# features (the more the better)
ENABLE_TCL := 1
ENABLE_QT4 := 1
-ENABLE_MINISAT := 1
ENABLE_ABC := 1
ENABLE_VERIFIC := 0
OBJS += libs/subcircuit/subcircuit.o
OBJS += libs/ezsat/ezsat.o
-ifeq ($(ENABLE_MINISAT),1)
-CXXFLAGS += -DYOSYS_ENABLE_MINISAT
OBJS += libs/ezsat/ezminisat.o
-LDLIBS += -lminisat
-endif
+OBJS += libs/minisat/Options.o
+OBJS += libs/minisat/SimpSolver.o
+OBJS += libs/minisat/Solver.o
+OBJS += libs/minisat/System.o
include frontends/*/Makefile.inc
include passes/*/Makefile.inc
must be put in parentheses. Examples: WIDTH'd42, (4+2)'b101010
-Workarounds for known build problems
-====================================
-
-You might get an error message like this one during build when building with
-a recent version of gcc:
-
- /usr/include/minisat/utils/Options.h:285:29: error:
- unable to find string literal operator ‘operator"" PRIi64’
-
-This is a bug in the minisat header. It can be fixed by adding spaces before
-and after each occurrence of PRIi64 in the header file:
-
- sudo sed -i -e 's/PRIi64/ & /' /usr/include/minisat/utils/Options.h
-
-
Roadmap / Large-scale TODOs
===========================
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
-#ifdef YOSYS_ENABLE_MINISAT
-# include "libs/ezsat/ezminisat.h"
+#include "libs/ezsat/ezminisat.h"
typedef ezMiniSAT ezDefaultSAT;
-#else
-# include "libs/ezsat/ezsat.h"
-typedef ezSAT ezDefaultSAT;
-#endif
struct SatGen
{
#include <csignal>
#include <cinttypes>
-#include <minisat/core/Solver.h>
-#include <minisat/simp/SimpSolver.h>
+#ifdef _YOSYS_
+# include "libs/minisat/Solver.h"
+# include "libs/minisat/SimpSolver.h"
+#else
+# include <minisat/core/Solver.h>
+# include <minisat/simp/SimpSolver.h>
+#endif
ezMiniSAT::ezMiniSAT() : minisatSolver(NULL)
{
--- /dev/null
+/*******************************************************************************************[Alg.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Alg_h
+#define Minisat_Alg_h
+
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// Useful functions on vector-like types:
+
+//=================================================================================================
+// Removing and searching for elements:
+//
+
+template<class V, class T>
+static inline void remove(V& ts, const T& t)
+{
+ int j = 0;
+ for (; j < (int)ts.size() && ts[j] != t; j++);
+ assert(j < (int)ts.size());
+ for (; j < (int)ts.size()-1; j++) ts[j] = ts[j+1];
+ ts.pop();
+}
+
+
+template<class V, class T>
+static inline bool find(V& ts, const T& t)
+{
+ int j = 0;
+ for (; j < (int)ts.size() && ts[j] != t; j++);
+ return j < (int)ts.size();
+}
+
+
+//=================================================================================================
+// Copying vectors with support for nested vector types:
+//
+
+// Base case:
+template<class T>
+static inline void copy(const T& from, T& to)
+{
+ to = from;
+}
+
+// Recursive case:
+template<class T>
+static inline void copy(const vec<T>& from, vec<T>& to, bool append = false)
+{
+ if (!append)
+ to.clear();
+ for (int i = 0; i < from.size(); i++){
+ to.push();
+ copy(from[i], to.last());
+ }
+}
+
+template<class T>
+static inline void append(const vec<T>& from, vec<T>& to){ copy(from, to, true); }
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/*****************************************************************************************[Alloc.h]
+Copyright (c) 2008-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+
+#ifndef Minisat_Alloc_h
+#define Minisat_Alloc_h
+
+#include "libs/minisat/XAlloc.h"
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// Simple Region-based memory allocator:
+
+template<class T>
+class RegionAllocator
+{
+ T* memory;
+ uint32_t sz;
+ uint32_t cap;
+ uint32_t wasted_;
+
+ void capacity(uint32_t min_cap);
+
+ public:
+ // TODO: make this a class for better type-checking?
+ typedef uint32_t Ref;
+ enum { Ref_Undef = UINT32_MAX };
+ enum { Unit_Size = sizeof(T) };
+
+ explicit RegionAllocator(uint32_t start_cap = 1024*1024) : memory(NULL), sz(0), cap(0), wasted_(0){ capacity(start_cap); }
+ ~RegionAllocator()
+ {
+ if (memory != NULL)
+ ::free(memory);
+ }
+
+
+ uint32_t size () const { return sz; }
+ uint32_t wasted () const { return wasted_; }
+
+ Ref alloc (int size);
+ void free (int size) { wasted_ += size; }
+
+ // Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
+ T& operator[](Ref r) { assert(r < sz); return memory[r]; }
+ const T& operator[](Ref r) const { assert(r < sz); return memory[r]; }
+
+ T* lea (Ref r) { assert(r < sz); return &memory[r]; }
+ const T* lea (Ref r) const { assert(r < sz); return &memory[r]; }
+ Ref ael (const T* t) { assert((void*)t >= (void*)&memory[0] && (void*)t < (void*)&memory[sz-1]);
+ return (Ref)(t - &memory[0]); }
+
+ void moveTo(RegionAllocator& to) {
+ if (to.memory != NULL) ::free(to.memory);
+ to.memory = memory;
+ to.sz = sz;
+ to.cap = cap;
+ to.wasted_ = wasted_;
+
+ memory = NULL;
+ sz = cap = wasted_ = 0;
+ }
+
+
+};
+
+template<class T>
+void RegionAllocator<T>::capacity(uint32_t min_cap)
+{
+ if (cap >= min_cap) return;
+
+ uint32_t prev_cap = cap;
+ while (cap < min_cap){
+ // NOTE: Multiply by a factor (13/8) without causing overflow, then add 2 and make the
+ // result even by clearing the least significant bit. The resulting sequence of capacities
+ // is carefully chosen to hit a maximum capacity that is close to the '2^32-1' limit when
+ // using 'uint32_t' as indices so that as much as possible of this space can be used.
+ uint32_t delta = ((cap >> 1) + (cap >> 3) + 2) & ~1;
+ cap += delta;
+
+ if (cap <= prev_cap)
+ throw OutOfMemoryException();
+ }
+ // printf(" .. (%p) cap = %u\n", this, cap);
+
+ assert(cap > 0);
+ memory = (T*)xrealloc(memory, sizeof(T)*cap);
+}
+
+
+template<class T>
+typename RegionAllocator<T>::Ref
+RegionAllocator<T>::alloc(int size)
+{
+ // printf("ALLOC called (this = %p, size = %d)\n", this, size); fflush(stdout);
+ assert(size > 0);
+ capacity(sz + size);
+
+ uint32_t prev_sz = sz;
+ sz += size;
+
+ // Handle overflow:
+ if (sz < prev_sz)
+ throw OutOfMemoryException();
+
+ return prev_sz;
+}
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/****************************************************************************************[Dimacs.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Dimacs_h
+#define Minisat_Dimacs_h
+
+#include <stdio.h>
+
+#include "libs/minisat/ParseUtils.h"
+#include "libs/minisat/SolverTypes.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// DIMACS Parser:
+
+template<class B, class Solver>
+static void readClause(B& in, Solver& S, vec<Lit>& lits) {
+ int parsed_lit, var;
+ lits.clear();
+ for (;;){
+ parsed_lit = parseInt(in);
+ if (parsed_lit == 0) break;
+ var = abs(parsed_lit)-1;
+ while (var >= S.nVars()) S.newVar();
+ lits.push( (parsed_lit > 0) ? mkLit(var) : ~mkLit(var) );
+ }
+}
+
+template<class B, class Solver>
+static void parse_DIMACS_main(B& in, Solver& S, bool strictp = false) {
+ vec<Lit> lits;
+ int vars = 0;
+ int clauses = 0;
+ int cnt = 0;
+ for (;;){
+ skipWhitespace(in);
+ if (*in == EOF) break;
+ else if (*in == 'p'){
+ if (eagerMatch(in, "p cnf")){
+ vars = parseInt(in);
+ clauses = parseInt(in);
+ // SATRACE'06 hack
+ // if (clauses > 4000000)
+ // S.eliminate(true);
+ }else{
+ printf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ }
+ } else if (*in == 'c' || *in == 'p')
+ skipLine(in);
+ else{
+ cnt++;
+ readClause(in, S, lits);
+ S.addClause_(lits); }
+ }
+ if (strictp && cnt != clauses)
+ printf("PARSE ERROR! DIMACS header mismatch: wrong number of clauses\n");
+}
+
+// Inserts problem into solver.
+//
+template<class Solver>
+static void parse_DIMACS(gzFile input_stream, Solver& S, bool strictp = false) {
+ StreamBuffer in(input_stream);
+ parse_DIMACS_main(in, S, strictp); }
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/******************************************************************************************[Heap.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Heap_h
+#define Minisat_Heap_h
+
+#include "libs/minisat/Vec.h"
+#include "libs/minisat/IntMap.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// A heap implementation with support for decrease/increase key.
+
+
+template<class K, class Comp, class MkIndex = MkIndexDefault<K> >
+class Heap {
+ vec<K> heap; // Heap of Keys
+ IntMap<K,int,MkIndex> indices; // Each Key's position (index) in the Heap
+ Comp lt; // The heap is a minimum-heap with respect to this comparator
+
+ // Index "traversal" functions
+ static inline int left (int i) { return i*2+1; }
+ static inline int right (int i) { return (i+1)*2; }
+ static inline int parent(int i) { return (i-1) >> 1; }
+
+
+ void percolateUp(int i)
+ {
+ K x = heap[i];
+ int p = parent(i);
+
+ while (i != 0 && lt(x, heap[p])){
+ heap[i] = heap[p];
+ indices[heap[p]] = i;
+ i = p;
+ p = parent(p);
+ }
+ heap [i] = x;
+ indices[x] = i;
+ }
+
+
+ void percolateDown(int i)
+ {
+ K x = heap[i];
+ while (left(i) < heap.size()){
+ int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
+ if (!lt(heap[child], x)) break;
+ heap[i] = heap[child];
+ indices[heap[i]] = i;
+ i = child;
+ }
+ heap [i] = x;
+ indices[x] = i;
+ }
+
+
+ public:
+ Heap(const Comp& c, MkIndex _index = MkIndex()) : indices(_index), lt(c) {}
+
+ int size () const { return heap.size(); }
+ bool empty () const { return heap.size() == 0; }
+ bool inHeap (K k) const { return indices.has(k) && indices[k] >= 0; }
+ int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
+
+ void decrease (K k) { assert(inHeap(k)); percolateUp (indices[k]); }
+ void increase (K k) { assert(inHeap(k)); percolateDown(indices[k]); }
+
+
+ // Safe variant of insert/decrease/increase:
+ void update(K k)
+ {
+ if (!inHeap(k))
+ insert(k);
+ else {
+ percolateUp(indices[k]);
+ percolateDown(indices[k]); }
+ }
+
+
+ void insert(K k)
+ {
+ indices.reserve(k, -1);
+ assert(!inHeap(k));
+
+ indices[k] = heap.size();
+ heap.push(k);
+ percolateUp(indices[k]);
+ }
+
+
+ void remove(K k)
+ {
+ assert(inHeap(k));
+
+ int k_pos = indices[k];
+ indices[k] = -1;
+
+ if (k_pos < heap.size()-1){
+ heap[k_pos] = heap.last();
+ indices[heap[k_pos]] = k_pos;
+ heap.pop();
+ percolateDown(k_pos);
+ }else
+ heap.pop();
+ }
+
+
+ K removeMin()
+ {
+ K x = heap[0];
+ heap[0] = heap.last();
+ indices[heap[0]] = 0;
+ indices[x] = -1;
+ heap.pop();
+ if (heap.size() > 1) percolateDown(0);
+ return x;
+ }
+
+
+ // Rebuild the heap from scratch, using the elements in 'ns':
+ void build(const vec<K>& ns) {
+ for (int i = 0; i < heap.size(); i++)
+ indices[heap[i]] = -1;
+ heap.clear();
+
+ for (int i = 0; i < ns.size(); i++){
+ // TODO: this should probably call reserve instead of relying on it being reserved already.
+ assert(indices.has(ns[i]));
+ indices[ns[i]] = i;
+ heap.push(ns[i]); }
+
+ for (int i = heap.size() / 2 - 1; i >= 0; i--)
+ percolateDown(i);
+ }
+
+ void clear(bool dispose = false)
+ {
+ // TODO: shouldn't the 'indices' map also be dispose-cleared?
