c: ..., new file.
* Makefile.in: Update.
+2004-11-09 Andrew Cagney <cagney@gnu.org>
+
+ * values.c: Rename to ...
+ * value.c: ..., new file.
+ * Makefile.in: Update.
+
2004-11-09 Daniel Jacobowitz <dan@debian.org>
* dwarf2-frame.c (dwarf2_frame_state_alloc_regs): Correct allocated
typeprint.c \
ui-out.c utils.c ui-file.h ui-file.c \
user-regs.c \
- valarith.c valops.c valprint.c values.c varobj.c \
+ valarith.c valops.c valprint.c value.c varobj.c \
wrapper.c
LINTFILES = $(SFILES) $(YYFILES) $(CONFIG_SRCS) init.c
bfd-target.o \
blockframe.o breakpoint.o findvar.o regcache.o \
charset.o disasm.o dummy-frame.o \
- source.o values.o eval.o valops.o valarith.o valprint.o printcmd.o \
+ source.o value.o eval.o valops.o valarith.o valprint.o printcmd.o \
block.o symtab.o symfile.o symmisc.o linespec.o dictionary.o \
infcall.o \
infcmd.o infrun.o \
valprint.o: valprint.c $(defs_h) $(gdb_string_h) $(symtab_h) $(gdbtypes_h) \
$(value_h) $(gdbcore_h) $(gdbcmd_h) $(target_h) $(language_h) \
$(annotate_h) $(valprint_h) $(floatformat_h) $(doublest_h)
-values.o: values.c $(defs_h) $(gdb_string_h) $(symtab_h) $(gdbtypes_h) \
+value.o: value.c $(defs_h) $(gdb_string_h) $(symtab_h) $(gdbtypes_h) \
$(value_h) $(gdbcore_h) $(command_h) $(gdbcmd_h) $(target_h) \
$(language_h) $(scm_lang_h) $(demangle_h) $(doublest_h) \
$(gdb_assert_h) $(regcache_h) $(block_h)
--- /dev/null
+/* Low level packing and unpacking of values for GDB, the GNU Debugger.
+
+ Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
+ 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
+ Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "gdb_string.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "value.h"
+#include "gdbcore.h"
+#include "command.h"
+#include "gdbcmd.h"
+#include "target.h"
+#include "language.h"
+#include "scm-lang.h"
+#include "demangle.h"
+#include "doublest.h"
+#include "gdb_assert.h"
+#include "regcache.h"
+#include "block.h"
+
+/* Prototypes for exported functions. */
+
+void _initialize_values (void);
+
+/* Prototypes for local functions. */
+
+static void show_values (char *, int);
+
+static void show_convenience (char *, int);
+
+
+/* The value-history records all the values printed
+ by print commands during this session. Each chunk
+ records 60 consecutive values. The first chunk on
+ the chain records the most recent values.
+ The total number of values is in value_history_count. */
+
+#define VALUE_HISTORY_CHUNK 60
+
+struct value_history_chunk
+ {
+ struct value_history_chunk *next;
+ struct value *values[VALUE_HISTORY_CHUNK];
+ };
+
+/* Chain of chunks now in use. */
+
+static struct value_history_chunk *value_history_chain;
+
+static int value_history_count; /* Abs number of last entry stored */
+\f
+/* List of all value objects currently allocated
+ (except for those released by calls to release_value)
+ This is so they can be freed after each command. */
+
+static struct value *all_values;
+
+/* Allocate a value that has the correct length for type TYPE. */
+
+struct value *
+allocate_value (struct type *type)
+{
+ struct value *val;
+ struct type *atype = check_typedef (type);
+
+ val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
+ VALUE_NEXT (val) = all_values;
+ all_values = val;
+ VALUE_TYPE (val) = type;
+ VALUE_ENCLOSING_TYPE (val) = type;
+ VALUE_LVAL (val) = not_lval;
+ VALUE_ADDRESS (val) = 0;
+ VALUE_FRAME_ID (val) = null_frame_id;
+ VALUE_OFFSET (val) = 0;
+ VALUE_BITPOS (val) = 0;
+ VALUE_BITSIZE (val) = 0;
+ VALUE_REGNO (val) = -1;
+ VALUE_LAZY (val) = 0;
+ VALUE_OPTIMIZED_OUT (val) = 0;
+ VALUE_EMBEDDED_OFFSET (val) = 0;
+ VALUE_POINTED_TO_OFFSET (val) = 0;
+ val->modifiable = 1;
+ return val;
+}
+
+/* Allocate a value that has the correct length
+ for COUNT repetitions type TYPE. */
+
+struct value *
+allocate_repeat_value (struct type *type, int count)
+{
+ int low_bound = current_language->string_lower_bound; /* ??? */
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ struct type *range_type
+ = create_range_type ((struct type *) NULL, builtin_type_int,
+ low_bound, count + low_bound - 1);
+ /* FIXME-type-allocation: need a way to free this type when we are
+ done with it. */
+ return allocate_value (create_array_type ((struct type *) NULL,
+ type, range_type));
+}
+
+/* Return a mark in the value chain. All values allocated after the
+ mark is obtained (except for those released) are subject to being freed
+ if a subsequent value_free_to_mark is passed the mark. */
+struct value *
+value_mark (void)
+{
+ return all_values;
+}
+
+/* Free all values allocated since MARK was obtained by value_mark
+ (except for those released). */
+void
+value_free_to_mark (struct value *mark)
+{
+ struct value *val;
+ struct value *next;
+
+ for (val = all_values; val && val != mark; val = next)
+ {
+ next = VALUE_NEXT (val);
+ value_free (val);
+ }
+ all_values = val;
+}
+
+/* Free all the values that have been allocated (except for those released).
+ Called after each command, successful or not. */
+
+void
+free_all_values (void)
+{
+ struct value *val;
+ struct value *next;
+
+ for (val = all_values; val; val = next)
+ {
+ next = VALUE_NEXT (val);
+ value_free (val);
+ }
+
+ all_values = 0;
+}
+
+/* Remove VAL from the chain all_values
+ so it will not be freed automatically. */
+
+void
+release_value (struct value *val)
+{
+ struct value *v;
+
+ if (all_values == val)
+ {
+ all_values = val->next;
+ return;
+ }
+
+ for (v = all_values; v; v = v->next)
+ {
+ if (v->next == val)
+ {
+ v->next = val->next;
+ break;
+ }
+ }
+}
+
+/* Release all values up to mark */
+struct value *
+value_release_to_mark (struct value *mark)
+{
+ struct value *val;
+ struct value *next;
+
+ for (val = next = all_values; next; next = VALUE_NEXT (next))
+ if (VALUE_NEXT (next) == mark)
+ {
+ all_values = VALUE_NEXT (next);
+ VALUE_NEXT (next) = 0;
+ return val;
+ }
+ all_values = 0;
+ return val;
+}
+
+/* Return a copy of the value ARG.
+ It contains the same contents, for same memory address,
+ but it's a different block of storage. */
+
+struct value *
+value_copy (struct value *arg)
+{
+ struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
+ struct value *val = allocate_value (encl_type);
+ VALUE_TYPE (val) = VALUE_TYPE (arg);
+ VALUE_LVAL (val) = VALUE_LVAL (arg);
+ VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
+ VALUE_OFFSET (val) = VALUE_OFFSET (arg);
+ VALUE_BITPOS (val) = VALUE_BITPOS (arg);
+ VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
+ VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
+ VALUE_REGNO (val) = VALUE_REGNO (arg);
+ VALUE_LAZY (val) = VALUE_LAZY (arg);
+ VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
+ VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
+ VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
+ val->modifiable = arg->modifiable;
+ if (!VALUE_LAZY (val))
+ {
+ memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
+ TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
+
+ }
+ return val;
+}
+\f
+/* Access to the value history. */
+
+/* Record a new value in the value history.
+ Returns the absolute history index of the entry.
+ Result of -1 indicates the value was not saved; otherwise it is the
+ value history index of this new item. */
+
+int
+record_latest_value (struct value *val)
+{
+ int i;
+
+ /* We don't want this value to have anything to do with the inferior anymore.
