--- /dev/null
+/*
+ * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ * Authors:
+ * Rob Clark <robclark@freedesktop.org>
+ */
+
+#define GPU 600
+
+#include "ir3_context.h"
+#include "ir3_image.h"
+
+/*
+ * Handlers for instructions changed/added in a6xx:
+ *
+ * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
+ * atomic instructions (used for both SSBO and image) use a new instruction
+ * encoding compared to a4xx/a5xx.
+ */
+
+
+static struct ir3_instruction *
+ssbo_offset(struct ir3_block *b, struct ir3_instruction *byte_offset)
+{
+ /* TODO hardware wants offset in terms of elements, not bytes. Which
+ * is kinda nice but opposite of what nir does. It would be nice if
+ * we had a way to request the units of the offset to avoid the extra
+ * shift instructions..
+ */
+ return ir3_SHR_B(b, byte_offset, 0, create_immed(b, 2), 0);
+}
+
+/* src[] = { buffer_index, offset }. No const_index */
+static void
+emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *offset;
+ struct ir3_instruction *sam;
+ nir_const_value *buffer_index;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ buffer_index = nir_src_as_const_value(intr->src[0]);
+ compile_assert(ctx, buffer_index);
+
+ int tex_idx = ir3_ssbo_to_tex(&ctx->so->image_mapping, buffer_index->u32[0]);
+
+ offset = ssbo_offset(b, ir3_get_src(ctx, &intr->src[1])[0]);
+
+ /* Because texture state for SSBO read is setup as a single component
+ * format (ie. R32_UINT, etc), we can't read more than the .x component
+ * in one shot. Maybe there is some way we could mangle the state to
+ * read more than one component at a shot, which would result is some-
+ * what less register usage (given how we have to stick in the dummy
+ * .y coord) and less alu instructions to calc offsets. But this is
+ * also what blob does, so meh?
+ */
+ for (unsigned i; i < intr->num_components; i++) {
+ struct ir3_instruction *coords[2];
+
+ coords[0] = (i == 0) ? offset :
+ ir3_ADD_U(b, offset, 0, create_immed(b, i), 0);
+ coords[1] = create_immed(b, 0);
+
+ sam = ir3_SAM(b, OPC_ISAM, TYPE_U32, 0b1, 0,
+ tex_idx, tex_idx, ir3_create_collect(ctx, coords, 2), NULL);
+
+ sam->barrier_class = IR3_BARRIER_IMAGE_R;
+ sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
+
+ dst[i] = sam;
+ }
+}
+
+/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
+static void
+emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *stib, *val, *offset;
+ nir_const_value *buffer_index;
+ /* TODO handle wrmask properly, see _store_shared().. but I think
+ * it is more a PITA than that, since blob ends up loading the
+ * masked components and writing them back out.
+ */
+ unsigned wrmask = intr->const_index[0];
+ unsigned ncomp = ffs(~wrmask) - 1;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ buffer_index = nir_src_as_const_value(intr->src[1]);
+ compile_assert(ctx, buffer_index);
+
+ int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, buffer_index->u32[0]);
+
+ /* src0 is offset, src1 is value:
+ */
+ val = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
+ offset = ssbo_offset(b, ir3_get_src(ctx, &intr->src[2])[0]);
+
+ stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, offset, 0, val, 0);
+ stib->cat6.iim_val = ncomp;
+ stib->cat6.d = 1;
+ stib->cat6.type = TYPE_U32;
+ stib->barrier_class = IR3_BARRIER_BUFFER_W;
+ stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+
+ array_insert(b, b->keeps, stib);
+}
+
+/*
+ * SSBO atomic intrinsics
+ *
+ * All of the SSBO atomic memory operations read a value from memory,
+ * compute a new value using one of the operations below, write the new
+ * value to memory, and return the original value read.
+ *
+ * All operations take 3 sources except CompSwap that takes 4. These
+ * sources represent:
+ *
+ * 0: The SSBO buffer index.