+ for (int i = 0; i < heap.size(); i++)
+ indices[heap[i]] = -1;
+ heap.clear(dispose);
+ }
+};
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/****************************************************************************************[IntMap.h]
+Copyright (c) 2011, Niklas Sorensson
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_IntMap_h
+#define Minisat_IntMap_h
+
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+ template<class T> struct MkIndexDefault {
+ typename vec<T>::Size operator()(T t) const { return (typename vec<T>::Size)t; }
+ };
+
+ template<class K, class V, class MkIndex = MkIndexDefault<K> >
+ class IntMap {
+ vec<V> map;
+ MkIndex index;
+ public:
+ explicit IntMap(MkIndex _index = MkIndex()) : index(_index){}
+
+ bool has (K k) const { return index(k) < map.size(); }
+
+ const V& operator[](K k) const { assert(has(k)); return map[index(k)]; }
+ V& operator[](K k) { assert(has(k)); return map[index(k)]; }
+
+ const V* begin () const { return &map[0]; }
+ const V* end () const { return &map[map.size()]; }
+ V* begin () { return &map[0]; }
+ V* end () { return &map[map.size()]; }
+
+ void reserve(K key, V pad) { map.growTo(index(key)+1, pad); }
+ void reserve(K key) { map.growTo(index(key)+1); }
+ void insert (K key, V val, V pad){ reserve(key, pad); operator[](key) = val; }
+ void insert (K key, V val) { reserve(key); operator[](key) = val; }
+
+ void clear (bool dispose = false) { map.clear(dispose); }
+ void moveTo (IntMap& to) { map.moveTo(to.map); to.index = index; }
+ void copyTo (IntMap& to) const { map.copyTo(to.map); to.index = index; }
+ };
+
+
+ template<class K, class MkIndex = MkIndexDefault<K> >
+ class IntSet
+ {
+ IntMap<K, char, MkIndex> in_set;
+ vec<K> xs;
+
+ public:
+ // Size operations:
+ int size (void) const { return xs.size(); }
+ void clear (bool free = false){
+ if (free)
+ in_set.clear(true);
+ else
+ for (int i = 0; i < xs.size(); i++)
+ in_set[xs[i]] = 0;
+ xs.clear(free);
+ }
+
+ // Allow inspecting the internal vector:
+ const vec<K>&
+ toVec () const { return xs; }
+
+ // Vector interface:
+ K operator [] (int index) const { return xs[index]; }
+
+
+ void insert (K k) { in_set.reserve(k, 0); if (!in_set[k]) { in_set[k] = 1; xs.push(k); } }
+ bool has (K k) { in_set.reserve(k, 0); return in_set[k]; }
+ };
+
+ #if 0
+ template<class K, class V, V nil, class MkIndex = MkIndexDefault<K> >
+ class IntMapNil {
+ vec<V> map;
+ V nil;
+
+ public:
+ IntMap(){}
+
+ void reserve(K);
+ V& find (K);
+ const V& operator[](K k) const;
+
+ };
+ #endif
+
+//=================================================================================================
+} // namespace Minisat
+#endif
--- /dev/null
+/**************************************************************************************[IntTypes.h]
+Copyright (c) 2009-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_IntTypes_h
+#define Minisat_IntTypes_h
+
+#ifdef __sun
+ // Not sure if there are newer versions that support C99 headers. The
+ // needed features are implemented in the headers below though:
+
+# include <sys/int_types.h>
+# include <sys/int_fmtio.h>
+# include <sys/int_limits.h>
+
+#else
+
+# include <stdint.h>
+# include <inttypes.h>
+
+#endif
+
+#include <limits.h>
+
+//=================================================================================================
+
+#endif
--- /dev/null
+MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+ Copyright (c) 2007-2010 Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a
+copy of this software and associated documentation files (the
+"Software"), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be included
+in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--- /dev/null
+/*******************************************************************************************[Map.h]
+Copyright (c) 2006-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Map_h
+#define Minisat_Map_h
+
+#include "libs/minisat/IntTypes.h"
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// Default hash/equals functions
+//
+
+template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
+template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
+
+template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
+template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
+
+static inline uint32_t hash(uint32_t x){ return x; }
+static inline uint32_t hash(uint64_t x){ return (uint32_t)x; }
+static inline uint32_t hash(int32_t x) { return (uint32_t)x; }
+static inline uint32_t hash(int64_t x) { return (uint32_t)x; }
+
+
+//=================================================================================================
+// Some primes
+//
+
+static const int nprimes = 25;
+static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
+
+//=================================================================================================
+// Hash table implementation of Maps
+//
+
+template<class K, class D, class H = Hash<K>, class E = Equal<K> >
+class Map {
+ public:
+ struct Pair { K key; D data; };
+
+ private:
+ H hash;
+ E equals;
+
+ vec<Pair>* table;
+ int cap;
+ int size;
+
+ // Don't allow copying (error prone):
+ Map<K,D,H,E>& operator = (Map<K,D,H,E>& other);
+ Map (Map<K,D,H,E>& other);
+
+ bool checkCap(int new_size) const { return new_size > cap; }
+
+ int32_t index (const K& k) const { return hash(k) % cap; }
+ void _insert (const K& k, const D& d) {
+ vec<Pair>& ps = table[index(k)];
+ ps.push(); ps.last().key = k; ps.last().data = d; }
+
+ void rehash () {
+ const vec<Pair>* old = table;
+
+ int old_cap = cap;
+ int newsize = primes[0];
+ for (int i = 1; newsize <= cap && i < nprimes; i++)
+ newsize = primes[i];
+
+ table = new vec<Pair>[newsize];
+ cap = newsize;
+
+ for (int i = 0; i < old_cap; i++){
+ for (int j = 0; j < old[i].size(); j++){
+ _insert(old[i][j].key, old[i][j].data); }}
+
+ delete [] old;
+
+ // printf(" --- rehashing, old-cap=%d, new-cap=%d\n", cap, newsize);
+ }
+
+
+ public:
+
+ Map () : table(NULL), cap(0), size(0) {}
+ Map (const H& h, const E& e) : hash(h), equals(e), table(NULL), cap(0), size(0){}
+ ~Map () { delete [] table; }
+
+ // PRECONDITION: the key must already exist in the map.
+ const D& operator [] (const K& k) const
+ {
+ assert(size != 0);
+ const D* res = NULL;
+ const vec<Pair>& ps = table[index(k)];
+ for (int i = 0; i < ps.size(); i++)
+ if (equals(ps[i].key, k))
+ res = &ps[i].data;
+ assert(res != NULL);
+ return *res;
+ }
+
+ // PRECONDITION: the key must already exist in the map.
+ D& operator [] (const K& k)
+ {
+ assert(size != 0);
+ D* res = NULL;
+ vec<Pair>& ps = table[index(k)];
+ for (int i = 0; i < ps.size(); i++)
+ if (equals(ps[i].key, k))
+ res = &ps[i].data;
+ assert(res != NULL);
+ return *res;
+ }
+
+ // PRECONDITION: the key must *NOT* exist in the map.
+ void insert (const K& k, const D& d) { if (checkCap(size+1)) rehash(); _insert(k, d); size++; }
+ bool peek (const K& k, D& d) const {
+ if (size == 0) return false;
+ const vec<Pair>& ps = table[index(k)];
+ for (int i = 0; i < ps.size(); i++)
+ if (equals(ps[i].key, k)){
+ d = ps[i].data;
+ return true; }
+ return false;
+ }
+
+ bool has (const K& k) const {
+ if (size == 0) return false;
+ const vec<Pair>& ps = table[index(k)];
+ for (int i = 0; i < ps.size(); i++)
+ if (equals(ps[i].key, k))
+ return true;
+ return false;
+ }
+
+ // PRECONDITION: the key must exist in the map.
+ void remove(const K& k) {
+ assert(table != NULL);
+ vec<Pair>& ps = table[index(k)];
+ int j = 0;
+ for (; j < ps.size() && !equals(ps[j].key, k); j++);
+ assert(j < ps.size());
+ ps[j] = ps.last();
+ ps.pop();
+ size--;
+ }
+
+ void clear () {
+ cap = size = 0;
+ delete [] table;
+ table = NULL;
+ }
+
+ int elems() const { return size; }
+ int bucket_count() const { return cap; }
+
+ // NOTE: the hash and equality objects are not moved by this method:
+ void moveTo(Map& other){
+ delete [] other.table;
+
+ other.table = table;
+ other.cap = cap;
+ other.size = size;
+
+ table = NULL;
+ size = cap = 0;
+ }
+
+ // NOTE: given a bit more time, I could make a more C++-style iterator out of this:
+ const vec<Pair>& bucket(int i) const { return table[i]; }
+};
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+#define __STDC_FORMAT_MACROS
+#define __STDC_LIMIT_MACROS
+/**************************************************************************************[Options.cc]
+Copyright (c) 2008-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include "libs/minisat/Sort.h"
+#include "libs/minisat/Options.h"
+#include "libs/minisat/ParseUtils.h"
+
+using namespace Minisat;
+
+void Minisat::parseOptions(int& argc, char** argv, bool strict)
+{
+ int i, j;
+ for (i = j = 1; i < argc; i++){
+ const char* str = argv[i];
+ if (match(str, "--") && match(str, Option::getHelpPrefixString()) && match(str, "help")){
+ if (*str == '\0')
+ printUsageAndExit(argc, argv);
+ else if (match(str, "-verb"))
+ printUsageAndExit(argc, argv, true);
+ } else {
+ bool parsed_ok = false;
+
+ for (int k = 0; !parsed_ok && k < Option::getOptionList().size(); k++){
+ parsed_ok = Option::getOptionList()[k]->parse(argv[i]);
+
+ // fprintf(stderr, "checking %d: %s against flag <%s> (%s)\n", i, argv[i], Option::getOptionList()[k]->name, parsed_ok ? "ok" : "skip");
+ }
+
+ if (!parsed_ok){
+ if (strict && match(argv[i], "-"))
+ fprintf(stderr, "ERROR! Unknown flag \"%s\". Use '--%shelp' for help.\n", argv[i], Option::getHelpPrefixString()), exit(1);
+ else
+ argv[j++] = argv[i];
+ }
+ }
+ }
+
+ argc -= (i - j);
+}
+
+
+void Minisat::setUsageHelp (const char* str){ Option::getUsageString() = str; }
+void Minisat::setHelpPrefixStr (const char* str){ Option::getHelpPrefixString() = str; }
+void Minisat::printUsageAndExit (int /*argc*/, char** argv, bool verbose)
+{
+ const char* usage = Option::getUsageString();
+ if (usage != NULL)
+ fprintf(stderr, usage, argv[0]);
+
+ sort(Option::getOptionList(), Option::OptionLt());
+
+ const char* prev_cat = NULL;
+ const char* prev_type = NULL;
+
+ for (int i = 0; i < Option::getOptionList().size(); i++){
+ const char* cat = Option::getOptionList()[i]->category;
+ const char* type = Option::getOptionList()[i]->type_name;
+
+ if (cat != prev_cat)
+ fprintf(stderr, "\n%s OPTIONS:\n\n", cat);
+ else if (type != prev_type)
+ fprintf(stderr, "\n");
+
+ Option::getOptionList()[i]->help(verbose);
+
+ prev_cat = Option::getOptionList()[i]->category;
+ prev_type = Option::getOptionList()[i]->type_name;
+ }
+
+ fprintf(stderr, "\nHELP OPTIONS:\n\n");
+ fprintf(stderr, " --%shelp Print help message.\n", Option::getHelpPrefixString());
+ fprintf(stderr, " --%shelp-verb Print verbose help message.\n", Option::getHelpPrefixString());
+ fprintf(stderr, "\n");
+ exit(0);
+}
+
--- /dev/null
+/***************************************************************************************[Options.h]
+Copyright (c) 2008-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Options_h
+#define Minisat_Options_h
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+#include <string.h>
+
+#include "libs/minisat/IntTypes.h"
+#include "libs/minisat/Vec.h"
+#include "libs/minisat/ParseUtils.h"
+
+namespace Minisat {
+
+//==================================================================================================
+// Top-level option parse/help functions:
+
+
+extern void parseOptions (int& argc, char** argv, bool strict = false);
+extern void printUsageAndExit(int argc, char** argv, bool verbose = false);
+extern void setUsageHelp (const char* str);
+extern void setHelpPrefixStr (const char* str);
+
+
+//==================================================================================================
+// Options is an abstract class that gives the interface for all types options:
+
+
+class Option
+{
+ protected:
+ const char* name;
+ const char* description;
+ const char* category;
+ const char* type_name;
+
+ static vec<Option*>& getOptionList () { static vec<Option*> options; return options; }
+ static const char*& getUsageString() { static const char* usage_str; return usage_str; }
+ static const char*& getHelpPrefixString() { static const char* help_prefix_str = ""; return help_prefix_str; }
+
+ struct OptionLt {
+ bool operator()(const Option* x, const Option* y) {
+ int test1 = strcmp(x->category, y->category);
+ return test1 < 0 || (test1 == 0 && strcmp(x->type_name, y->type_name) < 0);
+ }
+ };
+
+ Option(const char* name_,
+ const char* desc_,
+ const char* cate_,
+ const char* type_) :
+ name (name_)
+ , description(desc_)
+ , category (cate_)
+ , type_name (type_)
+ {
+ getOptionList().push(this);
+ }
+
+ public:
+ virtual ~Option() {}
+
+ virtual bool parse (const char* str) = 0;
+ virtual void help (bool verbose = false) = 0;
+
+ friend void parseOptions (int& argc, char** argv, bool strict);
+ friend void printUsageAndExit (int argc, char** argv, bool verbose);
+ friend void setUsageHelp (const char* str);
+ friend void setHelpPrefixStr (const char* str);
+};
+
+
+//==================================================================================================
+// Range classes with specialization for floating types:
+
+
+struct IntRange {
+ int begin;
+ int end;
+ IntRange(int b, int e) : begin(b), end(e) {}
+};
+
+struct Int64Range {
+ int64_t begin;
+ int64_t end;
+ Int64Range(int64_t b, int64_t e) : begin(b), end(e) {}
+};
+
+struct DoubleRange {
+ double begin;
+ double end;
+ bool begin_inclusive;
+ bool end_inclusive;
+ DoubleRange(double b, bool binc, double e, bool einc) : begin(b), end(e), begin_inclusive(binc), end_inclusive(einc) {}
+};
+
+
+//==================================================================================================
+// Double options:
+
+
+class DoubleOption : public Option
+{
+ protected:
+ DoubleRange range;
+ double value;
+
+ public:
+ DoubleOption(const char* c, const char* n, const char* d, double def = double(), DoubleRange r = DoubleRange(-HUGE_VAL, false, HUGE_VAL, false))
+ : Option(n, d, c, "<double>"), range(r), value(def) {
+ // FIXME: set LC_NUMERIC to "C" to make sure that strtof/strtod parses decimal point correctly.