+ In particular, "set $1 = 50" should not affect the variable from which
+ the value was taken, and fast watchpoints should be able to assume that
+ a value on the value history never changes. */
+ if (VALUE_LAZY (val))
+ value_fetch_lazy (val);
+ /* We preserve VALUE_LVAL so that the user can find out where it was fetched
+ from. This is a bit dubious, because then *&$1 does not just return $1
+ but the current contents of that location. c'est la vie... */
+ val->modifiable = 0;
+ release_value (val);
+
+ /* Here we treat value_history_count as origin-zero
+ and applying to the value being stored now. */
+
+ i = value_history_count % VALUE_HISTORY_CHUNK;
+ if (i == 0)
+ {
+ struct value_history_chunk *new
+ = (struct value_history_chunk *)
+ xmalloc (sizeof (struct value_history_chunk));
+ memset (new->values, 0, sizeof new->values);
+ new->next = value_history_chain;
+ value_history_chain = new;
+ }
+
+ value_history_chain->values[i] = val;
+
+ /* Now we regard value_history_count as origin-one
+ and applying to the value just stored. */
+
+ return ++value_history_count;
+}
+
+/* Return a copy of the value in the history with sequence number NUM. */
+
+struct value *
+access_value_history (int num)
+{
+ struct value_history_chunk *chunk;
+ int i;
+ int absnum = num;
+
+ if (absnum <= 0)
+ absnum += value_history_count;
+
+ if (absnum <= 0)
+ {
+ if (num == 0)
+ error ("The history is empty.");
+ else if (num == 1)
+ error ("There is only one value in the history.");
+ else
+ error ("History does not go back to $$%d.", -num);
+ }
+ if (absnum > value_history_count)
+ error ("History has not yet reached $%d.", absnum);
+
+ absnum--;
+
+ /* Now absnum is always absolute and origin zero. */
+
+ chunk = value_history_chain;
+ for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
+ i > 0; i--)
+ chunk = chunk->next;
+
+ return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
+}
+
+/* Clear the value history entirely.
+ Must be done when new symbol tables are loaded,
+ because the type pointers become invalid. */
+
+void
+clear_value_history (void)
+{
+ struct value_history_chunk *next;
+ int i;
+ struct value *val;
+
+ while (value_history_chain)
+ {
+ for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
+ if ((val = value_history_chain->values[i]) != NULL)
+ xfree (val);
+ next = value_history_chain->next;
+ xfree (value_history_chain);
+ value_history_chain = next;
+ }
+ value_history_count = 0;
+}
+
+static void
+show_values (char *num_exp, int from_tty)
+{
+ int i;
+ struct value *val;
+ static int num = 1;
+
+ if (num_exp)
+ {
+ /* "info history +" should print from the stored position.
+ "info history <exp>" should print around value number <exp>. */
+ if (num_exp[0] != '+' || num_exp[1] != '\0')
+ num = parse_and_eval_long (num_exp) - 5;
+ }
+ else
+ {
+ /* "info history" means print the last 10 values. */
+ num = value_history_count - 9;
+ }
+
+ if (num <= 0)
+ num = 1;
+
+ for (i = num; i < num + 10 && i <= value_history_count; i++)
+ {
+ val = access_value_history (i);
+ printf_filtered ("$%d = ", i);
+ value_print (val, gdb_stdout, 0, Val_pretty_default);
+ printf_filtered ("\n");
+ }
+
+ /* The next "info history +" should start after what we just printed. */
+ num += 10;
+
+ /* Hitting just return after this command should do the same thing as
+ "info history +". If num_exp is null, this is unnecessary, since
+ "info history +" is not useful after "info history". */
+ if (from_tty && num_exp)
+ {
+ num_exp[0] = '+';
+ num_exp[1] = '\0';
+ }
+}
+\f
+/* Internal variables. These are variables within the debugger
+ that hold values assigned by debugger commands.
+ The user refers to them with a '$' prefix
+ that does not appear in the variable names stored internally. */
+
+static struct internalvar *internalvars;
+
+/* Look up an internal variable with name NAME. NAME should not
+ normally include a dollar sign.
+
+ If the specified internal variable does not exist,
+ one is created, with a void value. */
+
+struct internalvar *
+lookup_internalvar (char *name)
+{
+ struct internalvar *var;
+
+ for (var = internalvars; var; var = var->next)
+ if (strcmp (var->name, name) == 0)
+ return var;
+
+ var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
+ var->name = concat (name, NULL);
+ var->value = allocate_value (builtin_type_void);
+ release_value (var->value);
+ var->next = internalvars;
+ internalvars = var;
+ return var;
+}
+
+struct value *
+value_of_internalvar (struct internalvar *var)
+{
+ struct value *val;
+
+ val = value_copy (var->value);
+ if (VALUE_LAZY (val))
+ value_fetch_lazy (val);
+ VALUE_LVAL (val) = lval_internalvar;
+ VALUE_INTERNALVAR (val) = var;
+ return val;
+}
+
+void
+set_internalvar_component (struct internalvar *var, int offset, int bitpos,
+ int bitsize, struct value *newval)
+{
+ char *addr = VALUE_CONTENTS (var->value) + offset;
+
+ if (bitsize)
+ modify_field (addr, value_as_long (newval),
+ bitpos, bitsize);
+ else
+ memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
+}
+
+void
+set_internalvar (struct internalvar *var, struct value *val)
+{
+ struct value *newval;
+
+ newval = value_copy (val);
+ newval->modifiable = 1;
+
+ /* Force the value to be fetched from the target now, to avoid problems
+ later when this internalvar is referenced and the target is gone or
+ has changed. */
+ if (VALUE_LAZY (newval))
+ value_fetch_lazy (newval);
+
+ /* Begin code which must not call error(). If var->value points to
+ something free'd, an error() obviously leaves a dangling pointer.
+ But we also get a danling pointer if var->value points to
+ something in the value chain (i.e., before release_value is
+ called), because after the error free_all_values will get called before
+ long. */
+ xfree (var->value);
+ var->value = newval;
+ release_value (newval);
+ /* End code which must not call error(). */
+}
+
+char *
+internalvar_name (struct internalvar *var)
+{
+ return var->name;
+}
+
+/* Free all internalvars. Done when new symtabs are loaded,
+ because that makes the values invalid. */
+
+void
+clear_internalvars (void)
+{
+ struct internalvar *var;
+
+ while (internalvars)
+ {
+ var = internalvars;
+ internalvars = var->next;
+ xfree (var->name);
+ xfree (var->value);
+ xfree (var);
+ }
+}
+
+static void
+show_convenience (char *ignore, int from_tty)
+{
+ struct internalvar *var;
+ int varseen = 0;
+
+ for (var = internalvars; var; var = var->next)
+ {
+ if (!varseen)
+ {
+ varseen = 1;
+ }
+ printf_filtered ("$%s = ", var->name);
+ value_print (var->value, gdb_stdout, 0, Val_pretty_default);
+ printf_filtered ("\n");
+ }
+ if (!varseen)
+ printf_unfiltered ("No debugger convenience variables now defined.\n\
+Convenience variables have names starting with \"$\";\n\
+use \"set\" as in \"set $foo = 5\" to define them.\n");
+}
+\f
+/* Extract a value as a C number (either long or double).
+ Knows how to convert fixed values to double, or
+ floating values to long.
+ Does not deallocate the value. */
+
+LONGEST
+value_as_long (struct value *val)
+{
+ /* This coerces arrays and functions, which is necessary (e.g.
+ in disassemble_command). It also dereferences references, which
+ I suspect is the most logical thing to do. */
+ COERCE_ARRAY (val);
+ return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
+}
+
+DOUBLEST
+value_as_double (struct value *val)
+{
+ DOUBLEST foo;
+ int inv;
+
+ foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
+ if (inv)
+ error ("Invalid floating value found in program.");
+ return foo;
+}
+/* Extract a value as a C pointer. Does not deallocate the value.
+ Note that val's type may not actually be a pointer; value_as_long
+ handles all the cases. */
+CORE_ADDR
+value_as_address (struct value *val)
+{
+ /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
+ whether we want this to be true eventually. */
+#if 0
+ /* ADDR_BITS_REMOVE is wrong if we are being called for a
+ non-address (e.g. argument to "signal", "info break", etc.), or
+ for pointers to char, in which the low bits *are* significant. */
+ return ADDR_BITS_REMOVE (value_as_long (val));
+#else
+
+ /* There are several targets (IA-64, PowerPC, and others) which
+ don't represent pointers to functions as simply the address of
+ the function's entry point. For example, on the IA-64, a
+ function pointer points to a two-word descriptor, generated by
+ the linker, which contains the function's entry point, and the
+ value the IA-64 "global pointer" register should have --- to
+ support position-independent code. The linker generates
+ descriptors only for those functions whose addresses are taken.
+
+ On such targets, it's difficult for GDB to convert an arbitrary
+ function address into a function pointer; it has to either find
+ an existing descriptor for that function, or call malloc and
+ build its own. On some targets, it is impossible for GDB to
+ build a descriptor at all: the descriptor must contain a jump
+ instruction; data memory cannot be executed; and code memory
+ cannot be modified.
+
+ Upon entry to this function, if VAL is a value of type `function'
+ (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
+ VALUE_ADDRESS (val) is the address of the function. This is what
+ you'll get if you evaluate an expression like `main'. The call
+ to COERCE_ARRAY below actually does all the usual unary
+ conversions, which includes converting values of type `function'
+ to `pointer to function'. This is the challenging conversion
+ discussed above. Then, `unpack_long' will convert that pointer
+ back into an address.
+
+ So, suppose the user types `disassemble foo' on an architecture
+ with a strange function pointer representation, on which GDB
+ cannot build its own descriptors, and suppose further that `foo'
+ has no linker-built descriptor. The address->pointer conversion
+ will signal an error and prevent the command from running, even
+ though the next step would have been to convert the pointer
+ directly back into the same address.