+ * 1: The offset into the SSBO buffer of the variable that the atomic
+ * operation will operate on.
+ * 2: The data parameter to the atomic function (i.e. the value to add
+ * in ssbo_atomic_add, etc).
+ * 3: For CompSwap only: the second data parameter.
+ */
+static struct ir3_instruction *
+emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *atomic, *ibo, *src0, *src1, *offset, *data, *dummy;
+ nir_const_value *buffer_index;
+ type_t type = TYPE_U32;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ buffer_index = nir_src_as_const_value(intr->src[0]);
+ compile_assert(ctx, buffer_index);
+
+ int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, buffer_index->u32[0]);
+ ibo = create_immed(b, ibo_idx);
+
+ offset = ir3_get_src(ctx, &intr->src[1])[0];
+ data = ir3_get_src(ctx, &intr->src[2])[0];
+
+ /* So this gets a bit creative:
+ *
+ * src0 - vecN offset/coords
+ * src1.x - is actually destination register
+ * src1.y - is 'data' except for cmpxchg where src2.y is 'compare'
+ * src1.z - is 'data' for cmpxchg
+ *
+ * The combining src and dest kinda doesn't work out so well with how
+ * scheduling and RA work. So for now we create a dummy src2.x, and
+ * then in a later fixup path, insert an extra MOV out of src1.x.
+ * See ir3_a6xx_fixup_atomic_dests().
+ *
+ * Note that nir already multiplies the offset by four
+ */
+ dummy = create_immed(b, 0);
+ src0 = ssbo_offset(b, offset);
+
+ if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
+ struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
+ src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
+ dummy, compare, data
+ }, 3);
+ } else {
+ src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
+ dummy, data
+ }, 2);
+ }
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_ssbo_atomic_add:
+ atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_imin:
+ atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_ssbo_atomic_umin:
+ atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_imax:
+ atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_ssbo_atomic_umax:
+ atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_and:
+ atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_or:
+ atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_xor:
+ atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_exchange:
+ atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ atomic->cat6.iim_val = 1;
+ atomic->cat6.d = 1;
+ atomic->cat6.type = type;
+ atomic->barrier_class = IR3_BARRIER_BUFFER_W;
+ atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+
+ /* even if nothing consume the result, we can't DCE the instruction: */
+ array_insert(b, b->keeps, atomic);
+
+ return atomic;
+}
+
+/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
+static void
+emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ struct ir3_instruction *stib;
+ struct ir3_instruction * const *value = ir3_get_src(ctx, &intr->src[3]);
+ struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
+ unsigned ncoords = ir3_get_image_coords(var, NULL);
+ unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
+ unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
+ unsigned ncomp = ir3_get_num_components_for_glformat(var->data.image.format);
+
+ /* src0 is offset, src1 is value:
+ */
+ stib = ir3_STIB(b, create_immed(b, ibo_idx), 0,
+ ir3_create_collect(ctx, coords, ncoords), 0,
+ ir3_create_collect(ctx, value, ncomp), 0);
+ stib->cat6.iim_val = ncomp;
+ stib->cat6.d = ncoords;
+ stib->cat6.type = ir3_get_image_type(var);
+ stib->cat6.typed = true;
+ stib->barrier_class = IR3_BARRIER_IMAGE_W;
+ stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
+
+ array_insert(b, b->keeps, stib);
+}
+
+/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
+static struct ir3_instruction *
+emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
+ struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]);
+ struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
+ unsigned ncoords = ir3_get_image_coords(var, NULL);
+ unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0]));
+ unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot);
+
+ ibo = create_immed(b, ibo_idx);
+
+ /* So this gets a bit creative:
+ *
+ * src0 - vecN offset/coords
+ * src1.x - is actually destination register
+ * src1.y - is 'value' except for cmpxchg where src2.y is 'compare'
+ * src1.z - is 'value' for cmpxchg
+ *
+ * The combining src and dest kinda doesn't work out so well with how
+ * scheduling and RA work. So for now we create a dummy src2.x, and
+ * then in a later fixup path, insert an extra MOV out of src1.x.