+ }
+
+ operator double (void) const { return value; }
+ operator double& (void) { return value; }
+ DoubleOption& operator=(double x) { value = x; return *this; }
+
+ virtual bool parse(const char* str){
+ const char* span = str;
+
+ if (!match(span, "-") || !match(span, name) || !match(span, "="))
+ return false;
+
+ char* end;
+ double tmp = strtod(span, &end);
+
+ if (end == NULL)
+ return false;
+ else if (tmp >= range.end && (!range.end_inclusive || tmp != range.end)){
+ fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
+ exit(1);
+ }else if (tmp <= range.begin && (!range.begin_inclusive || tmp != range.begin)){
+ fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
+ exit(1); }
+
+ value = tmp;
+ // fprintf(stderr, "READ VALUE: %g\n", value);
+
+ return true;
+ }
+
+ virtual void help (bool verbose = false){
+ fprintf(stderr, " -%-12s = %-8s %c%4.2g .. %4.2g%c (default: %g)\n",
+ name, type_name,
+ range.begin_inclusive ? '[' : '(',
+ range.begin,
+ range.end,
+ range.end_inclusive ? ']' : ')',
+ value);
+ if (verbose){
+ fprintf(stderr, "\n %s\n", description);
+ fprintf(stderr, "\n");
+ }
+ }
+};
+
+
+//==================================================================================================
+// Int options:
+
+
+class IntOption : public Option
+{
+ protected:
+ IntRange range;
+ int32_t value;
+
+ public:
+ IntOption(const char* c, const char* n, const char* d, int32_t def = int32_t(), IntRange r = IntRange(INT32_MIN, INT32_MAX))
+ : Option(n, d, c, "<int32>"), range(r), value(def) {}
+
+ operator int32_t (void) const { return value; }
+ operator int32_t& (void) { return value; }
+ IntOption& operator= (int32_t x) { value = x; return *this; }
+
+ virtual bool parse(const char* str){
+ const char* span = str;
+
+ if (!match(span, "-") || !match(span, name) || !match(span, "="))
+ return false;
+
+ char* end;
+ int32_t tmp = strtol(span, &end, 10);
+
+ if (end == NULL)
+ return false;
+ else if (tmp > range.end){
+ fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
+ exit(1);
+ }else if (tmp < range.begin){
+ fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
+ exit(1); }
+
+ value = tmp;
+
+ return true;
+ }
+
+ virtual void help (bool verbose = false){
+ fprintf(stderr, " -%-12s = %-8s [", name, type_name);
+ if (range.begin == INT32_MIN)
+ fprintf(stderr, "imin");
+ else
+ fprintf(stderr, "%4d", range.begin);
+
+ fprintf(stderr, " .. ");
+ if (range.end == INT32_MAX)
+ fprintf(stderr, "imax");
+ else
+ fprintf(stderr, "%4d", range.end);
+
+ fprintf(stderr, "] (default: %d)\n", value);
+ if (verbose){
+ fprintf(stderr, "\n %s\n", description);
+ fprintf(stderr, "\n");
+ }
+ }
+};
+
+
+// Leave this out for visual C++ until Microsoft implements C99 and gets support for strtoll.
+#ifndef _MSC_VER
+
+class Int64Option : public Option
+{
+ protected:
+ Int64Range range;
+ int64_t value;
+
+ public:
+ Int64Option(const char* c, const char* n, const char* d, int64_t def = int64_t(), Int64Range r = Int64Range(INT64_MIN, INT64_MAX))
+ : Option(n, d, c, "<int64>"), range(r), value(def) {}
+
+ operator int64_t (void) const { return value; }
+ operator int64_t& (void) { return value; }
+ Int64Option& operator= (int64_t x) { value = x; return *this; }
+
+ virtual bool parse(const char* str){
+ const char* span = str;
+
+ if (!match(span, "-") || !match(span, name) || !match(span, "="))
+ return false;
+
+ char* end;
+ int64_t tmp = strtoll(span, &end, 10);
+
+ if (end == NULL)
+ return false;
+ else if (tmp > range.end){
+ fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name);
+ exit(1);
+ }else if (tmp < range.begin){
+ fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name);
+ exit(1); }
+
+ value = tmp;
+
+ return true;
+ }
+
+ virtual void help (bool verbose = false){
+ fprintf(stderr, " -%-12s = %-8s [", name, type_name);
+ if (range.begin == INT64_MIN)
+ fprintf(stderr, "imin");
+ else
+ fprintf(stderr, "%4" PRIi64 , range.begin);
+
+ fprintf(stderr, " .. ");
+ if (range.end == INT64_MAX)
+ fprintf(stderr, "imax");
+ else
+ fprintf(stderr, "%4" PRIi64 , range.end);
+
+ fprintf(stderr, "] (default: %" PRIi64 ")\n", value);
+ if (verbose){
+ fprintf(stderr, "\n %s\n", description);
+ fprintf(stderr, "\n");
+ }
+ }
+};
+#endif
+
+//==================================================================================================
+// String option:
+
+
+class StringOption : public Option
+{
+ const char* value;
+ public:
+ StringOption(const char* c, const char* n, const char* d, const char* def = NULL)
+ : Option(n, d, c, "<string>"), value(def) {}
+
+ operator const char* (void) const { return value; }
+ operator const char*& (void) { return value; }
+ StringOption& operator= (const char* x) { value = x; return *this; }
+
+ virtual bool parse(const char* str){
+ const char* span = str;
+
+ if (!match(span, "-") || !match(span, name) || !match(span, "="))
+ return false;
+
+ value = span;
+ return true;
+ }
+
+ virtual void help (bool verbose = false){
+ fprintf(stderr, " -%-10s = %8s\n", name, type_name);
+ if (verbose){
+ fprintf(stderr, "\n %s\n", description);
+ fprintf(stderr, "\n");
+ }
+ }
+};
+
+
+//==================================================================================================
+// Bool option:
+
+
+class BoolOption : public Option
+{
+ bool value;
+
+ public:
+ BoolOption(const char* c, const char* n, const char* d, bool v)
+ : Option(n, d, c, "<bool>"), value(v) {}
+
+ operator bool (void) const { return value; }
+ operator bool& (void) { return value; }
+ BoolOption& operator=(bool b) { value = b; return *this; }
+
+ virtual bool parse(const char* str){
+ const char* span = str;
+
+ if (match(span, "-")){
+ bool b = !match(span, "no-");
+
+ if (strcmp(span, name) == 0){
+ value = b;
+ return true; }
+ }
+
+ return false;
+ }
+
+ virtual void help (bool verbose = false){
+
+ fprintf(stderr, " -%s, -no-%s", name, name);
+
+ for (uint32_t i = 0; i < 32 - strlen(name)*2; i++)
+ fprintf(stderr, " ");
+
+ fprintf(stderr, " ");
+ fprintf(stderr, "(default: %s)\n", value ? "on" : "off");
+ if (verbose){
+ fprintf(stderr, "\n %s\n", description);
+ fprintf(stderr, "\n");
+ }
+ }
+};
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/************************************************************************************[ParseUtils.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_ParseUtils_h
+#define Minisat_ParseUtils_h
+
+#include <stdlib.h>
+#include <stdio.h>
+
+#include <zlib.h>
+
+#include "libs/minisat/XAlloc.h"
+
+namespace Minisat {
+
+//-------------------------------------------------------------------------------------------------
+// A simple buffered character stream class:
+
+
+
+class StreamBuffer {
+ gzFile in;
+ unsigned char* buf;
+ int pos;
+ int size;
+
+ enum { buffer_size = 64*1024 };
+
+ void assureLookahead() {
+ if (pos >= size) {
+ pos = 0;
+ size = gzread(in, buf, buffer_size); } }
+
+public:
+ explicit StreamBuffer(gzFile i) : in(i), pos(0), size(0){
+ buf = (unsigned char*)xrealloc(NULL, buffer_size);
+ assureLookahead();
+ }
+ ~StreamBuffer() { free(buf); }
+
+ int operator * () const { return (pos >= size) ? EOF : buf[pos]; }
+ void operator ++ () { pos++; assureLookahead(); }
+ int position () const { return pos; }
+};
+
+
+//-------------------------------------------------------------------------------------------------
+// End-of-file detection functions for StreamBuffer and char*:
+
+
+static inline bool isEof(StreamBuffer& in) { return *in == EOF; }
+static inline bool isEof(const char* in) { return *in == '\0'; }
+
+//-------------------------------------------------------------------------------------------------
+// Generic parse functions parametrized over the input-stream type.
+
+
+template<class B>
+static void skipWhitespace(B& in) {
+ while ((*in >= 9 && *in <= 13) || *in == 32)
+ ++in; }
+
+
+template<class B>
+static void skipLine(B& in) {
+ for (;;){
+ if (isEof(in)) return;
+ if (*in == '\n') { ++in; return; }
+ ++in; } }
+
+
+template<class B>
+static int parseInt(B& in) {
+ int val = 0;
+ bool neg = false;
+ skipWhitespace(in);
+ if (*in == '-') neg = true, ++in;
+ else if (*in == '+') ++in;
+ if (*in < '0' || *in > '9') fprintf(stderr, "PARSE ERROR! Unexpected char: %c\n", *in), exit(3);
+ while (*in >= '0' && *in <= '9')
+ val = val*10 + (*in - '0'),
+ ++in;
+ return neg ? -val : val; }
+
+
+// String matching: in case of a match the input iterator will be advanced the corresponding
+// number of characters.
+template<class B>
+static bool match(B& in, const char* str) {
+ int i;
+ for (i = 0; str[i] != '\0'; i++)
+ if (in[i] != str[i])
+ return false;
+
+ in += i;
+
+ return true;
+}
+
+// String matching: consumes characters eagerly, but does not require random access iterator.
+template<class B>
+static bool eagerMatch(B& in, const char* str) {
+ for (; *str != '\0'; ++str, ++in)
+ if (*str != *in)
+ return false;
+ return true; }
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/*****************************************************************************************[Queue.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Queue_h
+#define Minisat_Queue_h
+
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+//=================================================================================================
+
+template<class T>
+class Queue {
+ vec<T> buf;
+ int first;
+ int end;
+
+public:
+ typedef T Key;
+
+ Queue() : buf(1), first(0), end(0) {}
+
+ void clear (bool dealloc = false) { buf.clear(dealloc); buf.growTo(1); first = end = 0; }
+ int size () const { return (end >= first) ? end - first : end - first + buf.size(); }
+
+ const T& operator [] (int index) const { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; }
+ T& operator [] (int index) { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; }
+
+ T peek () const { assert(first != end); return buf[first]; }
+ void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
+ void insert(T elem) { // INVARIANT: buf[end] is always unused
+ buf[end++] = elem;
+ if (end == buf.size()) end = 0;
+ if (first == end){ // Resize:
+ vec<T> tmp((buf.size()*3 + 1) >> 1);
+ //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
+ int i = 0;
+ for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
+ for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
+ first = 0;
+ end = buf.size();
+ tmp.moveTo(buf);
+ }
+ }
+};
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/*******************************************************************************************[Rnd.h]
+Copyright (c) 2012, Niklas Sorensson
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Rnd_h
+#define Minisat_Rnd_h
+
+#include "libs/minisat/Vec.h"
+
+namespace Minisat {
+
+// Generate a random double:
+static inline double drand(double& seed)
+{
+ seed *= 1389796;
+ int q = (int)(seed / 2147483647);
+ seed -= (double)q * 2147483647;
+ return seed / 2147483647;
+}
+
+
+// Generate a random integer:
+static inline int irand(double& seed, int size) { return (int)(drand(seed) * size); }
+
+
+// Randomly shuffle the contents of a vector:
+template<class T>
+static void randomShuffle(double& seed, vec<T>& xs)
+{
+ for (int i = 0; i < xs.size(); i++){
+ int pick = i + irand(seed, xs.size() - i);
+ T tmp = xs[i];
+ xs[i] = xs[pick];
+ xs[pick] = tmp;
+ }
+}
+
+// Randomly shuffle a vector of a vector (ugly)
+template<class T>
+static void randomShuffle(double& seed, vec<vec<T> >& xs)
+{
+ for (int i = 0; i < xs.size(); i++){
+ int pick = i + irand(seed, xs.size() - i);
+ vec<T> tmp; xs[i].moveTo(tmp);
+ xs[pick].moveTo(xs[i]);
+ tmp.moveTo(xs[pick]);
+ }
+}
+
+
+//=================================================================================================
+} // namespace Minisat
+#endif
--- /dev/null
+#define __STDC_FORMAT_MACROS
+#define __STDC_LIMIT_MACROS
+/***********************************************************************************[SimpSolver.cc]
+Copyright (c) 2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include "libs/minisat/Sort.h"
+#include "libs/minisat/SimpSolver.h"
+#include "libs/minisat/System.h"
+
+using namespace Minisat;
+
+//=================================================================================================
+// Options:
+
+
+static const char* _cat = "SIMP";
+
+static BoolOption opt_use_asymm (_cat, "asymm", "Shrink clauses by asymmetric branching.", false);
+static BoolOption opt_use_rcheck (_cat, "rcheck", "Check if a clause is already implied. (costly)", false);
+static BoolOption opt_use_elim (_cat, "elim", "Perform variable elimination.", true);
+static IntOption opt_grow (_cat, "grow", "Allow a variable elimination step to grow by a number of clauses.", 0);
+static IntOption opt_clause_lim (_cat, "cl-lim", "Variables are not eliminated if it produces a resolvent with a length above this limit. -1 means no limit", 20, IntRange(-1, INT32_MAX));
+static IntOption opt_subsumption_lim (_cat, "sub-lim", "Do not check if subsumption against a clause larger than this. -1 means no limit.", 1000, IntRange(-1, INT32_MAX));
+static DoubleOption opt_simp_garbage_frac(_cat, "simp-gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered during simplification.", 0.5, DoubleRange(0, false, HUGE_VAL, false));
+
+
+//=================================================================================================
+// Constructor/Destructor:
+
+
+SimpSolver::SimpSolver() :
+ grow (opt_grow)
+ , clause_lim (opt_clause_lim)
+ , subsumption_lim (opt_subsumption_lim)
+ , simp_garbage_frac (opt_simp_garbage_frac)
+ , use_asymm (opt_use_asymm)
+ , use_rcheck (opt_use_rcheck)
+ , use_elim (opt_use_elim)
+ , extend_model (true)
+ , merges (0)
+ , asymm_lits (0)
+ , eliminated_vars (0)
+ , elimorder (1)
+ , use_simplification (true)
+ , occurs (ClauseDeleted(ca))
+ , elim_heap (ElimLt(n_occ))
+ , bwdsub_assigns (0)
+ , n_touched (0)
+{
+ vec<Lit> dummy(1,lit_Undef);
+ ca.extra_clause_field = true; // NOTE: must happen before allocating the dummy clause below.