+
+ The following shortcut avoids this whole mess. If VAL is a
+ function, just return its address directly. */
+ if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
+ || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
+ return VALUE_ADDRESS (val);
+
+ COERCE_ARRAY (val);
+
+ /* Some architectures (e.g. Harvard), map instruction and data
+ addresses onto a single large unified address space. For
+ instance: An architecture may consider a large integer in the
+ range 0x10000000 .. 0x1000ffff to already represent a data
+ addresses (hence not need a pointer to address conversion) while
+ a small integer would still need to be converted integer to
+ pointer to address. Just assume such architectures handle all
+ integer conversions in a single function. */
+
+ /* JimB writes:
+
+ I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
+ must admonish GDB hackers to make sure its behavior matches the
+ compiler's, whenever possible.
+
+ In general, I think GDB should evaluate expressions the same way
+ the compiler does. When the user copies an expression out of
+ their source code and hands it to a `print' command, they should
+ get the same value the compiler would have computed. Any
+ deviation from this rule can cause major confusion and annoyance,
+ and needs to be justified carefully. In other words, GDB doesn't
+ really have the freedom to do these conversions in clever and
+ useful ways.
+
+ AndrewC pointed out that users aren't complaining about how GDB
+ casts integers to pointers; they are complaining that they can't
+ take an address from a disassembly listing and give it to `x/i'.
+ This is certainly important.
+
+ Adding an architecture method like INTEGER_TO_ADDRESS certainly
+ makes it possible for GDB to "get it right" in all circumstances
+ --- the target has complete control over how things get done, so
+ people can Do The Right Thing for their target without breaking
+ anyone else. The standard doesn't specify how integers get
+ converted to pointers; usually, the ABI doesn't either, but
+ ABI-specific code is a more reasonable place to handle it. */
+
+ if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
+ && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
+ && INTEGER_TO_ADDRESS_P ())
+ return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
+
+ return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
+#endif
+}
+\f
+/* Unpack raw data (copied from debugee, target byte order) at VALADDR
+ as a long, or as a double, assuming the raw data is described
+ by type TYPE. Knows how to convert different sizes of values
+ and can convert between fixed and floating point. We don't assume
+ any alignment for the raw data. Return value is in host byte order.
+
+ If you want functions and arrays to be coerced to pointers, and
+ references to be dereferenced, call value_as_long() instead.
+
+ C++: It is assumed that the front-end has taken care of
+ all matters concerning pointers to members. A pointer
+ to member which reaches here is considered to be equivalent
+ to an INT (or some size). After all, it is only an offset. */
+
+LONGEST
+unpack_long (struct type *type, const char *valaddr)
+{
+ enum type_code code = TYPE_CODE (type);
+ int len = TYPE_LENGTH (type);
+ int nosign = TYPE_UNSIGNED (type);
+
+ if (current_language->la_language == language_scm
+ && is_scmvalue_type (type))
+ return scm_unpack (type, valaddr, TYPE_CODE_INT);
+
+ switch (code)
+ {
+ case TYPE_CODE_TYPEDEF:
+ return unpack_long (check_typedef (type), valaddr);
+ case TYPE_CODE_ENUM:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_INT:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_RANGE:
+ if (nosign)
+ return extract_unsigned_integer (valaddr, len);
+ else
+ return extract_signed_integer (valaddr, len);
+
+ case TYPE_CODE_FLT:
+ return extract_typed_floating (valaddr, type);
+
+ case TYPE_CODE_PTR:
+ case TYPE_CODE_REF:
+ /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
+ whether we want this to be true eventually. */
+ return extract_typed_address (valaddr, type);
+
+ case TYPE_CODE_MEMBER:
+ error ("not implemented: member types in unpack_long");
+
+ default:
+ error ("Value can't be converted to integer.");
+ }
+ return 0; /* Placate lint. */
+}
+
+/* Return a double value from the specified type and address.
+ INVP points to an int which is set to 0 for valid value,
+ 1 for invalid value (bad float format). In either case,
+ the returned double is OK to use. Argument is in target
+ format, result is in host format. */
+
+DOUBLEST
+unpack_double (struct type *type, const char *valaddr, int *invp)
+{
+ enum type_code code;
+ int len;
+ int nosign;
+
+ *invp = 0; /* Assume valid. */
+ CHECK_TYPEDEF (type);
+ code = TYPE_CODE (type);
+ len = TYPE_LENGTH (type);
+ nosign = TYPE_UNSIGNED (type);
+ if (code == TYPE_CODE_FLT)
+ {
+ /* NOTE: cagney/2002-02-19: There was a test here to see if the
+ floating-point value was valid (using the macro
+ INVALID_FLOAT). That test/macro have been removed.
+
+ It turns out that only the VAX defined this macro and then
+ only in a non-portable way. Fixing the portability problem
+ wouldn't help since the VAX floating-point code is also badly
+ bit-rotten. The target needs to add definitions for the
+ methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
+ exactly describe the target floating-point format. The
+ problem here is that the corresponding floatformat_vax_f and
+ floatformat_vax_d values these methods should be set to are
+ also not defined either. Oops!
+
+ Hopefully someone will add both the missing floatformat
+ definitions and the new cases for floatformat_is_valid (). */
+
+ if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
+ {
+ *invp = 1;
+ return 0.0;
+ }
+
+ return extract_typed_floating (valaddr, type);
+ }
+ else if (nosign)
+ {
+ /* Unsigned -- be sure we compensate for signed LONGEST. */
+ return (ULONGEST) unpack_long (type, valaddr);
+ }
+ else
+ {
+ /* Signed -- we are OK with unpack_long. */
+ return unpack_long (type, valaddr);
+ }
+}
+
+/* Unpack raw data (copied from debugee, target byte order) at VALADDR
+ as a CORE_ADDR, assuming the raw data is described by type TYPE.
+ We don't assume any alignment for the raw data. Return value is in
+ host byte order.
+
+ If you want functions and arrays to be coerced to pointers, and
+ references to be dereferenced, call value_as_address() instead.
+
+ C++: It is assumed that the front-end has taken care of
+ all matters concerning pointers to members. A pointer
+ to member which reaches here is considered to be equivalent
+ to an INT (or some size). After all, it is only an offset. */
+
+CORE_ADDR
+unpack_pointer (struct type *type, const char *valaddr)
+{
+ /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
+ whether we want this to be true eventually. */
+ return unpack_long (type, valaddr);
+}
+
+\f
+/* Get the value of the FIELDN'th field (which must be static) of
+ TYPE. Return NULL if the field doesn't exist or has been
+ optimized out. */
+
+struct value *
+value_static_field (struct type *type, int fieldno)
+{
+ struct value *retval;
+
+ if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
+ {
+ retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
+ TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
+ }
+ else
+ {
+ char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
+ struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
+ if (sym == NULL)
+ {
+ /* With some compilers, e.g. HP aCC, static data members are reported
+ as non-debuggable symbols */
+ struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
+ if (!msym)
+ return NULL;
+ else
+ {
+ retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
+ SYMBOL_VALUE_ADDRESS (msym));
+ }
+ }
+ else
+ {
+ /* SYM should never have a SYMBOL_CLASS which will require
+ read_var_value to use the FRAME parameter. */
+ if (symbol_read_needs_frame (sym))
+ warning ("static field's value depends on the current "
+ "frame - bad debug info?");
+ retval = read_var_value (sym, NULL);
+ }
+ if (retval && VALUE_LVAL (retval) == lval_memory)
+ SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
+ VALUE_ADDRESS (retval));
+ }
+ return retval;
+}
+
+/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
+ You have to be careful here, since the size of the data area for the value
+ is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
+ than the old enclosing type, you have to allocate more space for the data.
+ The return value is a pointer to the new version of this value structure. */
+
+struct value *
+value_change_enclosing_type (struct value *val, struct type *new_encl_type)
+{
+ if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
+ {
+ VALUE_ENCLOSING_TYPE (val) = new_encl_type;
+ return val;
+ }
+ else
+ {
+ struct value *new_val;
+ struct value *prev;
+
+ new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
+
+ VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
+
+ /* We have to make sure this ends up in the same place in the value
+ chain as the original copy, so it's clean-up behavior is the same.
+ If the value has been released, this is a waste of time, but there
+ is no way to tell that in advance, so... */
+
+ if (val != all_values)
+ {
+ for (prev = all_values; prev != NULL; prev = prev->next)
+ {
+ if (prev->next == val)
+ {
+ prev->next = new_val;
+ break;
+ }
+ }
+ }
+
+ return new_val;
+ }
+}
+
+/* Given a value ARG1 (offset by OFFSET bytes)
+ of a struct or union type ARG_TYPE,
+ extract and return the value of one of its (non-static) fields.
