RTLIL::Wire* rwire; //the register output
bool has_reset; //true if we have a reset
bool has_ce; //true if we have a clock enable
+ bool ce_inverted; //true if clock enable is active low
RTLIL::SigSpec rst; //reset pin
bool rst_inverted; //true if reset is active low
bool rst_to_max; //true if we reset to max instead of 0
return 24;
count_reg = *cey_loads.begin();
- //Mux should have A driven by count Q, and B by muxy
- //TODO: if A and B are swapped, CE polarity is inverted
- if(sigmap(cemux->getPort(ID::B)) != muxy)
- return 24;
- if(sigmap(cemux->getPort(ID::A)) != sigmap(count_reg->getPort(ID(Q))))
- return 24;
if(sigmap(cemux->getPort(ID::Y)) != sigmap(count_reg->getPort(ID(D))))
return 24;
+ //Mux should have A driven by count Q, and B by muxy
+ //if A and B are swapped, CE polarity is inverted
+ if(sigmap(cemux->getPort(ID::B)) == muxy &&
+ sigmap(cemux->getPort(ID::A)) == sigmap(count_reg->getPort(ID(Q))))
+ {
+ extract.ce_inverted = false;
+ }
+ else if(sigmap(cemux->getPort(ID::A)) == muxy &&
+ sigmap(cemux->getPort(ID::B)) == sigmap(count_reg->getPort(ID(Q))))
+ {
+ extract.ce_inverted = true;
+ }
+ else
+ {
+ return 24;
+ }
//Select of the mux is our clock enable
extract.has_ce = true;
//Sanity check that we use the ALU output properly
if(extract.has_ce)
{
- if(!is_full_bus(muxy, index, count_mux, ID::Y, cemux, ID::B))
+ if(!extract.ce_inverted && !is_full_bus(muxy, index, count_mux, ID::Y, cemux, ID::B))
+ return 16;
+ if(extract.ce_inverted && !is_full_bus(muxy, index, count_mux, ID::Y, cemux, ID::A))
return 16;
if(!is_full_bus(cey, index, cemux, ID::Y, count_reg, ID(D)))
return 16;
if(extract.has_ce)
{
cell->setParam(ID(HAS_CE), RTLIL::Const(1));
- cell->setPort(ID(CE), extract.ce);
+ if(extract.ce_inverted)
+ {
+ auto realce = cell->module->addWire(NEW_ID);
+ cell->module->addNot(NEW_ID, extract.ce, RTLIL::SigSpec(realce));
+ cell->setPort(ID(CE), realce);
+ }
+ else
+ cell->setPort(ID(CE), extract.ce);
}
else
{