+ bwdsub_tmpunit = ca.alloc(dummy);
+ remove_satisfied = false;
+}
+
+
+SimpSolver::~SimpSolver()
+{
+}
+
+
+Var SimpSolver::newVar(lbool upol, bool dvar) {
+ Var v = Solver::newVar(upol, dvar);
+
+ frozen .insert(v, (char)false);
+ eliminated.insert(v, (char)false);
+
+ if (use_simplification){
+ n_occ .insert( mkLit(v), 0);
+ n_occ .insert(~mkLit(v), 0);
+ occurs .init (v);
+ touched .insert(v, 0);
+ elim_heap .insert(v);
+ }
+ return v; }
+
+
+void SimpSolver::releaseVar(Lit l)
+{
+ assert(!isEliminated(var(l)));
+ if (!use_simplification && var(l) >= max_simp_var)
+ // Note: Guarantees that no references to this variable is
+ // left in model extension datastructure. Could be improved!
+ Solver::releaseVar(l);
+ else
+ // Otherwise, don't allow variable to be reused.
+ Solver::addClause(l);
+}
+
+
+lbool SimpSolver::solve_(bool do_simp, bool turn_off_simp)
+{
+ vec<Var> extra_frozen;
+ lbool result = l_True;
+
+ do_simp &= use_simplification;
+
+ if (do_simp){
+ // Assumptions must be temporarily frozen to run variable elimination:
+ for (int i = 0; i < assumptions.size(); i++){
+ Var v = var(assumptions[i]);
+
+ // If an assumption has been eliminated, remember it.
+ assert(!isEliminated(v));
+
+ if (!frozen[v]){
+ // Freeze and store.
+ setFrozen(v, true);
+ extra_frozen.push(v);
+ } }
+
+ result = lbool(eliminate(turn_off_simp));
+ }
+
+ if (result == l_True)
+ result = Solver::solve_();
+ else if (verbosity >= 1)
+ printf("===============================================================================\n");
+
+ if (result == l_True && extend_model)
+ extendModel();
+
+ if (do_simp)
+ // Unfreeze the assumptions that were frozen:
+ for (int i = 0; i < extra_frozen.size(); i++)
+ setFrozen(extra_frozen[i], false);
+
+ return result;
+}
+
+
+
+bool SimpSolver::addClause_(vec<Lit>& ps)
+{
+#ifndef NDEBUG
+ for (int i = 0; i < ps.size(); i++)
+ assert(!isEliminated(var(ps[i])));
+#endif
+
+ int nclauses = clauses.size();
+
+ if (use_rcheck && implied(ps))
+ return true;
+
+ if (!Solver::addClause_(ps))
+ return false;
+
+ if (use_simplification && clauses.size() == nclauses + 1){
+ CRef cr = clauses.last();
+ const Clause& c = ca[cr];
+
+ // NOTE: the clause is added to the queue immediately and then
+ // again during 'gatherTouchedClauses()'. If nothing happens
+ // in between, it will only be checked once. Otherwise, it may
+ // be checked twice unnecessarily. This is an unfortunate
+ // consequence of how backward subsumption is used to mimic
+ // forward subsumption.
+ subsumption_queue.insert(cr);
+ for (int i = 0; i < c.size(); i++){
+ occurs[var(c[i])].push(cr);
+ n_occ[c[i]]++;
+ touched[var(c[i])] = 1;
+ n_touched++;
+ if (elim_heap.inHeap(var(c[i])))
+ elim_heap.increase(var(c[i]));
+ }
+ }
+
+ return true;
+}
+
+
+void SimpSolver::removeClause(CRef cr)
+{
+ const Clause& c = ca[cr];
+
+ if (use_simplification)
+ for (int i = 0; i < c.size(); i++){
+ n_occ[c[i]]--;
+ updateElimHeap(var(c[i]));
+ occurs.smudge(var(c[i]));
+ }
+
+ Solver::removeClause(cr);
+}
+
+
+bool SimpSolver::strengthenClause(CRef cr, Lit l)
+{
+ Clause& c = ca[cr];
+ assert(decisionLevel() == 0);
+ assert(use_simplification);
+
+ // FIX: this is too inefficient but would be nice to have (properly implemented)
+ // if (!find(subsumption_queue, &c))
+ subsumption_queue.insert(cr);
+
+ if (c.size() == 2){
+ removeClause(cr);
+ c.strengthen(l);
+ }else{
+ detachClause(cr, true);
+ c.strengthen(l);
+ attachClause(cr);
+ remove(occurs[var(l)], cr);
+ n_occ[l]--;
+ updateElimHeap(var(l));
+ }
+
+ return c.size() == 1 ? enqueue(c[0]) && propagate() == CRef_Undef : true;
+}
+
+
+// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
+bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
+{
+ merges++;
+ out_clause.clear();
+
+ bool ps_smallest = _ps.size() < _qs.size();
+ const Clause& ps = ps_smallest ? _qs : _ps;
+ const Clause& qs = ps_smallest ? _ps : _qs;
+
+ for (int i = 0; i < qs.size(); i++){
+ if (var(qs[i]) != v){
+ for (int j = 0; j < ps.size(); j++)
+ if (var(ps[j]) == var(qs[i])){
+ if (ps[j] == ~qs[i])
+ return false;
+ else
+ goto next;
+ }
+ out_clause.push(qs[i]);
+ }
+ next:;
+ }
+
+ for (int i = 0; i < ps.size(); i++)
+ if (var(ps[i]) != v)
+ out_clause.push(ps[i]);
+
+ return true;
+}
+
+
+// Returns FALSE if clause is always satisfied.
+bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, int& size)
+{
+ merges++;
+
+ bool ps_smallest = _ps.size() < _qs.size();
+ const Clause& ps = ps_smallest ? _qs : _ps;
+ const Clause& qs = ps_smallest ? _ps : _qs;
+ const Lit* __ps = (const Lit*)ps;
+ const Lit* __qs = (const Lit*)qs;
+
+ size = ps.size()-1;
+
+ for (int i = 0; i < qs.size(); i++){
+ if (var(__qs[i]) != v){
+ for (int j = 0; j < ps.size(); j++)
+ if (var(__ps[j]) == var(__qs[i])){
+ if (__ps[j] == ~__qs[i])
+ return false;
+ else
+ goto next;
+ }
+ size++;
+ }
+ next:;
+ }
+
+ return true;
+}
+
+
+void SimpSolver::gatherTouchedClauses()
+{
+ if (n_touched == 0) return;
+
+ int i,j;
+ for (i = j = 0; i < subsumption_queue.size(); i++)
+ if (ca[subsumption_queue[i]].mark() == 0)
+ ca[subsumption_queue[i]].mark(2);
+
+ for (i = 0; i < nVars(); i++)
+ if (touched[i]){
+ const vec<CRef>& cs = occurs.lookup(i);
+ for (j = 0; j < cs.size(); j++)
+ if (ca[cs[j]].mark() == 0){
+ subsumption_queue.insert(cs[j]);
+ ca[cs[j]].mark(2);
+ }
+ touched[i] = 0;
+ }
+
+ for (i = 0; i < subsumption_queue.size(); i++)
+ if (ca[subsumption_queue[i]].mark() == 2)
+ ca[subsumption_queue[i]].mark(0);
+
+ n_touched = 0;
+}
+
+
+bool SimpSolver::implied(const vec<Lit>& c)
+{
+ assert(decisionLevel() == 0);
+
+ trail_lim.push(trail.size());
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) == l_True){
+ cancelUntil(0);
+ return true;
+ }else if (value(c[i]) != l_False){
+ assert(value(c[i]) == l_Undef);
+ uncheckedEnqueue(~c[i]);
+ }
+
+ bool result = propagate() != CRef_Undef;
+ cancelUntil(0);
+ return result;
+}
+
+
+// Backward subsumption + backward subsumption resolution
+bool SimpSolver::backwardSubsumptionCheck(bool verbose)
+{
+ int cnt = 0;
+ int subsumed = 0;
+ int deleted_literals = 0;
+ assert(decisionLevel() == 0);
+
+ while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
+
+ // Empty subsumption queue and return immediately on user-interrupt:
+ if (asynch_interrupt){
+ subsumption_queue.clear();
+ bwdsub_assigns = trail.size();
+ break; }
+
+ // Check top-level assignments by creating a dummy clause and placing it in the queue:
+ if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
+ Lit l = trail[bwdsub_assigns++];
+ ca[bwdsub_tmpunit][0] = l;
+ ca[bwdsub_tmpunit].calcAbstraction();
+ subsumption_queue.insert(bwdsub_tmpunit); }
+
+ CRef cr = subsumption_queue.peek(); subsumption_queue.pop();
+ Clause& c = ca[cr];
+
+ if (c.mark()) continue;
+
+ if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
+ printf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
+
+ assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
+
+ // Find best variable to scan:
+ Var best = var(c[0]);
+ for (int i = 1; i < c.size(); i++)
+ if (occurs[var(c[i])].size() < occurs[best].size())
+ best = var(c[i]);
+
+ // Search all candidates:
+ vec<CRef>& _cs = occurs.lookup(best);
+ CRef* cs = (CRef*)_cs;
+
+ for (int j = 0; j < _cs.size(); j++)
+ if (c.mark())
+ break;
+ else if (!ca[cs[j]].mark() && cs[j] != cr && (subsumption_lim == -1 || ca[cs[j]].size() < subsumption_lim)){
+ Lit l = c.subsumes(ca[cs[j]]);
+
+ if (l == lit_Undef)
+ subsumed++, removeClause(cs[j]);
+ else if (l != lit_Error){
+ deleted_literals++;
+
+ if (!strengthenClause(cs[j], ~l))
+ return false;
+
+ // Did current candidate get deleted from cs? Then check candidate at index j again:
+ if (var(l) == best)
+ j--;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+bool SimpSolver::asymm(Var v, CRef cr)
+{
+ Clause& c = ca[cr];
+ assert(decisionLevel() == 0);
+
+ if (c.mark() || satisfied(c)) return true;
+
+ trail_lim.push(trail.size());
+ Lit l = lit_Undef;
+ for (int i = 0; i < c.size(); i++)
+ if (var(c[i]) != v && value(c[i]) != l_False)
+ uncheckedEnqueue(~c[i]);
+ else
+ l = c[i];
+
+ if (propagate() != CRef_Undef){
+ cancelUntil(0);
+ asymm_lits++;
+ if (!strengthenClause(cr, l))
+ return false;
+ }else
+ cancelUntil(0);
+
+ return true;
+}
+
+
+bool SimpSolver::asymmVar(Var v)
+{
+ assert(use_simplification);
+
+ const vec<CRef>& cls = occurs.lookup(v);
+
+ if (value(v) != l_Undef || cls.size() == 0)
+ return true;
+
+ for (int i = 0; i < cls.size(); i++)
+ if (!asymm(v, cls[i]))
+ return false;
+
+ return backwardSubsumptionCheck();
+}
+
+
+static void mkElimClause(vec<uint32_t>& elimclauses, Lit x)
+{
+ elimclauses.push(toInt(x));
+ elimclauses.push(1);
+}
+
+
+static void mkElimClause(vec<uint32_t>& elimclauses, Var v, Clause& c)
+{
+ int first = elimclauses.size();
+ int v_pos = -1;
+
+ // Copy clause to elimclauses-vector. Remember position where the
+ // variable 'v' occurs:
+ for (int i = 0; i < c.size(); i++){
+ elimclauses.push(toInt(c[i]));
+ if (var(c[i]) == v)
+ v_pos = i + first;
+ }
+ assert(v_pos != -1);
+
+ // Swap the first literal with the 'v' literal, so that the literal
+ // containing 'v' will occur first in the clause:
+ uint32_t tmp = elimclauses[v_pos];
+ elimclauses[v_pos] = elimclauses[first];
+ elimclauses[first] = tmp;
+
+ // Store the length of the clause last:
+ elimclauses.push(c.size());
+}
+
+
+
+bool SimpSolver::eliminateVar(Var v)
+{
+ assert(!frozen[v]);
+ assert(!isEliminated(v));
+ assert(value(v) == l_Undef);
+
+ // Split the occurrences into positive and negative:
+ //
+ const vec<CRef>& cls = occurs.lookup(v);
+ vec<CRef> pos, neg;
+ for (int i = 0; i < cls.size(); i++)
+ (find(ca[cls[i]], mkLit(v)) ? pos : neg).push(cls[i]);
+
+ // Check wether the increase in number of clauses stays within the allowed ('grow'). Moreover, no
+ // clause must exceed the limit on the maximal clause size (if it is set):
+ //
+ int cnt = 0;
+ int clause_size = 0;
+
+ for (int i = 0; i < pos.size(); i++)