+ FIELDNO says which field. */
+
+struct value *
+value_primitive_field (struct value *arg1, int offset,
+ int fieldno, struct type *arg_type)
+{
+ struct value *v;
+ struct type *type;
+
+ CHECK_TYPEDEF (arg_type);
+ type = TYPE_FIELD_TYPE (arg_type, fieldno);
+
+ /* Handle packed fields */
+
+ if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
+ {
+ v = value_from_longest (type,
+ unpack_field_as_long (arg_type,
+ VALUE_CONTENTS (arg1)
+ + offset,
+ fieldno));
+ VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
+ VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
+ VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
+ + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+ }
+ else if (fieldno < TYPE_N_BASECLASSES (arg_type))
+ {
+ /* This field is actually a base subobject, so preserve the
+ entire object's contents for later references to virtual
+ bases, etc. */
+ v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
+ VALUE_TYPE (v) = type;
+ if (VALUE_LAZY (arg1))
+ VALUE_LAZY (v) = 1;
+ else
+ memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
+ TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
+ VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
+ VALUE_EMBEDDED_OFFSET (v)
+ = offset +
+ VALUE_EMBEDDED_OFFSET (arg1) +
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+ }
+ else
+ {
+ /* Plain old data member */
+ offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+ v = allocate_value (type);
+ if (VALUE_LAZY (arg1))
+ VALUE_LAZY (v) = 1;
+ else
+ memcpy (VALUE_CONTENTS_RAW (v),
+ VALUE_CONTENTS_RAW (arg1) + offset,
+ TYPE_LENGTH (type));
+ VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
+ + VALUE_EMBEDDED_OFFSET (arg1);
+ }
+ VALUE_LVAL (v) = VALUE_LVAL (arg1);
+ if (VALUE_LVAL (arg1) == lval_internalvar)
+ VALUE_LVAL (v) = lval_internalvar_component;
+ VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
+ VALUE_REGNO (v) = VALUE_REGNO (arg1);
+/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
+ + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
+ return v;
+}
+
+/* Given a value ARG1 of a struct or union type,
+ extract and return the value of one of its (non-static) fields.
+ FIELDNO says which field. */
+
+struct value *
+value_field (struct value *arg1, int fieldno)
+{
+ return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
+}
+
+/* Return a non-virtual function as a value.
+ F is the list of member functions which contains the desired method.
+ J is an index into F which provides the desired method.
+
+ We only use the symbol for its address, so be happy with either a
+ full symbol or a minimal symbol.
+ */
+
+struct value *
+value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
+ int offset)
+{
+ struct value *v;
+ struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
+ char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
+ struct symbol *sym;
+ struct minimal_symbol *msym;
+
+ sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
+ if (sym != NULL)
+ {
+ msym = NULL;
+ }
+ else
+ {
+ gdb_assert (sym == NULL);
+ msym = lookup_minimal_symbol (physname, NULL, NULL);
+ if (msym == NULL)
+ return NULL;
+ }
+
+ v = allocate_value (ftype);
+ if (sym)
+ {
+ VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
+ }
+ else
+ {
+ VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
+ }
+
+ if (arg1p)
+ {
+ if (type != VALUE_TYPE (*arg1p))
+ *arg1p = value_ind (value_cast (lookup_pointer_type (type),
+ value_addr (*arg1p)));
+
+ /* Move the `this' pointer according to the offset.
+ VALUE_OFFSET (*arg1p) += offset;
+ */
+ }
+
+ return v;
+}
+
+\f
+/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
+ VALADDR.
+
+ Extracting bits depends on endianness of the machine. Compute the
+ number of least significant bits to discard. For big endian machines,
+ we compute the total number of bits in the anonymous object, subtract
+ off the bit count from the MSB of the object to the MSB of the
+ bitfield, then the size of the bitfield, which leaves the LSB discard
+ count. For little endian machines, the discard count is simply the
+ number of bits from the LSB of the anonymous object to the LSB of the
+ bitfield.
+
+ If the field is signed, we also do sign extension. */
+
+LONGEST
+unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
+{
+ ULONGEST val;
+ ULONGEST valmask;
+ int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
+ int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
+ int lsbcount;
+ struct type *field_type;
+
+ val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
+ field_type = TYPE_FIELD_TYPE (type, fieldno);
+ CHECK_TYPEDEF (field_type);
+
+ /* Extract bits. See comment above. */
+
+ if (BITS_BIG_ENDIAN)
+ lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
+ else
+ lsbcount = (bitpos % 8);
+ val >>= lsbcount;
+
+ /* If the field does not entirely fill a LONGEST, then zero the sign bits.
+ If the field is signed, and is negative, then sign extend. */
+
+ if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
+ {
+ valmask = (((ULONGEST) 1) << bitsize) - 1;
+ val &= valmask;
+ if (!TYPE_UNSIGNED (field_type))
+ {
+ if (val & (valmask ^ (valmask >> 1)))
+ {
+ val |= ~valmask;
+ }
+ }
+ }
+ return (val);
+}
+
+/* Modify the value of a bitfield. ADDR points to a block of memory in
+ target byte order; the bitfield starts in the byte pointed to. FIELDVAL
+ is the desired value of the field, in host byte order. BITPOS and BITSIZE
+ indicate which bits (in target bit order) comprise the bitfield.
+ Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
+ 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
+
+void
+modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
+{
+ ULONGEST oword;
+ ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
+
+ /* If a negative fieldval fits in the field in question, chop
+ off the sign extension bits. */
+ if ((~fieldval & ~(mask >> 1)) == 0)
+ fieldval &= mask;
+
+ /* Warn if value is too big to fit in the field in question. */
+ if (0 != (fieldval & ~mask))
+ {
+ /* FIXME: would like to include fieldval in the message, but
+ we don't have a sprintf_longest. */
+ warning ("Value does not fit in %d bits.", bitsize);
+
+ /* Truncate it, otherwise adjoining fields may be corrupted. */
+ fieldval &= mask;
+ }
+
+ oword = extract_unsigned_integer (addr, sizeof oword);
+
+ /* Shifting for bit field depends on endianness of the target machine. */
+ if (BITS_BIG_ENDIAN)
+ bitpos = sizeof (oword) * 8 - bitpos - bitsize;
+
+ oword &= ~(mask << bitpos);
+ oword |= fieldval << bitpos;
+
+ store_unsigned_integer (addr, sizeof oword, oword);
+}
+\f
+/* Convert C numbers into newly allocated values */
+
+struct value *
+value_from_longest (struct type *type, LONGEST num)
+{
+ struct value *val = allocate_value (type);
+ enum type_code code;
+ int len;
+retry:
+ code = TYPE_CODE (type);
+ len = TYPE_LENGTH (type);
+
+ switch (code)
+ {
+ case TYPE_CODE_TYPEDEF:
+ type = check_typedef (type);
+ goto retry;
+ case TYPE_CODE_INT:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_ENUM:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_RANGE:
+ store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
+ break;
+
+ case TYPE_CODE_REF:
+ case TYPE_CODE_PTR:
+ store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
+ break;
+
+ default:
+ error ("Unexpected type (%d) encountered for integer constant.", code);
+ }
+ return val;
+}
+
+
+/* Create a value representing a pointer of type TYPE to the address
+ ADDR. */
+struct value *
+value_from_pointer (struct type *type, CORE_ADDR addr)
+{
+ struct value *val = allocate_value (type);
+ store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
+ return val;
+}
+
+
+/* Create a value for a string constant to be stored locally
+ (not in the inferior's memory space, but in GDB memory).
+ This is analogous to value_from_longest, which also does not
+ use inferior memory. String shall NOT contain embedded nulls. */
+
+struct value *
+value_from_string (char *ptr)
+{
+ struct value *val;
+ int len = strlen (ptr);
+ int lowbound = current_language->string_lower_bound;
+ struct type *string_char_type;
+ struct type *rangetype;
+ struct type *stringtype;
+
+ rangetype = create_range_type ((struct type *) NULL,
+ builtin_type_int,
+ lowbound, len + lowbound - 1);
+ string_char_type = language_string_char_type (current_language,
+ current_gdbarch);
+ stringtype = create_array_type ((struct type *) NULL,
+ string_char_type,
+ rangetype);
+ val = allocate_value (stringtype);
+ memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
+ return val;
+}
+
+struct value *
+value_from_double (struct type *type, DOUBLEST num)
+{
+ struct value *val = allocate_value (type);
+ struct type *base_type = check_typedef (type);
+ enum type_code code = TYPE_CODE (base_type);
+ int len = TYPE_LENGTH (base_type);
+
+ if (code == TYPE_CODE_FLT)
+ {
+ store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
+ }
+ else
+ error ("Unexpected type encountered for floating constant.");
+
+ return val;
+}
+\f
+
+/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
+ EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
+ is the type (which is known to be struct, union or array).