+ * See ir3_a6xx_fixup_atomic_dests().
+ */
+ dummy = create_immed(b, 0);
+ src0 = ir3_create_collect(ctx, coords, ncoords);
+
+ if (intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) {
+ struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
+ src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
+ dummy, compare, value
+ }, 3);
+ } else {
+ src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
+ dummy, value
+ }, 2);
+ }
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_image_deref_atomic_add:
+ atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_min:
+ atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_max:
+ atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_and:
+ atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_or:
+ atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_xor:
+ atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_exchange:
+ atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_comp_swap:
+ atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0);
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ atomic->cat6.iim_val = 1;
+ atomic->cat6.d = ncoords;
+ atomic->cat6.type = ir3_get_image_type(var);
+ atomic->cat6.typed = true;
+ atomic->barrier_class = IR3_BARRIER_IMAGE_W;
+ atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
+
+ /* even if nothing consume the result, we can't DCE the instruction: */
+ array_insert(b, b->keeps, atomic);
+
+ return atomic;
+}
+
+const struct ir3_context_funcs ir3_a6xx_funcs = {
+ .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
+ .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
+ .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
+ .emit_intrinsic_store_image = emit_intrinsic_store_image,
+ .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
+};
+
+/*
+ * Special pass to run after instruction scheduling to insert an
+ * extra mov from src1.x to dst. This way the other compiler passes
+ * can ignore this quirk of the new instruction encoding.
+ *
+ * This might cause extra complication in the future when we support
+ * spilling, as I think we'd want to re-run the scheduling pass. One
+ * possible alternative might be to do this in the RA pass after
+ * ra_allocate() but before destroying the SSA links. (Ie. we do
+ * want to know if anything consumes the result of the atomic instr,
+ * if there is no consumer then inserting the extra mov is pointless.
+ */
+
+static struct ir3_instruction *
+get_atomic_dest_mov(struct ir3_instruction *atomic)
+{
+ /* if we've already created the mov-out, then re-use it: */
+ if (atomic->data)
+ return atomic->data;
+
+ /* extract back out the 'dummy' which serves as stand-in for dest: */
+ struct ir3_instruction *src = ssa(atomic->regs[3]);
+ debug_assert(src->opc == OPC_META_FI);
+ struct ir3_instruction *dummy = ssa(src->regs[1]);
+
+ struct ir3_instruction *mov = ir3_MOV(atomic->block, dummy, TYPE_U32);
+
+ mov->flags |= IR3_INSTR_SY;
+
+ /* it will have already been appended to the end of the block, which
+ * isn't where we want it, so fix-up the location:
+ */
+ list_delinit(&mov->node);
+ list_add(&mov->node, &atomic->node);
+
+ /* And because this is after instruction scheduling, we don't really
+ * have a good way to know if extra delay slots are needed. For
+ * example, if the result is consumed by an stib (storeImage()) there
+ * would be no extra delay slots in place already, but 5 are needed.
+ * Just plan for the worst and hope nobody looks at the resulting
+ * code that is generated :-(
+ */
+ struct ir3_instruction *nop = ir3_NOP(atomic->block);
+ nop->repeat = 5;
+
+ list_delinit(&nop->node);
+ list_add(&nop->node, &mov->node);
+
+ return atomic->data = mov;
+}
+
+void
+ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so)
+{
+ if (so->image_mapping.num_ibo == 0)
+ return;
+
+ list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
+ list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+ instr->data = NULL;
+ }
+ }
+
+ list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
+ list_for_each_entry_safe (struct ir3_instruction, instr, &block->instr_list, node) {
+ struct ir3_register *reg;
+
+ foreach_src(reg, instr) {
+ struct ir3_instruction *src = ssa(reg);
+
+ if (!src)
+ continue;
+
+ if (is_atomic(src->opc) && (src->flags & IR3_INSTR_G))
+ reg->instr = get_atomic_dest_mov(src);
+ }
+ }
+ }
+
+}