+ for (int j = 0; j < neg.size(); j++)
+ if (merge(ca[pos[i]], ca[neg[j]], v, clause_size) &&
+ (++cnt > cls.size() + grow || (clause_lim != -1 && clause_size > clause_lim)))
+ return true;
+
+ // Delete and store old clauses:
+ eliminated[v] = true;
+ setDecisionVar(v, false);
+ eliminated_vars++;
+
+ if (pos.size() > neg.size()){
+ for (int i = 0; i < neg.size(); i++)
+ mkElimClause(elimclauses, v, ca[neg[i]]);
+ mkElimClause(elimclauses, mkLit(v));
+ }else{
+ for (int i = 0; i < pos.size(); i++)
+ mkElimClause(elimclauses, v, ca[pos[i]]);
+ mkElimClause(elimclauses, ~mkLit(v));
+ }
+
+ for (int i = 0; i < cls.size(); i++)
+ removeClause(cls[i]);
+
+ // Produce clauses in cross product:
+ vec<Lit>& resolvent = add_tmp;
+ for (int i = 0; i < pos.size(); i++)
+ for (int j = 0; j < neg.size(); j++)
+ if (merge(ca[pos[i]], ca[neg[j]], v, resolvent) && !addClause_(resolvent))
+ return false;
+
+ // Free occurs list for this variable:
+ occurs[v].clear(true);
+
+ // Free watchers lists for this variable, if possible:
+ if (watches[ mkLit(v)].size() == 0) watches[ mkLit(v)].clear(true);
+ if (watches[~mkLit(v)].size() == 0) watches[~mkLit(v)].clear(true);
+
+ return backwardSubsumptionCheck();
+}
+
+
+bool SimpSolver::substitute(Var v, Lit x)
+{
+ assert(!frozen[v]);
+ assert(!isEliminated(v));
+ assert(value(v) == l_Undef);
+
+ if (!ok) return false;
+
+ eliminated[v] = true;
+ setDecisionVar(v, false);
+ const vec<CRef>& cls = occurs.lookup(v);
+
+ vec<Lit>& subst_clause = add_tmp;
+ for (int i = 0; i < cls.size(); i++){
+ Clause& c = ca[cls[i]];
+
+ subst_clause.clear();
+ for (int j = 0; j < c.size(); j++){
+ Lit p = c[j];
+ subst_clause.push(var(p) == v ? x ^ sign(p) : p);
+ }
+
+ removeClause(cls[i]);
+
+ if (!addClause_(subst_clause))
+ return ok = false;
+ }
+
+ return true;
+}
+
+
+void SimpSolver::extendModel()
+{
+ int i, j;
+ Lit x;
+
+ for (i = elimclauses.size()-1; i > 0; i -= j){
+ for (j = elimclauses[i--]; j > 1; j--, i--)
+ if (modelValue(toLit(elimclauses[i])) != l_False)
+ goto next;
+
+ x = toLit(elimclauses[i]);
+ model[var(x)] = lbool(!sign(x));
+ next:;
+ }
+}
+
+
+bool SimpSolver::eliminate(bool turn_off_elim)
+{
+ if (!simplify())
+ return false;
+ else if (!use_simplification)
+ return true;
+
+ // Main simplification loop:
+ //
+ while (n_touched > 0 || bwdsub_assigns < trail.size() || elim_heap.size() > 0){
+
+ gatherTouchedClauses();
+ // printf(" ## (time = %6.2f s) BWD-SUB: queue = %d, trail = %d\n", cpuTime(), subsumption_queue.size(), trail.size() - bwdsub_assigns);
+ if ((subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()) &&
+ !backwardSubsumptionCheck(true)){
+ ok = false; goto cleanup; }
+
+ // Empty elim_heap and return immediately on user-interrupt:
+ if (asynch_interrupt){
+ assert(bwdsub_assigns == trail.size());
+ assert(subsumption_queue.size() == 0);
+ assert(n_touched == 0);
+ elim_heap.clear();
+ goto cleanup; }
+
+ // printf(" ## (time = %6.2f s) ELIM: vars = %d\n", cpuTime(), elim_heap.size());
+ for (int cnt = 0; !elim_heap.empty(); cnt++){
+ Var elim = elim_heap.removeMin();
+
+ if (asynch_interrupt) break;
+
+ if (isEliminated(elim) || value(elim) != l_Undef) continue;
+
+ if (verbosity >= 2 && cnt % 100 == 0)
+ printf("elimination left: %10d\r", elim_heap.size());
+
+ if (use_asymm){
+ // Temporarily freeze variable. Otherwise, it would immediately end up on the queue again:
+ bool was_frozen = frozen[elim];
+ frozen[elim] = true;
+ if (!asymmVar(elim)){
+ ok = false; goto cleanup; }
+ frozen[elim] = was_frozen; }
+
+ // At this point, the variable may have been set by assymetric branching, so check it
+ // again. Also, don't eliminate frozen variables:
+ if (use_elim && value(elim) == l_Undef && !frozen[elim] && !eliminateVar(elim)){
+ ok = false; goto cleanup; }
+
+ checkGarbage(simp_garbage_frac);
+ }
+
+ assert(subsumption_queue.size() == 0);
+ }
+ cleanup:
+
+ // If no more simplification is needed, free all simplification-related data structures:
+ if (turn_off_elim){
+ touched .clear(true);
+ occurs .clear(true);
+ n_occ .clear(true);
+ elim_heap.clear(true);
+ subsumption_queue.clear(true);
+
+ use_simplification = false;
+ remove_satisfied = true;
+ ca.extra_clause_field = false;
+ max_simp_var = nVars();
+
+ // Force full cleanup (this is safe and desirable since it only happens once):
+ rebuildOrderHeap();
+ garbageCollect();
+ }else{
+ // Cheaper cleanup:
+ checkGarbage();
+ }
+
+ if (verbosity >= 1 && elimclauses.size() > 0)
+ printf("| Eliminated clauses: %10.2f Mb |\n",
+ double(elimclauses.size() * sizeof(uint32_t)) / (1024*1024));
+
+ return ok;
+}
+
+
+//=================================================================================================
+// Garbage Collection methods:
+
+
+void SimpSolver::relocAll(ClauseAllocator& to)
+{
+ if (!use_simplification) return;
+
+ // All occurs lists:
+ //
+ for (int i = 0; i < nVars(); i++){
+ occurs.clean(i);
+ vec<CRef>& cs = occurs[i];
+ for (int j = 0; j < cs.size(); j++)
+ ca.reloc(cs[j], to);
+ }
+
+ // Subsumption queue:
+ //
+ for (int i = subsumption_queue.size(); i > 0; i--){
+ CRef cr = subsumption_queue.peek(); subsumption_queue.pop();
+ if (ca[cr].mark()) continue;
+ ca.reloc(cr, to);
+ subsumption_queue.insert(cr);
+ }
+
+ // Temporary clause:
+ //
+ ca.reloc(bwdsub_tmpunit, to);
+}
+
+
+void SimpSolver::garbageCollect()
+{
+ // Initialize the next region to a size corresponding to the estimated utilization degree. This
+ // is not precise but should avoid some unnecessary reallocations for the new region:
+ ClauseAllocator to(ca.size() - ca.wasted());
+
+ to.extra_clause_field = ca.extra_clause_field; // NOTE: this is important to keep (or lose) the extra fields.
+ relocAll(to);
+ Solver::relocAll(to);
+ if (verbosity >= 2)
+ printf("| Garbage collection: %12d bytes => %12d bytes |\n",
+ ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
+ to.moveTo(ca);
+}
--- /dev/null
+/************************************************************************************[SimpSolver.h]
+Copyright (c) 2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_SimpSolver_h
+#define Minisat_SimpSolver_h
+
+#include "libs/minisat/Queue.h"
+#include "libs/minisat/Solver.h"
+
+
+namespace Minisat {
+
+//=================================================================================================
+
+
+class SimpSolver : public Solver {
+ public:
+ // Constructor/Destructor:
+ //
+ SimpSolver();
+ ~SimpSolver();
+
+ // Problem specification:
+ //
+ Var newVar (lbool upol = l_Undef, bool dvar = true);
+ void releaseVar(Lit l);
+ bool addClause (const vec<Lit>& ps);
+ bool addEmptyClause(); // Add the empty clause to the solver.
+ bool addClause (Lit p); // Add a unit clause to the solver.
+ bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
+ bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
+ bool addClause (Lit p, Lit q, Lit r, Lit s); // Add a quaternary clause to the solver.
+ bool addClause_( vec<Lit>& ps);
+ bool substitute(Var v, Lit x); // Replace all occurences of v with x (may cause a contradiction).
+
+ // Variable mode:
+ //
+ void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
+ bool isEliminated(Var v) const;
+
+ // Alternative freeze interface (may replace 'setFrozen()'):
+ void freezeVar (Var v); // Freeze one variable so it will not be eliminated.
+ void thaw (); // Thaw all frozen variables.
+
+
+ // Solving:
+ //
+ bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
+ lbool solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
+ bool solve ( bool do_simp = true, bool turn_off_simp = false);
+ bool solve (Lit p , bool do_simp = true, bool turn_off_simp = false);
+ bool solve (Lit p, Lit q, bool do_simp = true, bool turn_off_simp = false);
+ bool solve (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
+ bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
+
+ // Memory managment:
+ //
+ virtual void garbageCollect();
+
+
+ // Generate a (possibly simplified) DIMACS file:
+ //
+#if 0
+ void toDimacs (const char* file, const vec<Lit>& assumps);
+ void toDimacs (const char* file);
+ void toDimacs (const char* file, Lit p);
+ void toDimacs (const char* file, Lit p, Lit q);
+ void toDimacs (const char* file, Lit p, Lit q, Lit r);
+#endif
+
+ // Mode of operation:
+ //
+ int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
+ int clause_lim; // Variables are not eliminated if it produces a resolvent with a length above this limit.
+ // -1 means no limit.
+ int subsumption_lim; // Do not check if subsumption against a clause larger than this. -1 means no limit.
+ double simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').
+
+ bool use_asymm; // Shrink clauses by asymmetric branching.
+ bool use_rcheck; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
+ bool use_elim; // Perform variable elimination.
+ bool extend_model; // Flag to indicate whether the user needs to look at the full model.
+
+ // Statistics:
+ //
+ int merges;
+ int asymm_lits;
+ int eliminated_vars;
+
+ protected:
+
+ // Helper structures:
+ //
+ struct ElimLt {
+ const LMap<int>& n_occ;
+ explicit ElimLt(const LMap<int>& no) : n_occ(no) {}
+
+ // TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
+ // 32-bit implementation instead then, but this will have to do for now.
+ uint64_t cost (Var x) const { return (uint64_t)n_occ[mkLit(x)] * (uint64_t)n_occ[~mkLit(x)]; }
+ bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
+
+ // TODO: investigate this order alternative more.
+ // bool operator()(Var x, Var y) const {
+ // int c_x = cost(x);
+ // int c_y = cost(y);
+ // return c_x < c_y || c_x == c_y && x < y; }
+ };
+
+ struct ClauseDeleted {
+ const ClauseAllocator& ca;
+ explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
+ bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };
+
+ // Solver state:
+ //
+ int elimorder;
+ bool use_simplification;
+ Var max_simp_var; // Max variable at the point simplification was turned off.