+
+ On most machines, the struct convention is used unless we are
+ using gcc and the type is of a special size. */
+/* As of about 31 Mar 93, GCC was changed to be compatible with the
+ native compiler. GCC 2.3.3 was the last release that did it the
+ old way. Since gcc2_compiled was not changed, we have no
+ way to correctly win in all cases, so we just do the right thing
+ for gcc1 and for gcc2 after this change. Thus it loses for gcc
+ 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
+ would cause more chaos than dealing with some struct returns being
+ handled wrong. */
+/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
+ dead. */
+
+int
+generic_use_struct_convention (int gcc_p, struct type *value_type)
+{
+ return !(TYPE_LENGTH (value_type) == 1
+ || TYPE_LENGTH (value_type) == 2
+ || TYPE_LENGTH (value_type) == 4
+ || TYPE_LENGTH (value_type) == 8);
+}
+
+/* Return true if the function returning the specified type is using
+ the convention of returning structures in memory (passing in the
+ address as a hidden first parameter). GCC_P is nonzero if compiled
+ with GCC. */
+
+int
+using_struct_return (struct type *value_type, int gcc_p)
+{
+ enum type_code code = TYPE_CODE (value_type);
+
+ if (code == TYPE_CODE_ERROR)
+ error ("Function return type unknown.");
+
+ if (code == TYPE_CODE_VOID)
+ /* A void return value is never in memory. See also corresponding
+ code in "print_return_value". */
+ return 0;
+
+ /* Probe the architecture for the return-value convention. */
+ return (gdbarch_return_value (current_gdbarch, value_type,
+ NULL, NULL, NULL)
+ != RETURN_VALUE_REGISTER_CONVENTION);
+}
+
+void
+_initialize_values (void)
+{
+ add_cmd ("convenience", no_class, show_convenience,
+ "Debugger convenience (\"$foo\") variables.\n\
+These variables are created when you assign them values;\n\
+thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
+A few convenience variables are given values automatically:\n\
+\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
+\"$__\" holds the contents of the last address examined with \"x\".",
+ &showlist);
+
+ add_cmd ("values", no_class, show_values,
+ "Elements of value history around item number IDX (or last ten).",
+ &showlist);
+}
+++ /dev/null
-/* Low level packing and unpacking of values for GDB, the GNU Debugger.
-
- Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
- Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "gdb_string.h"
-#include "symtab.h"
-#include "gdbtypes.h"
-#include "value.h"
-#include "gdbcore.h"
-#include "command.h"
-#include "gdbcmd.h"
-#include "target.h"
-#include "language.h"
-#include "scm-lang.h"
-#include "demangle.h"
-#include "doublest.h"
-#include "gdb_assert.h"
-#include "regcache.h"
-#include "block.h"
-
-/* Prototypes for exported functions. */
-
-void _initialize_values (void);
-
-/* Prototypes for local functions. */
-
-static void show_values (char *, int);
-
-static void show_convenience (char *, int);
-
-
-/* The value-history records all the values printed
- by print commands during this session. Each chunk
- records 60 consecutive values. The first chunk on
- the chain records the most recent values.
- The total number of values is in value_history_count. */
-
-#define VALUE_HISTORY_CHUNK 60
-
-struct value_history_chunk
- {
- struct value_history_chunk *next;
- struct value *values[VALUE_HISTORY_CHUNK];
- };
-
-/* Chain of chunks now in use. */
-
-static struct value_history_chunk *value_history_chain;
-
-static int value_history_count; /* Abs number of last entry stored */
-\f
-/* List of all value objects currently allocated
- (except for those released by calls to release_value)
- This is so they can be freed after each command. */
-
-static struct value *all_values;
-
-/* Allocate a value that has the correct length for type TYPE. */
-
-struct value *
-allocate_value (struct type *type)
-{
- struct value *val;
- struct type *atype = check_typedef (type);
-
- val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
- VALUE_NEXT (val) = all_values;
- all_values = val;
- VALUE_TYPE (val) = type;
- VALUE_ENCLOSING_TYPE (val) = type;
- VALUE_LVAL (val) = not_lval;
- VALUE_ADDRESS (val) = 0;
- VALUE_FRAME_ID (val) = null_frame_id;
- VALUE_OFFSET (val) = 0;
- VALUE_BITPOS (val) = 0;
- VALUE_BITSIZE (val) = 0;
- VALUE_REGNO (val) = -1;
- VALUE_LAZY (val) = 0;
- VALUE_OPTIMIZED_OUT (val) = 0;
- VALUE_EMBEDDED_OFFSET (val) = 0;
- VALUE_POINTED_TO_OFFSET (val) = 0;
- val->modifiable = 1;
- return val;
-}
-
-/* Allocate a value that has the correct length
- for COUNT repetitions type TYPE. */
-
-struct value *
-allocate_repeat_value (struct type *type, int count)
-{
- int low_bound = current_language->string_lower_bound; /* ??? */
- /* FIXME-type-allocation: need a way to free this type when we are
- done with it. */
- struct type *range_type
- = create_range_type ((struct type *) NULL, builtin_type_int,
- low_bound, count + low_bound - 1);
- /* FIXME-type-allocation: need a way to free this type when we are
- done with it. */
- return allocate_value (create_array_type ((struct type *) NULL,
- type, range_type));
-}
-
-/* Return a mark in the value chain. All values allocated after the
- mark is obtained (except for those released) are subject to being freed
- if a subsequent value_free_to_mark is passed the mark. */
-struct value *
-value_mark (void)
-{
- return all_values;
-}
-
-/* Free all values allocated since MARK was obtained by value_mark
- (except for those released). */
-void
-value_free_to_mark (struct value *mark)
-{
- struct value *val;
- struct value *next;
-
- for (val = all_values; val && val != mark; val = next)
- {
- next = VALUE_NEXT (val);
- value_free (val);
- }
- all_values = val;
-}
-
-/* Free all the values that have been allocated (except for those released).
- Called after each command, successful or not. */
-
-void
-free_all_values (void)
-{
- struct value *val;
- struct value *next;
-
- for (val = all_values; val; val = next)
- {
- next = VALUE_NEXT (val);
- value_free (val);
- }
-
- all_values = 0;
-}
-
-/* Remove VAL from the chain all_values
- so it will not be freed automatically. */
-
-void
-release_value (struct value *val)
-{
- struct value *v;
-
- if (all_values == val)
- {
- all_values = val->next;
- return;
- }
-
- for (v = all_values; v; v = v->next)
- {
- if (v->next == val)
- {
- v->next = val->next;
- break;
- }
- }
-}
-
-/* Release all values up to mark */
-struct value *
-value_release_to_mark (struct value *mark)
-{
- struct value *val;
- struct value *next;
-
- for (val = next = all_values; next; next = VALUE_NEXT (next))
- if (VALUE_NEXT (next) == mark)
- {
- all_values = VALUE_NEXT (next);
- VALUE_NEXT (next) = 0;
- return val;
- }
- all_values = 0;
- return val;
-}
-
-/* Return a copy of the value ARG.
- It contains the same contents, for same memory address,
- but it's a different block of storage. */
-
-struct value *
-value_copy (struct value *arg)
-{
- struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
- struct value *val = allocate_value (encl_type);
- VALUE_TYPE (val) = VALUE_TYPE (arg);
- VALUE_LVAL (val) = VALUE_LVAL (arg);
- VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
- VALUE_OFFSET (val) = VALUE_OFFSET (arg);
- VALUE_BITPOS (val) = VALUE_BITPOS (arg);
- VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
- VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
- VALUE_REGNO (val) = VALUE_REGNO (arg);
- VALUE_LAZY (val) = VALUE_LAZY (arg);
- VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
- VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
- VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
- val->modifiable = arg->modifiable;
- if (!VALUE_LAZY (val))
- {
- memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
- TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
-
- }
- return val;
-}
-\f
-/* Access to the value history. */
-
-/* Record a new value in the value history.
- Returns the absolute history index of the entry.
- Result of -1 indicates the value was not saved; otherwise it is the
- value history index of this new item. */
-
-int
-record_latest_value (struct value *val)
-{
- int i;
-
- /* We don't want this value to have anything to do with the inferior anymore.
- In particular, "set $1 = 50" should not affect the variable from which
- the value was taken, and fast watchpoints should be able to assume that
- a value on the value history never changes. */
- if (VALUE_LAZY (val))
- value_fetch_lazy (val);
- /* We preserve VALUE_LVAL so that the user can find out where it was fetched
- from. This is a bit dubious, because then *&$1 does not just return $1
- but the current contents of that location. c'est la vie... */
- val->modifiable = 0;
- release_value (val);
-
- /* Here we treat value_history_count as origin-zero
- and applying to the value being stored now. */
-
- i = value_history_count % VALUE_HISTORY_CHUNK;
- if (i == 0)
- {
- struct value_history_chunk *new
- = (struct value_history_chunk *)
- xmalloc (sizeof (struct value_history_chunk));
- memset (new->values, 0, sizeof new->values);
- new->next = value_history_chain;
- value_history_chain = new;
- }
-
- value_history_chain->values[i] = val;
-
- /* Now we regard value_history_count as origin-one
- and applying to the value just stored. */
-
- return ++value_history_count;
-}
-
-/* Return a copy of the value in the history with sequence number NUM. */
-
-struct value *
-access_value_history (int num)
-{
- struct value_history_chunk *chunk;
- int i;
- int absnum = num;
-
- if (absnum <= 0)
- absnum += value_history_count;
-
- if (absnum <= 0)
- {
- if (num == 0)
- error ("The history is empty.");
- else if (num == 1)
- error ("There is only one value in the history.");
- else
- error ("History does not go back to $$%d.", -num);
- }
- if (absnum > value_history_count)
- error ("History has not yet reached $%d.", absnum);
-
- absnum--;
-
- /* Now absnum is always absolute and origin zero. */
-
- chunk = value_history_chain;
- for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
- i > 0; i--)
- chunk = chunk->next;
-
- return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
-}
-
-/* Clear the value history entirely.