+ vec<uint32_t> elimclauses;
+ VMap<char> touched;
+ OccLists<Var, vec<CRef>, ClauseDeleted>
+ occurs;
+ LMap<int> n_occ;
+ Heap<Var,ElimLt> elim_heap;
+ Queue<CRef> subsumption_queue;
+ VMap<char> frozen;
+ vec<Var> frozen_vars;
+ VMap<char> eliminated;
+ int bwdsub_assigns;
+ int n_touched;
+
+ // Temporaries:
+ //
+ CRef bwdsub_tmpunit;
+
+ // Main internal methods:
+ //
+ lbool solve_ (bool do_simp = true, bool turn_off_simp = false);
+ bool asymm (Var v, CRef cr);
+ bool asymmVar (Var v);
+ void updateElimHeap (Var v);
+ void gatherTouchedClauses ();
+ bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
+ bool merge (const Clause& _ps, const Clause& _qs, Var v, int& size);
+ bool backwardSubsumptionCheck (bool verbose = false);
+ bool eliminateVar (Var v);
+ void extendModel ();
+
+ void removeClause (CRef cr);
+ bool strengthenClause (CRef cr, Lit l);
+ bool implied (const vec<Lit>& c);
+ void relocAll (ClauseAllocator& to);
+};
+
+
+//=================================================================================================
+// Implementation of inline methods:
+
+
+inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
+inline void SimpSolver::updateElimHeap(Var v) {
+ assert(use_simplification);
+ // if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
+ if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
+ elim_heap.update(v); }
+
+
+inline bool SimpSolver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
+inline bool SimpSolver::addEmptyClause() { add_tmp.clear(); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
+inline bool SimpSolver::addClause (Lit p, Lit q, Lit r, Lit s){ add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); add_tmp.push(s); return addClause_(add_tmp); }
+inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }
+
+inline void SimpSolver::freezeVar(Var v){
+ if (!frozen[v]){
+ frozen[v] = 1;
+ frozen_vars.push(v);
+ } }
+
+inline void SimpSolver::thaw(){
+ for (int i = 0; i < frozen_vars.size(); i++){
+ Var v = frozen_vars[i];
+ frozen[v] = 0;
+ if (use_simplification)
+ updateElimHeap(v);
+ }
+ frozen_vars.clear(); }
+
+inline bool SimpSolver::solve ( bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve (Lit p , bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve (Lit p, Lit q, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
+inline bool SimpSolver::solve (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
+ budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }
+
+inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
+ assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+#define __STDC_FORMAT_MACROS
+#define __STDC_LIMIT_MACROS
+/***************************************************************************************[Solver.cc]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include <math.h>
+
+#include "libs/minisat/Alg.h"
+#include "libs/minisat/Sort.h"
+#include "libs/minisat/System.h"
+#include "libs/minisat/Solver.h"
+
+using namespace Minisat;
+
+//=================================================================================================
+// Options:
+
+
+static const char* _cat = "CORE";
+
+static DoubleOption opt_var_decay (_cat, "var-decay", "The variable activity decay factor", 0.95, DoubleRange(0, false, 1, false));
+static DoubleOption opt_clause_decay (_cat, "cla-decay", "The clause activity decay factor", 0.999, DoubleRange(0, false, 1, false));
+static DoubleOption opt_random_var_freq (_cat, "rnd-freq", "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true));
+static DoubleOption opt_random_seed (_cat, "rnd-seed", "Used by the random variable selection", 91648253, DoubleRange(0, false, HUGE_VAL, false));
+static IntOption opt_ccmin_mode (_cat, "ccmin-mode", "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2));
+static IntOption opt_phase_saving (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2));
+static BoolOption opt_rnd_init_act (_cat, "rnd-init", "Randomize the initial activity", false);
+static BoolOption opt_luby_restart (_cat, "luby", "Use the Luby restart sequence", true);
+static IntOption opt_restart_first (_cat, "rfirst", "The base restart interval", 100, IntRange(1, INT32_MAX));
+static DoubleOption opt_restart_inc (_cat, "rinc", "Restart interval increase factor", 2, DoubleRange(1, false, HUGE_VAL, false));
+static DoubleOption opt_garbage_frac (_cat, "gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered", 0.20, DoubleRange(0, false, HUGE_VAL, false));
+static IntOption opt_min_learnts_lim (_cat, "min-learnts", "Minimum learnt clause limit", 0, IntRange(0, INT32_MAX));
+
+
+//=================================================================================================
+// Constructor/Destructor:
+
+
+Solver::Solver() :
+
+ // Parameters (user settable):
+ //
+ verbosity (0)
+ , var_decay (opt_var_decay)
+ , clause_decay (opt_clause_decay)
+ , random_var_freq (opt_random_var_freq)
+ , random_seed (opt_random_seed)
+ , luby_restart (opt_luby_restart)
+ , ccmin_mode (opt_ccmin_mode)
+ , phase_saving (opt_phase_saving)
+ , rnd_pol (false)
+ , rnd_init_act (opt_rnd_init_act)
+ , garbage_frac (opt_garbage_frac)
+ , min_learnts_lim (opt_min_learnts_lim)
+ , restart_first (opt_restart_first)
+ , restart_inc (opt_restart_inc)
+
+ // Parameters (the rest):
+ //
+ , learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
+
+ // Parameters (experimental):
+ //
+ , learntsize_adjust_start_confl (100)
+ , learntsize_adjust_inc (1.5)
+
+ // Statistics: (formerly in 'SolverStats')
+ //
+ , solves(0), starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
+ , dec_vars(0), num_clauses(0), num_learnts(0), clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
+
+ , watches (WatcherDeleted(ca))
+ , order_heap (VarOrderLt(activity))
+ , ok (true)
+ , cla_inc (1)
+ , var_inc (1)
+ , qhead (0)
+ , simpDB_assigns (-1)
+ , simpDB_props (0)
+ , progress_estimate (0)
+ , remove_satisfied (true)
+ , next_var (0)
+
+ // Resource constraints:
+ //
+ , conflict_budget (-1)
+ , propagation_budget (-1)
+ , asynch_interrupt (false)
+{}
+
+
+Solver::~Solver()
+{
+}
+
+
+//=================================================================================================
+// Minor methods:
+
+
+// Creates a new SAT variable in the solver. If 'decision' is cleared, variable will not be
+// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
+//
+Var Solver::newVar(lbool upol, bool dvar)
+{
+ Var v;
+ if (free_vars.size() > 0){
+ v = free_vars.last();
+ free_vars.pop();
+ }else
+ v = next_var++;
+
+ watches .init(mkLit(v, false));
+ watches .init(mkLit(v, true ));
+ assigns .insert(v, l_Undef);
+ vardata .insert(v, mkVarData(CRef_Undef, 0));
+ activity .insert(v, rnd_init_act ? drand(random_seed) * 0.00001 : 0);
+ seen .insert(v, 0);
+ polarity .insert(v, true);
+ user_pol .insert(v, upol);
+ decision .reserve(v);
+ trail .capacity(v+1);
+ setDecisionVar(v, dvar);
+ return v;
+}
+
+
+// Note: at the moment, only unassigned variable will be released (this is to avoid duplicate
+// releases of the same variable).
+void Solver::releaseVar(Lit l)
+{
+ if (value(l) == l_Undef){
+ addClause(l);
+ released_vars.push(var(l));
+ }
+}
+
+
+bool Solver::addClause_(vec<Lit>& ps)
+{
+ assert(decisionLevel() == 0);
+ if (!ok) return false;
+
+ // Check if clause is satisfied and remove false/duplicate literals:
+ sort(ps);
+ Lit p; int i, j;
+ for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
+ if (value(ps[i]) == l_True || ps[i] == ~p)
+ return true;
+ else if (value(ps[i]) != l_False && ps[i] != p)
+ ps[j++] = p = ps[i];
+ ps.shrink(i - j);
+
+ if (ps.size() == 0)
+ return ok = false;
+ else if (ps.size() == 1){
+ uncheckedEnqueue(ps[0]);
+ return ok = (propagate() == CRef_Undef);
+ }else{
+ CRef cr = ca.alloc(ps, false);
+ clauses.push(cr);
+ attachClause(cr);
+ }
+
+ return true;
+}
+
+
+void Solver::attachClause(CRef cr){
+ const Clause& c = ca[cr];
+ assert(c.size() > 1);
+ watches[~c[0]].push(Watcher(cr, c[1]));
+ watches[~c[1]].push(Watcher(cr, c[0]));
+ if (c.learnt()) num_learnts++, learnts_literals += c.size();
+ else num_clauses++, clauses_literals += c.size();
+}
+
+
+void Solver::detachClause(CRef cr, bool strict){
+ const Clause& c = ca[cr];
+ assert(c.size() > 1);
+
+ // Strict or lazy detaching:
+ if (strict){
+ remove(watches[~c[0]], Watcher(cr, c[1]));
+ remove(watches[~c[1]], Watcher(cr, c[0]));
+ }else{
+ watches.smudge(~c[0]);
+ watches.smudge(~c[1]);
+ }
+
+ if (c.learnt()) num_learnts--, learnts_literals -= c.size();
+ else num_clauses--, clauses_literals -= c.size();
+}
+
+
+void Solver::removeClause(CRef cr) {
+ Clause& c = ca[cr];
+ detachClause(cr);
+ // Don't leave pointers to free'd memory!
+ if (locked(c)) vardata[var(c[0])].reason = CRef_Undef;
+ c.mark(1);
+ ca.free(cr);
+}
+
+
+bool Solver::satisfied(const Clause& c) const {
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) == l_True)
+ return true;
+ return false; }
+
+
+// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
+//
+void Solver::cancelUntil(int level) {
+ if (decisionLevel() > level){
+ for (int c = trail.size()-1; c >= trail_lim[level]; c--){
+ Var x = var(trail[c]);
+ assigns [x] = l_Undef;
+ if (phase_saving > 1 || (phase_saving == 1 && c > trail_lim.last()))
+ polarity[x] = sign(trail[c]);
+ insertVarOrder(x); }
+ qhead = trail_lim[level];
+ trail.shrink(trail.size() - trail_lim[level]);
+ trail_lim.shrink(trail_lim.size() - level);
+ } }
+
+
+//=================================================================================================
+// Major methods:
+
+
+Lit Solver::pickBranchLit()
+{
+ Var next = var_Undef;
+
+ // Random decision:
+ if (drand(random_seed) < random_var_freq && !order_heap.empty()){
+ next = order_heap[irand(random_seed,order_heap.size())];
+ if (value(next) == l_Undef && decision[next])
+ rnd_decisions++; }
+
+ // Activity based decision:
+ while (next == var_Undef || value(next) != l_Undef || !decision[next])
+ if (order_heap.empty()){
+ next = var_Undef;
+ break;
+ }else
+ next = order_heap.removeMin();
+
+ // Choose polarity based on different polarity modes (global or per-variable):
+ if (next == var_Undef)
+ return lit_Undef;
+ else if (user_pol[next] != l_Undef)
+ return mkLit(next, user_pol[next] == l_True);
+ else if (rnd_pol)
+ return mkLit(next, drand(random_seed) < 0.5);
+ else
+ return mkLit(next, polarity[next]);
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
+|
+| Description:
+| Analyze conflict and produce a reason clause.
+|
+| Pre-conditions:
+| * 'out_learnt' is assumed to be cleared.
+| * Current decision level must be greater than root level.
+|
+| Post-conditions:
+| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
+| * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the
+| rest of literals. There may be others from the same level though.
+|
+|________________________________________________________________________________________________@*/
+void Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel)
+{
+ int pathC = 0;
+ Lit p = lit_Undef;
+
+ // Generate conflict clause:
+ //
+ out_learnt.push(); // (leave room for the asserting literal)
+ int index = trail.size() - 1;
+
+ do{
+ assert(confl != CRef_Undef); // (otherwise should be UIP)
+ Clause& c = ca[confl];
+
+ if (c.learnt())
+ claBumpActivity(c);
+
+ for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
+ Lit q = c[j];
+
+ if (!seen[var(q)] && level(var(q)) > 0){
+ varBumpActivity(var(q));
+ seen[var(q)] = 1;
+ if (level(var(q)) >= decisionLevel())
+ pathC++;
+ else
+ out_learnt.push(q);
+ }
+ }
+
+ // Select next clause to look at:
+ while (!seen[var(trail[index--])]);
+ p = trail[index+1];
+ confl = reason(var(p));
+ seen[var(p)] = 0;
+ pathC--;
+
+ }while (pathC > 0);
+ out_learnt[0] = ~p;
+
+ // Simplify conflict clause:
+ //
+ int i, j;
+ out_learnt.copyTo(analyze_toclear);
+ if (ccmin_mode == 2){
+ for (i = j = 1; i < out_learnt.size(); i++)
+ if (reason(var(out_learnt[i])) == CRef_Undef || !litRedundant(out_learnt[i]))
+ out_learnt[j++] = out_learnt[i];
+
+ }else if (ccmin_mode == 1){
+ for (i = j = 1; i < out_learnt.size(); i++){
+ Var x = var(out_learnt[i]);
+
+ if (reason(x) == CRef_Undef)
+ out_learnt[j++] = out_learnt[i];
+ else{
+ Clause& c = ca[reason(var(out_learnt[i]))];
+ for (int k = 1; k < c.size(); k++)
+ if (!seen[var(c[k])] && level(var(c[k])) > 0){
+ out_learnt[j++] = out_learnt[i];
+ break; }
+ }
+ }
+ }else
+ i = j = out_learnt.size();
+
+ max_literals += out_learnt.size();
+ out_learnt.shrink(i - j);
+ tot_literals += out_learnt.size();
+
+ // Find correct backtrack level:
+ //
+ if (out_learnt.size() == 1)
+ out_btlevel = 0;
+ else{
+ int max_i = 1;
+ // Find the first literal assigned at the next-highest level:
+ for (int i = 2; i < out_learnt.size(); i++)
+ if (level(var(out_learnt[i])) > level(var(out_learnt[max_i])))
+ max_i = i;
+ // Swap-in this literal at index 1:
+ Lit p = out_learnt[max_i];
+ out_learnt[max_i] = out_learnt[1];
+ out_learnt[1] = p;
+ out_btlevel = level(var(p));
+ }
+
+ for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
+}
+
+
+// Check if 'p' can be removed from a conflict clause.
+bool Solver::litRedundant(Lit p)
+{
+ enum { seen_undef = 0, seen_source = 1, seen_removable = 2, seen_failed = 3 };
+ assert(seen[var(p)] == seen_undef || seen[var(p)] == seen_source);
+ assert(reason(var(p)) != CRef_Undef);
+
+ Clause* c = &ca[reason(var(p))];
+ vec<ShrinkStackElem>& stack = analyze_stack;
+ stack.clear();
+
+ for (uint32_t i = 1; ; i++){
+ if (i < (uint32_t)c->size()){
+ // Checking 'p'-parents 'l':
+ Lit l = (*c)[i];
+
+ // Variable at level 0 or previously removable:
+ if (level(var(l)) == 0 || seen[var(l)] == seen_source || seen[var(l)] == seen_removable){
+ continue; }
+
+ // Check variable can not be removed for some local reason:
+ if (reason(var(l)) == CRef_Undef || seen[var(l)] == seen_failed){
+ stack.push(ShrinkStackElem(0, p));
+ for (int i = 0; i < stack.size(); i++)
+ if (seen[var(stack[i].l)] == seen_undef){
+ seen[var(stack[i].l)] = seen_failed;
+ analyze_toclear.push(stack[i].l);
+ }
+
+ return false;
+ }
+
+ // Recursively check 'l':
+ stack.push(ShrinkStackElem(i, p));
+ i = 0;
+ p = l;
+ c = &ca[reason(var(p))];
+ }else{
+ // Finished with current element 'p' and reason 'c':
+ if (seen[var(p)] == seen_undef){
+ seen[var(p)] = seen_removable;
+ analyze_toclear.push(p);
+ }
+
+ // Terminate with success if stack is empty:
+ if (stack.size() == 0) break;
+
+ // Continue with top element on stack:
+ i = stack.last().i;
+ p = stack.last().l;
+ c = &ca[reason(var(p))];
+
+ stack.pop();
+ }
+ }
+
+ return true;
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| analyzeFinal : (p : Lit) -> [void]
+|
+| Description:
+| Specialized analysis procedure to express the final conflict in terms of assumptions.
+| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
+| stores the result in 'out_conflict'.
+|________________________________________________________________________________________________@*/
+void Solver::analyzeFinal(Lit p, LSet& out_conflict)
+{
+ out_conflict.clear();
+ out_conflict.insert(p);
+
+ if (decisionLevel() == 0)
+ return;
+
+ seen[var(p)] = 1;
+
+ for (int i = trail.size()-1; i >= trail_lim[0]; i--){
+ Var x = var(trail[i]);
+ if (seen[x]){
+ if (reason(x) == CRef_Undef){
+ assert(level(x) > 0);
+ out_conflict.insert(~trail[i]);
+ }else{
+ Clause& c = ca[reason(x)];
+ for (int j = 1; j < c.size(); j++)
+ if (level(var(c[j])) > 0)
+ seen[var(c[j])] = 1;
+ }
+ seen[x] = 0;
+ }
+ }
+
+ seen[var(p)] = 0;
+}
+
+
+void Solver::uncheckedEnqueue(Lit p, CRef from)
+{
+ assert(value(p) == l_Undef);
+ assigns[var(p)] = lbool(!sign(p));
+ vardata[var(p)] = mkVarData(from, decisionLevel());
+ trail.push_(p);
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| propagate : [void] -> [Clause*]
+|
+| Description:
+| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
+| otherwise CRef_Undef.
+|
+| Post-conditions:
+| * the propagation queue is empty, even if there was a conflict.
+|________________________________________________________________________________________________@*/
+CRef Solver::propagate()
+{
+ CRef confl = CRef_Undef;
+ int num_props = 0;
+
+ while (qhead < trail.size()){
+ Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
+ vec<Watcher>& ws = watches.lookup(p);
+ Watcher *i, *j, *end;
+ num_props++;
+
+ for (i = j = (Watcher*)ws, end = i + ws.size(); i != end;){
+ // Try to avoid inspecting the clause:
+ Lit blocker = i->blocker;
+ if (value(blocker) == l_True){
+ *j++ = *i++; continue; }
+
+ // Make sure the false literal is data[1]:
+ CRef cr = i->cref;
+ Clause& c = ca[cr];
+ Lit false_lit = ~p;
+ if (c[0] == false_lit)
+ c[0] = c[1], c[1] = false_lit;
+ assert(c[1] == false_lit);
+ i++;
+
+ // If 0th watch is true, then clause is already satisfied.
+ Lit first = c[0];
+ Watcher w = Watcher(cr, first);
+ if (first != blocker && value(first) == l_True){
+ *j++ = w; continue; }
+
+ // Look for new watch:
+ for (int k = 2; k < c.size(); k++)
+ if (value(c[k]) != l_False){
+ c[1] = c[k]; c[k] = false_lit;
+ watches[~c[1]].push(w);
+ goto NextClause; }
+
+ // Did not find watch -- clause is unit under assignment:
+ *j++ = w;
+ if (value(first) == l_False){
+ confl = cr;
+ qhead = trail.size();
+ // Copy the remaining watches:
+ while (i < end)
+ *j++ = *i++;
+ }else
+ uncheckedEnqueue(first, cr);
+
+ NextClause:;
+ }
+ ws.shrink(i - j);
+ }
+ propagations += num_props;
+ simpDB_props -= num_props;
+
+ return confl;
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| reduceDB : () -> [void]
+|
+| Description:
+| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
+| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
+|________________________________________________________________________________________________@*/
+struct reduceDB_lt {
+ ClauseAllocator& ca;
+ reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {}
+ bool operator () (CRef x, CRef y) {
+ return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
+};
+void Solver::reduceDB()
+{
+ int i, j;
+ double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
+
+ sort(learnts, reduceDB_lt(ca));
+ // Don't delete binary or locked clauses. From the rest, delete clauses from the first half
+ // and clauses with activity smaller than 'extra_lim':
+ for (i = j = 0; i < learnts.size(); i++){
+ Clause& c = ca[learnts[i]];
+ if (c.size() > 2 && !locked(c) && (i < learnts.size() / 2 || c.activity() < extra_lim))
+ removeClause(learnts[i]);
+ else
+ learnts[j++] = learnts[i];
+ }
+ learnts.shrink(i - j);
+ checkGarbage();
+}
+
+
+void Solver::removeSatisfied(vec<CRef>& cs)
+{
+ int i, j;
+ for (i = j = 0; i < cs.size(); i++){
+ Clause& c = ca[cs[i]];
+ if (satisfied(c))
+ removeClause(cs[i]);
+ else{
+ // Trim clause:
+ assert(value(c[0]) == l_Undef && value(c[1]) == l_Undef);
+ for (int k = 2; k < c.size(); k++)
+ if (value(c[k]) == l_False){
+ c[k--] = c[c.size()-1];
+ c.pop();
+ }
+ cs[j++] = cs[i];
+ }
+ }
+ cs.shrink(i - j);
+}
+
+
+void Solver::rebuildOrderHeap()
+{
+ vec<Var> vs;
+ for (Var v = 0; v < nVars(); v++)
+ if (decision[v] && value(v) == l_Undef)
+ vs.push(v);
+ order_heap.build(vs);
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| simplify : [void] -> [bool]
+|
+| Description:
+| Simplify the clause database according to the current top-level assigment. Currently, the only
+| thing done here is the removal of satisfied clauses, but more things can be put here.
+|________________________________________________________________________________________________@*/
+bool Solver::simplify()
+{
+ assert(decisionLevel() == 0);
+
+ if (!ok || propagate() != CRef_Undef)
+ return ok = false;
+
+ if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
+ return true;
+
+ // Remove satisfied clauses:
+ removeSatisfied(learnts);
+ if (remove_satisfied){ // Can be turned off.
+ removeSatisfied(clauses);
+
+ // TODO: what todo in if 'remove_satisfied' is false?
+
+ // Remove all released variables from the trail:
+ for (int i = 0; i < released_vars.size(); i++){
+ assert(seen[released_vars[i]] == 0);
+ seen[released_vars[i]] = 1;
+ }
+
+ int i, j;
+ for (i = j = 0; i < trail.size(); i++)
+ if (seen[var(trail[i])] == 0)
+ trail[j++] = trail[i];
+ trail.shrink(i - j);
+ //printf("trail.size()= %d, qhead = %d\n", trail.size(), qhead);
+ qhead = trail.size();
+
+ for (int i = 0; i < released_vars.size(); i++)
+ seen[released_vars[i]] = 0;
+
+ // Released variables are now ready to be reused:
+ append(released_vars, free_vars);
+ released_vars.clear();
+ }
+ checkGarbage();
+ rebuildOrderHeap();
+
+ simpDB_assigns = nAssigns();
+ simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
+
+ return true;
+}
+
+
+/*_________________________________________________________________________________________________
+|
+| search : (nof_conflicts : int) (params : const SearchParams&) -> [lbool]
+|
+| Description:
+| Search for a model the specified number of conflicts.
+| NOTE! Use negative value for 'nof_conflicts' indicate infinity.
+|
+| Output:
+| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
+| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
+| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
+|________________________________________________________________________________________________@*/
+lbool Solver::search(int nof_conflicts)
+{
+ assert(ok);
+ int backtrack_level;
+ int conflictC = 0;
+ vec<Lit> learnt_clause;
+ starts++;
+
+ for (;;){
+ CRef confl = propagate();
+ if (confl != CRef_Undef){
+ // CONFLICT
+ conflicts++; conflictC++;
+ if (decisionLevel() == 0) return l_False;
+
+ learnt_clause.clear();
+ analyze(confl, learnt_clause, backtrack_level);
+ cancelUntil(backtrack_level);
+
+ if (learnt_clause.size() == 1){
+ uncheckedEnqueue(learnt_clause[0]);
+ }else{
+ CRef cr = ca.alloc(learnt_clause, true);
+ learnts.push(cr);
+ attachClause(cr);
+ claBumpActivity(ca[cr]);
+ uncheckedEnqueue(learnt_clause[0], cr);
+ }
+
+ varDecayActivity();
+ claDecayActivity();
+
+ if (--learntsize_adjust_cnt == 0){
+ learntsize_adjust_confl *= learntsize_adjust_inc;
+ learntsize_adjust_cnt = (int)learntsize_adjust_confl;
+ max_learnts *= learntsize_inc;
+
+ if (verbosity >= 1)
+ printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n",
+ (int)conflicts,
+ (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]), nClauses(), (int)clauses_literals,
+ (int)max_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progressEstimate()*100);
+ }
+
+ }else{
+ // NO CONFLICT
+ if ((nof_conflicts >= 0 && conflictC >= nof_conflicts) || !withinBudget()){
+ // Reached bound on number of conflicts:
+ progress_estimate = progressEstimate();
+ cancelUntil(0);
+ return l_Undef; }
+
+ // Simplify the set of problem clauses:
+ if (decisionLevel() == 0 && !simplify())
+ return l_False;
+
+ if (learnts.size()-nAssigns() >= max_learnts)
+ // Reduce the set of learnt clauses:
+ reduceDB();
+
+ Lit next = lit_Undef;
+ while (decisionLevel() < assumptions.size()){
+ // Perform user provided assumption:
+ Lit p = assumptions[decisionLevel()];
+ if (value(p) == l_True){
+ // Dummy decision level:
+ newDecisionLevel();
+ }else if (value(p) == l_False){
+ analyzeFinal(~p, conflict);
+ return l_False;
+ }else{
+ next = p;
+ break;
+ }
+ }
+
+ if (next == lit_Undef){
+ // New variable decision:
+ decisions++;
+ next = pickBranchLit();
+
+ if (next == lit_Undef)
+ // Model found:
+ return l_True;
+ }
+
+ // Increase decision level and enqueue 'next'
+ newDecisionLevel();
+ uncheckedEnqueue(next);
+ }
+ }
+}
+
+
+double Solver::progressEstimate() const
+{
+ double progress = 0;
+ double F = 1.0 / nVars();
+
+ for (int i = 0; i <= decisionLevel(); i++){
+ int beg = i == 0 ? 0 : trail_lim[i - 1];
+ int end = i == decisionLevel() ? trail.size() : trail_lim[i];
+ progress += pow(F, i) * (end - beg);
+ }
+
+ return progress / nVars();
+}
+
+/*
+ Finite subsequences of the Luby-sequence:
+
+ 0: 1
+ 1: 1 1 2
+ 2: 1 1 2 1 1 2 4
+ 3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8
+ ...
+
+
+ */
+
+static double luby(double y, int x){
+
+ // Find the finite subsequence that contains index 'x', and the
+ // size of that subsequence:
+ int size, seq;
+ for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1);
+
+ while (size-1 != x){
+ size = (size-1)>>1;
+ seq--;
+ x = x % size;
+ }
+
+ return pow(y, seq);
+}
+
+// NOTE: assumptions passed in member-variable 'assumptions'.
+lbool Solver::solve_()
+{
+ model.clear();
+ conflict.clear();
+ if (!ok) return l_False;
+
+ solves++;
+
+ max_learnts = nClauses() * learntsize_factor;
+ if (max_learnts < min_learnts_lim)
+ max_learnts = min_learnts_lim;
+
+ learntsize_adjust_confl = learntsize_adjust_start_confl;
+ learntsize_adjust_cnt = (int)learntsize_adjust_confl;
+ lbool status = l_Undef;
+
+ if (verbosity >= 1){
+ printf("============================[ Search Statistics ]==============================\n");
+ printf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
+ printf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
+ printf("===============================================================================\n");
+ }
+
+ // Search:
+ int curr_restarts = 0;
+ while (status == l_Undef){
+ double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts);
+ status = search(rest_base * restart_first);
+ if (!withinBudget()) break;
+ curr_restarts++;
+ }
+
+ if (verbosity >= 1)
+ printf("===============================================================================\n");
+
+
+ if (status == l_True){
+ // Extend & copy model:
+ model.growTo(nVars());
+ for (int i = 0; i < nVars(); i++) model[i] = value(i);
+ }else if (status == l_False && conflict.size() == 0)
+ ok = false;
+
+ cancelUntil(0);
+ return status;
+}
+
+
+bool Solver::implies(const vec<Lit>& assumps, vec<Lit>& out)
+{
+ trail_lim.push(trail.size());
+ for (int i = 0; i < assumps.size(); i++){
+ Lit a = assumps[i];
+
+ if (value(a) == l_False){
+ cancelUntil(0);
+ return false;
+ }else if (value(a) == l_Undef)
+ uncheckedEnqueue(a);
+ }
+
+ unsigned trail_before = trail.size();
+ bool ret = true;
+ if (propagate() == CRef_Undef){
+ out.clear();
+ for (int j = trail_before; j < trail.size(); j++)
+ out.push(trail[j]);
+ }else
+ ret = false;
+
+ cancelUntil(0);
+ return ret;
+}
+
+//=================================================================================================
+// Writing CNF to DIMACS:
+//
+// FIXME: this needs to be rewritten completely.
+
+static Var mapVar(Var x, vec<Var>& map, Var& max)
+{
+ if (map.size() <= x || map[x] == -1){
+ map.growTo(x+1, -1);
+ map[x] = max++;
+ }
+ return map[x];
+}
+
+
+void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max)
+{
+ if (satisfied(c)) return;
+
+ for (int i = 0; i < c.size(); i++)
+ if (value(c[i]) != l_False)
+ fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1);
+ fprintf(f, "0\n");
+}
+
+
+void Solver::toDimacs(const char *file, const vec<Lit>& assumps)
+{
+ FILE* f = fopen(file, "wr");
+ if (f == NULL)
+ fprintf(stderr, "could not open file %s\n", file), exit(1);
+ toDimacs(f, assumps);
+ fclose(f);
+}
+
+
+void Solver::toDimacs(FILE* f, const vec<Lit>& assumps)
+{
+ // Handle case when solver is in contradictory state:
+ if (!ok){
+ fprintf(f, "p cnf 1 2\n1 0\n-1 0\n");
+ return; }
+
+ vec<Var> map; Var max = 0;
+
+ // Cannot use removeClauses here because it is not safe
+ // to deallocate them at this point. Could be improved.