- Must be done when new symbol tables are loaded,
- because the type pointers become invalid. */
-
-void
-clear_value_history (void)
-{
- struct value_history_chunk *next;
- int i;
- struct value *val;
-
- while (value_history_chain)
- {
- for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
- if ((val = value_history_chain->values[i]) != NULL)
- xfree (val);
- next = value_history_chain->next;
- xfree (value_history_chain);
- value_history_chain = next;
- }
- value_history_count = 0;
-}
-
-static void
-show_values (char *num_exp, int from_tty)
-{
- int i;
- struct value *val;
- static int num = 1;
-
- if (num_exp)
- {
- /* "info history +" should print from the stored position.
- "info history <exp>" should print around value number <exp>. */
- if (num_exp[0] != '+' || num_exp[1] != '\0')
- num = parse_and_eval_long (num_exp) - 5;
- }
- else
- {
- /* "info history" means print the last 10 values. */
- num = value_history_count - 9;
- }
-
- if (num <= 0)
- num = 1;
-
- for (i = num; i < num + 10 && i <= value_history_count; i++)
- {
- val = access_value_history (i);
- printf_filtered ("$%d = ", i);
- value_print (val, gdb_stdout, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
-
- /* The next "info history +" should start after what we just printed. */
- num += 10;
-
- /* Hitting just return after this command should do the same thing as
- "info history +". If num_exp is null, this is unnecessary, since
- "info history +" is not useful after "info history". */
- if (from_tty && num_exp)
- {
- num_exp[0] = '+';
- num_exp[1] = '\0';
- }
-}
-\f
-/* Internal variables. These are variables within the debugger
- that hold values assigned by debugger commands.
- The user refers to them with a '$' prefix
- that does not appear in the variable names stored internally. */
-
-static struct internalvar *internalvars;
-
-/* Look up an internal variable with name NAME. NAME should not
- normally include a dollar sign.
-
- If the specified internal variable does not exist,
- one is created, with a void value. */
-
-struct internalvar *
-lookup_internalvar (char *name)
-{
- struct internalvar *var;
-
- for (var = internalvars; var; var = var->next)
- if (strcmp (var->name, name) == 0)
- return var;
-
- var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
- var->name = concat (name, NULL);
- var->value = allocate_value (builtin_type_void);
- release_value (var->value);
- var->next = internalvars;
- internalvars = var;
- return var;
-}
-
-struct value *
-value_of_internalvar (struct internalvar *var)
-{
- struct value *val;
-
- val = value_copy (var->value);
- if (VALUE_LAZY (val))
- value_fetch_lazy (val);
- VALUE_LVAL (val) = lval_internalvar;
- VALUE_INTERNALVAR (val) = var;
- return val;
-}
-
-void
-set_internalvar_component (struct internalvar *var, int offset, int bitpos,
- int bitsize, struct value *newval)
-{
- char *addr = VALUE_CONTENTS (var->value) + offset;
-
- if (bitsize)
- modify_field (addr, value_as_long (newval),
- bitpos, bitsize);
- else
- memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
-}
-
-void
-set_internalvar (struct internalvar *var, struct value *val)
-{
- struct value *newval;
-
- newval = value_copy (val);
- newval->modifiable = 1;
-
- /* Force the value to be fetched from the target now, to avoid problems
- later when this internalvar is referenced and the target is gone or
- has changed. */
- if (VALUE_LAZY (newval))
- value_fetch_lazy (newval);
-
- /* Begin code which must not call error(). If var->value points to
- something free'd, an error() obviously leaves a dangling pointer.
- But we also get a danling pointer if var->value points to
- something in the value chain (i.e., before release_value is
- called), because after the error free_all_values will get called before
- long. */
- xfree (var->value);
- var->value = newval;
- release_value (newval);
- /* End code which must not call error(). */
-}
-
-char *
-internalvar_name (struct internalvar *var)
-{
- return var->name;
-}
-
-/* Free all internalvars. Done when new symtabs are loaded,
- because that makes the values invalid. */
-
-void
-clear_internalvars (void)
-{
- struct internalvar *var;
-
- while (internalvars)
- {
- var = internalvars;
- internalvars = var->next;
- xfree (var->name);
- xfree (var->value);
- xfree (var);
- }
-}
-
-static void
-show_convenience (char *ignore, int from_tty)
-{
- struct internalvar *var;
- int varseen = 0;
-
- for (var = internalvars; var; var = var->next)
- {
- if (!varseen)
- {
- varseen = 1;
- }
- printf_filtered ("$%s = ", var->name);
- value_print (var->value, gdb_stdout, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
- if (!varseen)
- printf_unfiltered ("No debugger convenience variables now defined.\n\
-Convenience variables have names starting with \"$\";\n\
-use \"set\" as in \"set $foo = 5\" to define them.\n");
-}
-\f
-/* Extract a value as a C number (either long or double).
- Knows how to convert fixed values to double, or
- floating values to long.
- Does not deallocate the value. */
-
-LONGEST
-value_as_long (struct value *val)
-{
- /* This coerces arrays and functions, which is necessary (e.g.
- in disassemble_command). It also dereferences references, which
- I suspect is the most logical thing to do. */
- COERCE_ARRAY (val);
- return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
-}
-
-DOUBLEST
-value_as_double (struct value *val)
-{
- DOUBLEST foo;
- int inv;
-
- foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
- if (inv)
- error ("Invalid floating value found in program.");
- return foo;
-}
-/* Extract a value as a C pointer. Does not deallocate the value.
- Note that val's type may not actually be a pointer; value_as_long
- handles all the cases. */
-CORE_ADDR
-value_as_address (struct value *val)
-{
- /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
- whether we want this to be true eventually. */
-#if 0
- /* ADDR_BITS_REMOVE is wrong if we are being called for a
- non-address (e.g. argument to "signal", "info break", etc.), or
- for pointers to char, in which the low bits *are* significant. */
- return ADDR_BITS_REMOVE (value_as_long (val));
-#else
-
- /* There are several targets (IA-64, PowerPC, and others) which
- don't represent pointers to functions as simply the address of
- the function's entry point. For example, on the IA-64, a
- function pointer points to a two-word descriptor, generated by
- the linker, which contains the function's entry point, and the
- value the IA-64 "global pointer" register should have --- to
- support position-independent code. The linker generates
- descriptors only for those functions whose addresses are taken.
-
- On such targets, it's difficult for GDB to convert an arbitrary
- function address into a function pointer; it has to either find
- an existing descriptor for that function, or call malloc and
- build its own. On some targets, it is impossible for GDB to
- build a descriptor at all: the descriptor must contain a jump
- instruction; data memory cannot be executed; and code memory
- cannot be modified.
-
- Upon entry to this function, if VAL is a value of type `function'
- (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
- VALUE_ADDRESS (val) is the address of the function. This is what
- you'll get if you evaluate an expression like `main'. The call
- to COERCE_ARRAY below actually does all the usual unary
- conversions, which includes converting values of type `function'
- to `pointer to function'. This is the challenging conversion
- discussed above. Then, `unpack_long' will convert that pointer
- back into an address.
-
- So, suppose the user types `disassemble foo' on an architecture
- with a strange function pointer representation, on which GDB
- cannot build its own descriptors, and suppose further that `foo'
- has no linker-built descriptor. The address->pointer conversion
- will signal an error and prevent the command from running, even
- though the next step would have been to convert the pointer
- directly back into the same address.
-
- The following shortcut avoids this whole mess. If VAL is a
- function, just return its address directly. */
- if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
- || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
- return VALUE_ADDRESS (val);
-
- COERCE_ARRAY (val);
-
- /* Some architectures (e.g. Harvard), map instruction and data
- addresses onto a single large unified address space. For
- instance: An architecture may consider a large integer in the
- range 0x10000000 .. 0x1000ffff to already represent a data
- addresses (hence not need a pointer to address conversion) while
- a small integer would still need to be converted integer to
- pointer to address. Just assume such architectures handle all
- integer conversions in a single function. */
-
- /* JimB writes:
-
- I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
- must admonish GDB hackers to make sure its behavior matches the
- compiler's, whenever possible.
-
- In general, I think GDB should evaluate expressions the same way
- the compiler does. When the user copies an expression out of
- their source code and hands it to a `print' command, they should
- get the same value the compiler would have computed. Any
- deviation from this rule can cause major confusion and annoyance,
- and needs to be justified carefully. In other words, GDB doesn't
- really have the freedom to do these conversions in clever and
- useful ways.
-
- AndrewC pointed out that users aren't complaining about how GDB
- casts integers to pointers; they are complaining that they can't
- take an address from a disassembly listing and give it to `x/i'.
- This is certainly important.
-
- Adding an architecture method like INTEGER_TO_ADDRESS certainly
- makes it possible for GDB to "get it right" in all circumstances
- --- the target has complete control over how things get done, so
- people can Do The Right Thing for their target without breaking
- anyone else. The standard doesn't specify how integers get
- converted to pointers; usually, the ABI doesn't either, but
- ABI-specific code is a more reasonable place to handle it. */
-
- if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
- && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
- && INTEGER_TO_ADDRESS_P ())
- return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
-
- return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
-#endif
-}
-\f
-/* Unpack raw data (copied from debugee, target byte order) at VALADDR
- as a long, or as a double, assuming the raw data is described
- by type TYPE. Knows how to convert different sizes of values
- and can convert between fixed and floating point. We don't assume
- any alignment for the raw data. Return value is in host byte order.
-
- If you want functions and arrays to be coerced to pointers, and
- references to be dereferenced, call value_as_long() instead.
-
- C++: It is assumed that the front-end has taken care of
- all matters concerning pointers to members. A pointer
- to member which reaches here is considered to be equivalent
- to an INT (or some size). After all, it is only an offset. */
-
-LONGEST
-unpack_long (struct type *type, const char *valaddr)
-{
- enum type_code code = TYPE_CODE (type);
- int len = TYPE_LENGTH (type);
- int nosign = TYPE_UNSIGNED (type);
-
- if (current_language->la_language == language_scm
- && is_scmvalue_type (type))
- return scm_unpack (type, valaddr, TYPE_CODE_INT);
-
- switch (code)
- {
- case TYPE_CODE_TYPEDEF:
- return unpack_long (check_typedef (type), valaddr);
- case TYPE_CODE_ENUM:
- case TYPE_CODE_BOOL:
- case TYPE_CODE_INT:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_RANGE:
- if (nosign)
- return extract_unsigned_integer (valaddr, len);
- else
- return extract_signed_integer (valaddr, len);
-
- case TYPE_CODE_FLT:
- return extract_typed_floating (valaddr, type);
-
- case TYPE_CODE_PTR:
- case TYPE_CODE_REF:
- /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
- whether we want this to be true eventually. */
- return extract_typed_address (valaddr, type);
-
- case TYPE_CODE_MEMBER:
- error ("not implemented: member types in unpack_long");
-
- default:
- error ("Value can't be converted to integer.");
- }
- return 0; /* Placate lint. */
-}
-
-/* Return a double value from the specified type and address.
- INVP points to an int which is set to 0 for valid value,
- 1 for invalid value (bad float format). In either case,
- the returned double is OK to use. Argument is in target
- format, result is in host format. */
-
-DOUBLEST
-unpack_double (struct type *type, const char *valaddr, int *invp)
-{
- enum type_code code;
- int len;
- int nosign;
-
- *invp = 0; /* Assume valid. */
- CHECK_TYPEDEF (type);
- code = TYPE_CODE (type);
- len = TYPE_LENGTH (type);
- nosign = TYPE_UNSIGNED (type);
- if (code == TYPE_CODE_FLT)
- {
- /* NOTE: cagney/2002-02-19: There was a test here to see if the
- floating-point value was valid (using the macro
- INVALID_FLOAT). That test/macro have been removed.
-
- It turns out that only the VAX defined this macro and then
- only in a non-portable way. Fixing the portability problem
- wouldn't help since the VAX floating-point code is also badly
- bit-rotten. The target needs to add definitions for the
- methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
- exactly describe the target floating-point format. The
- problem here is that the corresponding floatformat_vax_f and
- floatformat_vax_d values these methods should be set to are
- also not defined either. Oops!
-
- Hopefully someone will add both the missing floatformat
- definitions and the new cases for floatformat_is_valid (). */
-
- if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
- {
- *invp = 1;
- return 0.0;
- }
-
- return extract_typed_floating (valaddr, type);
- }
- else if (nosign)
- {
- /* Unsigned -- be sure we compensate for signed LONGEST. */
- return (ULONGEST) unpack_long (type, valaddr);
- }
- else
- {
- /* Signed -- we are OK with unpack_long. */
- return unpack_long (type, valaddr);
- }
-}
-
-/* Unpack raw data (copied from debugee, target byte order) at VALADDR
- as a CORE_ADDR, assuming the raw data is described by type TYPE.
- We don't assume any alignment for the raw data. Return value is in
- host byte order.
-
- If you want functions and arrays to be coerced to pointers, and
- references to be dereferenced, call value_as_address() instead.
-
- C++: It is assumed that the front-end has taken care of
- all matters concerning pointers to members. A pointer
- to member which reaches here is considered to be equivalent
- to an INT (or some size). After all, it is only an offset. */
-
-CORE_ADDR
-unpack_pointer (struct type *type, const char *valaddr)
-{
- /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
- whether we want this to be true eventually. */
- return unpack_long (type, valaddr);
-}
-
-\f
-/* Get the value of the FIELDN'th field (which must be static) of
- TYPE. Return NULL if the field doesn't exist or has been
- optimized out. */
-
-struct value *
-value_static_field (struct type *type, int fieldno)
-{
- struct value *retval;
-
- if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
- {
- retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
- TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
- }
- else
- {
- char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
- struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
- if (sym == NULL)
- {
- /* With some compilers, e.g. HP aCC, static data members are reported
- as non-debuggable symbols */
- struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
- if (!msym)
- return NULL;
- else
- {
- retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
- SYMBOL_VALUE_ADDRESS (msym));
- }
- }
- else
- {
- /* SYM should never have a SYMBOL_CLASS which will require
- read_var_value to use the FRAME parameter. */
- if (symbol_read_needs_frame (sym))
- warning ("static field's value depends on the current "
- "frame - bad debug info?");
- retval = read_var_value (sym, NULL);
- }
- if (retval && VALUE_LVAL (retval) == lval_memory)
- SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
- VALUE_ADDRESS (retval));
- }
- return retval;
-}
-
-/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
- You have to be careful here, since the size of the data area for the value
- is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
- than the old enclosing type, you have to allocate more space for the data.
- The return value is a pointer to the new version of this value structure. */
-
-struct value *
-value_change_enclosing_type (struct value *val, struct type *new_encl_type)
-{
- if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
- {
- VALUE_ENCLOSING_TYPE (val) = new_encl_type;
- return val;
- }
- else
- {
- struct value *new_val;
- struct value *prev;
-
- new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
-
- VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
-
- /* We have to make sure this ends up in the same place in the value
- chain as the original copy, so it's clean-up behavior is the same.
- If the value has been released, this is a waste of time, but there
- is no way to tell that in advance, so... */
-
- if (val != all_values)
- {
- for (prev = all_values; prev != NULL; prev = prev->next)
- {
- if (prev->next == val)
- {
- prev->next = new_val;
- break;
- }
- }
- }
-
- return new_val;
- }
-}
-
-/* Given a value ARG1 (offset by OFFSET bytes)
- of a struct or union type ARG_TYPE,
- extract and return the value of one of its (non-static) fields.
- FIELDNO says which field. */
-
-struct value *
-value_primitive_field (struct value *arg1, int offset,
- int fieldno, struct type *arg_type)
-{
- struct value *v;
- struct type *type;
-
- CHECK_TYPEDEF (arg_type);
- type = TYPE_FIELD_TYPE (arg_type, fieldno);
-
- /* Handle packed fields */
-
- if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
- {
- v = value_from_longest (type,
- unpack_field_as_long (arg_type,
- VALUE_CONTENTS (arg1)
- + offset,
- fieldno));
- VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
- VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
- VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
- + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
- }
- else if (fieldno < TYPE_N_BASECLASSES (arg_type))
- {
- /* This field is actually a base subobject, so preserve the
- entire object's contents for later references to virtual
- bases, etc. */
- v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
- VALUE_TYPE (v) = type;
- if (VALUE_LAZY (arg1))
- VALUE_LAZY (v) = 1;
- else
- memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
- TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
- VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
- VALUE_EMBEDDED_OFFSET (v)
- = offset +
- VALUE_EMBEDDED_OFFSET (arg1) +
- TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
- }
- else
- {
- /* Plain old data member */
- offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
- v = allocate_value (type);
- if (VALUE_LAZY (arg1))
- VALUE_LAZY (v) = 1;
- else
- memcpy (VALUE_CONTENTS_RAW (v),
- VALUE_CONTENTS_RAW (arg1) + offset,
- TYPE_LENGTH (type));
- VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
- + VALUE_EMBEDDED_OFFSET (arg1);
- }
- VALUE_LVAL (v) = VALUE_LVAL (arg1);
- if (VALUE_LVAL (arg1) == lval_internalvar)
- VALUE_LVAL (v) = lval_internalvar_component;
- VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
- VALUE_REGNO (v) = VALUE_REGNO (arg1);
-/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
- + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
- return v;
-}
-
-/* Given a value ARG1 of a struct or union type,
- extract and return the value of one of its (non-static) fields.
- FIELDNO says which field. */
-
-struct value *
-value_field (struct value *arg1, int fieldno)
-{
- return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
-}
-
-/* Return a non-virtual function as a value.
- F is the list of member functions which contains the desired method.
- J is an index into F which provides the desired method.
-
- We only use the symbol for its address, so be happy with either a
- full symbol or a minimal symbol.
- */
-
-struct value *
-value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
- int offset)
-{
- struct value *v;
- struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
- char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
- struct symbol *sym;
- struct minimal_symbol *msym;
-
- sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
- if (sym != NULL)
- {
- msym = NULL;
- }
- else
- {
- gdb_assert (sym == NULL);
- msym = lookup_minimal_symbol (physname, NULL, NULL);
- if (msym == NULL)
- return NULL;
- }
-
- v = allocate_value (ftype);
- if (sym)
- {
- VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
- }
- else
- {
- VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
- }
-
- if (arg1p)
- {
- if (type != VALUE_TYPE (*arg1p))
- *arg1p = value_ind (value_cast (lookup_pointer_type (type),
- value_addr (*arg1p)));
-
- /* Move the `this' pointer according to the offset.
- VALUE_OFFSET (*arg1p) += offset;
- */
- }
-
- return v;
-}
-
-\f
-/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
- VALADDR.
-
- Extracting bits depends on endianness of the machine. Compute the
- number of least significant bits to discard. For big endian machines,
- we compute the total number of bits in the anonymous object, subtract
- off the bit count from the MSB of the object to the MSB of the
- bitfield, then the size of the bitfield, which leaves the LSB discard
- count. For little endian machines, the discard count is simply the
- number of bits from the LSB of the anonymous object to the LSB of the
- bitfield.
-
- If the field is signed, we also do sign extension. */
-
-LONGEST
-unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
-{
- ULONGEST val;
- ULONGEST valmask;
- int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
- int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
- int lsbcount;
- struct type *field_type;
-
- val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
- field_type = TYPE_FIELD_TYPE (type, fieldno);
- CHECK_TYPEDEF (field_type);
-
- /* Extract bits. See comment above. */
-
- if (BITS_BIG_ENDIAN)
- lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
- else
- lsbcount = (bitpos % 8);
- val >>= lsbcount;
-
- /* If the field does not entirely fill a LONGEST, then zero the sign bits.
- If the field is signed, and is negative, then sign extend. */
-
- if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
- {
- valmask = (((ULONGEST) 1) << bitsize) - 1;
- val &= valmask;
- if (!TYPE_UNSIGNED (field_type))
- {
- if (val & (valmask ^ (valmask >> 1)))
- {
- val |= ~valmask;
- }
- }
- }
- return (val);
-}
-
-/* Modify the value of a bitfield. ADDR points to a block of memory in
- target byte order; the bitfield starts in the byte pointed to. FIELDVAL
- is the desired value of the field, in host byte order. BITPOS and BITSIZE
- indicate which bits (in target bit order) comprise the bitfield.
- Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
- 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
-
-void
-modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
-{
- ULONGEST oword;
- ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
-
- /* If a negative fieldval fits in the field in question, chop
- off the sign extension bits. */
- if ((~fieldval & ~(mask >> 1)) == 0)
- fieldval &= mask;
-
- /* Warn if value is too big to fit in the field in question. */
- if (0 != (fieldval & ~mask))
- {
- /* FIXME: would like to include fieldval in the message, but
- we don't have a sprintf_longest. */
- warning ("Value does not fit in %d bits.", bitsize);
-
- /* Truncate it, otherwise adjoining fields may be corrupted. */
- fieldval &= mask;
- }
-
- oword = extract_unsigned_integer (addr, sizeof oword);
-
- /* Shifting for bit field depends on endianness of the target machine. */
- if (BITS_BIG_ENDIAN)
- bitpos = sizeof (oword) * 8 - bitpos - bitsize;
-
- oword &= ~(mask << bitpos);
- oword |= fieldval << bitpos;
-
- store_unsigned_integer (addr, sizeof oword, oword);
-}
-\f
-/* Convert C numbers into newly allocated values */
-
-struct value *
-value_from_longest (struct type *type, LONGEST num)
-{
- struct value *val = allocate_value (type);
- enum type_code code;
- int len;
-retry:
- code = TYPE_CODE (type);
- len = TYPE_LENGTH (type);
-
- switch (code)
- {
- case TYPE_CODE_TYPEDEF:
- type = check_typedef (type);
- goto retry;
- case TYPE_CODE_INT:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_ENUM:
- case TYPE_CODE_BOOL:
- case TYPE_CODE_RANGE:
- store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
- break;
-
- case TYPE_CODE_REF:
- case TYPE_CODE_PTR:
- store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
- break;
-
- default:
- error ("Unexpected type (%d) encountered for integer constant.", code);
- }
- return val;
-}
-
-
-/* Create a value representing a pointer of type TYPE to the address
- ADDR. */
-struct value *
-value_from_pointer (struct type *type, CORE_ADDR addr)
-{
- struct value *val = allocate_value (type);
- store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
- return val;
-}
-
-
-/* Create a value for a string constant to be stored locally
- (not in the inferior's memory space, but in GDB memory).
- This is analogous to value_from_longest, which also does not
- use inferior memory. String shall NOT contain embedded nulls. */
-
-struct value *
-value_from_string (char *ptr)
-{
- struct value *val;
- int len = strlen (ptr);
- int lowbound = current_language->string_lower_bound;
- struct type *string_char_type;
- struct type *rangetype;
- struct type *stringtype;
-
- rangetype = create_range_type ((struct type *) NULL,
- builtin_type_int,
- lowbound, len + lowbound - 1);
- string_char_type = language_string_char_type (current_language,
- current_gdbarch);
- stringtype = create_array_type ((struct type *) NULL,
- string_char_type,
- rangetype);
- val = allocate_value (stringtype);
- memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
- return val;
-}
-
-struct value *
-value_from_double (struct type *type, DOUBLEST num)
-{
- struct value *val = allocate_value (type);
- struct type *base_type = check_typedef (type);
- enum type_code code = TYPE_CODE (base_type);
- int len = TYPE_LENGTH (base_type);
-
- if (code == TYPE_CODE_FLT)
- {
- store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
- }
- else
- error ("Unexpected type encountered for floating constant.");
-
- return val;
-}
-\f
-
-/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
- EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
- is the type (which is known to be struct, union or array).
-
- On most machines, the struct convention is used unless we are
- using gcc and the type is of a special size. */
-/* As of about 31 Mar 93, GCC was changed to be compatible with the
- native compiler. GCC 2.3.3 was the last release that did it the
- old way. Since gcc2_compiled was not changed, we have no
- way to correctly win in all cases, so we just do the right thing
- for gcc1 and for gcc2 after this change. Thus it loses for gcc
- 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
- would cause more chaos than dealing with some struct returns being
- handled wrong. */
-/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
- dead. */
-
-int
-generic_use_struct_convention (int gcc_p, struct type *value_type)
-{
- return !(TYPE_LENGTH (value_type) == 1
- || TYPE_LENGTH (value_type) == 2
- || TYPE_LENGTH (value_type) == 4
- || TYPE_LENGTH (value_type) == 8);
-}
-
-/* Return true if the function returning the specified type is using
- the convention of returning structures in memory (passing in the
- address as a hidden first parameter). GCC_P is nonzero if compiled
- with GCC. */
-
-int
-using_struct_return (struct type *value_type, int gcc_p)
-{
- enum type_code code = TYPE_CODE (value_type);
-
- if (code == TYPE_CODE_ERROR)
- error ("Function return type unknown.");
-
- if (code == TYPE_CODE_VOID)
- /* A void return value is never in memory. See also corresponding
- code in "print_return_value". */
- return 0;
-
- /* Probe the architecture for the return-value convention. */
- return (gdbarch_return_value (current_gdbarch, value_type,
- NULL, NULL, NULL)
- != RETURN_VALUE_REGISTER_CONVENTION);
-}
-
-void
-_initialize_values (void)
-{
- add_cmd ("convenience", no_class, show_convenience,
- "Debugger convenience (\"$foo\") variables.\n\
-These variables are created when you assign them values;\n\
-thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
-A few convenience variables are given values automatically:\n\
-\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
-\"$__\" holds the contents of the last address examined with \"x\".",
- &showlist);
-
- add_cmd ("values", no_class, show_values,
- "Elements of value history around item number IDX (or last ten).",
- &showlist);
-}