+ int cnt = 0;
+ for (int i = 0; i < clauses.size(); i++)
+ if (!satisfied(ca[clauses[i]]))
+ cnt++;
+
+ for (int i = 0; i < clauses.size(); i++)
+ if (!satisfied(ca[clauses[i]])){
+ Clause& c = ca[clauses[i]];
+ for (int j = 0; j < c.size(); j++)
+ if (value(c[j]) != l_False)
+ mapVar(var(c[j]), map, max);
+ }
+
+ // Assumptions are added as unit clauses:
+ cnt += assumps.size();
+
+ fprintf(f, "p cnf %d %d\n", max, cnt);
+
+ for (int i = 0; i < assumps.size(); i++){
+ assert(value(assumps[i]) != l_False);
+ fprintf(f, "%s%d 0\n", sign(assumps[i]) ? "-" : "", mapVar(var(assumps[i]), map, max)+1);
+ }
+
+ for (int i = 0; i < clauses.size(); i++)
+ toDimacs(f, ca[clauses[i]], map, max);
+
+ if (verbosity > 0)
+ printf("Wrote DIMACS with %d variables and %d clauses.\n", max, cnt);
+}
+
+
+void Solver::printStats() const
+{
+ double cpu_time = cpuTime();
+ double mem_used = memUsedPeak();
+ printf("restarts : %"PRIu64"\n", starts);
+ printf("conflicts : %-12"PRIu64" (%.0f /sec)\n", conflicts , conflicts /cpu_time);
+ printf("decisions : %-12"PRIu64" (%4.2f %% random) (%.0f /sec)\n", decisions, (float)rnd_decisions*100 / (float)decisions, decisions /cpu_time);
+ printf("propagations : %-12"PRIu64" (%.0f /sec)\n", propagations, propagations/cpu_time);
+ printf("conflict literals : %-12"PRIu64" (%4.2f %% deleted)\n", tot_literals, (max_literals - tot_literals)*100 / (double)max_literals);
+ if (mem_used != 0) printf("Memory used : %.2f MB\n", mem_used);
+ printf("CPU time : %g s\n", cpu_time);
+}
+
+
+//=================================================================================================
+// Garbage Collection methods:
+
+void Solver::relocAll(ClauseAllocator& to)
+{
+ // All watchers:
+ //
+ watches.cleanAll();
+ for (int v = 0; v < nVars(); v++)
+ for (int s = 0; s < 2; s++){
+ Lit p = mkLit(v, s);
+ vec<Watcher>& ws = watches[p];
+ for (int j = 0; j < ws.size(); j++)
+ ca.reloc(ws[j].cref, to);
+ }
+
+ // All reasons:
+ //
+ for (int i = 0; i < trail.size(); i++){
+ Var v = var(trail[i]);
+
+ // Note: it is not safe to call 'locked()' on a relocated clause. This is why we keep
+ // 'dangling' reasons here. It is safe and does not hurt.
+ if (reason(v) != CRef_Undef && (ca[reason(v)].reloced() || locked(ca[reason(v)]))){
+ assert(!isRemoved(reason(v)));
+ ca.reloc(vardata[v].reason, to);
+ }
+ }
+
+ // All learnt:
+ //
+ int i, j;
+ for (i = j = 0; i < learnts.size(); i++)
+ if (!isRemoved(learnts[i])){
+ ca.reloc(learnts[i], to);
+ learnts[j++] = learnts[i];
+ }
+ learnts.shrink(i - j);
+
+ // All original:
+ //
+ for (i = j = 0; i < clauses.size(); i++)
+ if (!isRemoved(clauses[i])){
+ ca.reloc(clauses[i], to);
+ clauses[j++] = clauses[i];
+ }
+ clauses.shrink(i - j);
+}
+
+
+void Solver::garbageCollect()
+{
+ // Initialize the next region to a size corresponding to the estimated utilization degree. This
+ // is not precise but should avoid some unnecessary reallocations for the new region:
+ ClauseAllocator to(ca.size() - ca.wasted());
+
+ relocAll(to);
+ if (verbosity >= 2)
+ printf("| Garbage collection: %12d bytes => %12d bytes |\n",
+ ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size);
+ to.moveTo(ca);
+}
--- /dev/null
+/****************************************************************************************[Solver.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Solver_h
+#define Minisat_Solver_h
+
+#include "libs/minisat/Vec.h"
+#include "libs/minisat/Heap.h"
+#include "libs/minisat/Alg.h"
+#include "libs/minisat/IntMap.h"
+#include "libs/minisat/Options.h"
+#include "libs/minisat/SolverTypes.h"
+
+
+namespace Minisat {
+
+//=================================================================================================
+// Solver -- the main class:
+
+class Solver {
+public:
+
+ // Constructor/Destructor:
+ //
+ Solver();
+ virtual ~Solver();
+
+ // Problem specification:
+ //
+ Var newVar (lbool upol = l_Undef, bool dvar = true); // Add a new variable with parameters specifying variable mode.
+ void releaseVar(Lit l); // Make literal true and promise to never refer to variable again.
+
+ bool addClause (const vec<Lit>& ps); // Add a clause to the solver.
+ bool addEmptyClause(); // Add the empty clause, making the solver contradictory.
+ bool addClause (Lit p); // Add a unit clause to the solver.
+ bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
+ bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
+ bool addClause (Lit p, Lit q, Lit r, Lit s); // Add a quaternary clause to the solver.
+ bool addClause_( vec<Lit>& ps); // Add a clause to the solver without making superflous internal copy. Will
+ // change the passed vector 'ps'.
+
+ // Solving:
+ //
+ bool simplify (); // Removes already satisfied clauses.
+ bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
+ lbool solveLimited (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions (With resource constraints).
+ bool solve (); // Search without assumptions.
+ bool solve (Lit p); // Search for a model that respects a single assumption.
+ bool solve (Lit p, Lit q); // Search for a model that respects two assumptions.
+ bool solve (Lit p, Lit q, Lit r); // Search for a model that respects three assumptions.
+ bool okay () const; // FALSE means solver is in a conflicting state
+
+ bool implies (const vec<Lit>& assumps, vec<Lit>& out);
+
+ // Iterate over clauses and top-level assignments:
+ ClauseIterator clausesBegin() const;
+ ClauseIterator clausesEnd() const;
+ TrailIterator trailBegin() const;
+ TrailIterator trailEnd () const;
+
+ void toDimacs (FILE* f, const vec<Lit>& assumps); // Write CNF to file in DIMACS-format.
+ void toDimacs (const char *file, const vec<Lit>& assumps);
+ void toDimacs (FILE* f, Clause& c, vec<Var>& map, Var& max);
+
+ // Convenience versions of 'toDimacs()':
+ void toDimacs (const char* file);
+ void toDimacs (const char* file, Lit p);
+ void toDimacs (const char* file, Lit p, Lit q);
+ void toDimacs (const char* file, Lit p, Lit q, Lit r);
+
+ // Variable mode:
+ //
+ void setPolarity (Var v, lbool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
+ void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
+
+ // Read state:
+ //
+ lbool value (Var x) const; // The current value of a variable.
+ lbool value (Lit p) const; // The current value of a literal.
+ lbool modelValue (Var x) const; // The value of a variable in the last model. The last call to solve must have been satisfiable.
+ lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
+ int nAssigns () const; // The current number of assigned literals.
+ int nClauses () const; // The current number of original clauses.
+ int nLearnts () const; // The current number of learnt clauses.
+ int nVars () const; // The current number of variables.
+ int nFreeVars () const;
+ void printStats () const; // Print some current statistics to standard output.
+
+ // Resource contraints:
+ //
+ void setConfBudget(int64_t x);
+ void setPropBudget(int64_t x);
+ void budgetOff();
+ void interrupt(); // Trigger a (potentially asynchronous) interruption of the solver.
+ void clearInterrupt(); // Clear interrupt indicator flag.
+
+ // Memory managment:
+ //
+ virtual void garbageCollect();
+ void checkGarbage(double gf);
+ void checkGarbage();
+
+ // Extra results: (read-only member variable)
+ //
+ vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
+ LSet conflict; // If problem is unsatisfiable (possibly under assumptions),
+ // this vector represent the final conflict clause expressed in the assumptions.
+
+ // Mode of operation:
+ //
+ int verbosity;
+ double var_decay;
+ double clause_decay;
+ double random_var_freq;
+ double random_seed;
+ bool luby_restart;
+ int ccmin_mode; // Controls conflict clause minimization (0=none, 1=basic, 2=deep).
+ int phase_saving; // Controls the level of phase saving (0=none, 1=limited, 2=full).
+ bool rnd_pol; // Use random polarities for branching heuristics.
+ bool rnd_init_act; // Initialize variable activities with a small random value.
+ double garbage_frac; // The fraction of wasted memory allowed before a garbage collection is triggered.
+ int min_learnts_lim; // Minimum number to set the learnts limit to.
+
+ int restart_first; // The initial restart limit. (default 100)
+ double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
+ double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
+ double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
+
+ int learntsize_adjust_start_confl;
+ double learntsize_adjust_inc;
+
+ // Statistics: (read-only member variable)
+ //
+ uint64_t solves, starts, decisions, rnd_decisions, propagations, conflicts;
+ uint64_t dec_vars, num_clauses, num_learnts, clauses_literals, learnts_literals, max_literals, tot_literals;
+
+protected:
+
+ // Helper structures:
+ //
+ struct VarData { CRef reason; int level; };
+ static inline VarData mkVarData(CRef cr, int l){ VarData d = {cr, l}; return d; }
+
+ struct Watcher {
+ CRef cref;
+ Lit blocker;
+ Watcher(CRef cr, Lit p) : cref(cr), blocker(p) {}
+ bool operator==(const Watcher& w) const { return cref == w.cref; }
+ bool operator!=(const Watcher& w) const { return cref != w.cref; }
+ };
+
+ struct WatcherDeleted
+ {
+ const ClauseAllocator& ca;
+ WatcherDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
+ bool operator()(const Watcher& w) const { return ca[w.cref].mark() == 1; }
+ };
+
+ struct VarOrderLt {
+ const IntMap<Var, double>& activity;
+ bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
+ VarOrderLt(const IntMap<Var, double>& act) : activity(act) { }
+ };
+
+ struct ShrinkStackElem {
+ uint32_t i;
+ Lit l;
+ ShrinkStackElem(uint32_t _i, Lit _l) : i(_i), l(_l){}
+ };
+
+ // Solver state:
+ //
+ vec<CRef> clauses; // List of problem clauses.
+ vec<CRef> learnts; // List of learnt clauses.
+ vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
+ vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
+ vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
+
+ VMap<double> activity; // A heuristic measurement of the activity of a variable.
+ VMap<lbool> assigns; // The current assignments.
+ VMap<char> polarity; // The preferred polarity of each variable.
+ VMap<lbool> user_pol; // The users preferred polarity of each variable.
+ VMap<char> decision; // Declares if a variable is eligible for selection in the decision heuristic.
+ VMap<VarData> vardata; // Stores reason and level for each variable.
+ OccLists<Lit, vec<Watcher>, WatcherDeleted, MkIndexLit>
+ watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
+
+ Heap<Var,VarOrderLt>order_heap; // A priority queue of variables ordered with respect to the variable activity.
+
+ bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
+ double cla_inc; // Amount to bump next clause with.
+ double var_inc; // Amount to bump next variable with.
+ int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
+ int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
+ int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
+ double progress_estimate;// Set by 'search()'.
+ bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
+ Var next_var; // Next variable to be created.
+ ClauseAllocator ca;
+
+ vec<Var> released_vars;
+ vec<Var> free_vars;
+
+ // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
+ // used, exept 'seen' wich is used in several places.
+ //
+ VMap<char> seen;
+ vec<ShrinkStackElem>analyze_stack;
+ vec<Lit> analyze_toclear;
+ vec<Lit> add_tmp;
+
+ double max_learnts;
+ double learntsize_adjust_confl;
+ int learntsize_adjust_cnt;
+
+ // Resource contraints:
+ //
+ int64_t conflict_budget; // -1 means no budget.
+ int64_t propagation_budget; // -1 means no budget.
+ bool asynch_interrupt;
+
+ // Main internal methods:
+ //
+ void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
+ Lit pickBranchLit (); // Return the next decision variable.
+ void newDecisionLevel (); // Begins a new decision level.
+ void uncheckedEnqueue (Lit p, CRef from = CRef_Undef); // Enqueue a literal. Assumes value of literal is undefined.
+ bool enqueue (Lit p, CRef from = CRef_Undef); // Test if fact 'p' contradicts current state, enqueue otherwise.
+ CRef propagate (); // Perform unit propagation. Returns possibly conflicting clause.
+ void cancelUntil (int level); // Backtrack until a certain level.
+ void analyze (CRef confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
+ void analyzeFinal (Lit p, LSet& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
+ bool litRedundant (Lit p); // (helper method for 'analyze()')
+ lbool search (int nof_conflicts); // Search for a given number of conflicts.
+ lbool solve_ (); // Main solve method (assumptions given in 'assumptions').
+ void reduceDB (); // Reduce the set of learnt clauses.
+ void removeSatisfied (vec<CRef>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
+ void rebuildOrderHeap ();
+
+ // Maintaining Variable/Clause activity:
+ //
+ void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
+ void varBumpActivity (Var v, double inc); // Increase a variable with the current 'bump' value.
+ void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
+ void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
+ void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
+
+ // Operations on clauses:
+ //
+ void attachClause (CRef cr); // Attach a clause to watcher lists.
+ void detachClause (CRef cr, bool strict = false); // Detach a clause to watcher lists.
+ void removeClause (CRef cr); // Detach and free a clause.
+ bool isRemoved (CRef cr) const; // Test if a clause has been removed.
+ bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
+ bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
+
+ // Misc:
+ //
+ int decisionLevel () const; // Gives the current decisionlevel.
+ uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
+ CRef reason (Var x) const;
+ int level (Var x) const;
+ double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
+ bool withinBudget () const;
+ void relocAll (ClauseAllocator& to);
+
+ // Static helpers:
+ //
+
+ // Returns a random float 0 <= x < 1. Seed must never be 0.
+ static inline double drand(double& seed) {
+ seed *= 1389796;
+ int q = (int)(seed / 2147483647);
+ seed -= (double)q * 2147483647;
+ return seed / 2147483647; }
+
+ // Returns a random integer 0 <= x < size. Seed must never be 0.
+ static inline int irand(double& seed, int size) {
+ return (int)(drand(seed) * size); }
+};
+
+
+//=================================================================================================
+// Implementation of inline methods:
+
+inline CRef Solver::reason(Var x) const { return vardata[x].reason; }
+inline int Solver::level (Var x) const { return vardata[x].level; }
+
+inline void Solver::insertVarOrder(Var x) {
+ if (!order_heap.inHeap(x) && decision[x]) order_heap.insert(x); }
+
+inline void Solver::varDecayActivity() { var_inc *= (1 / var_decay); }
+inline void Solver::varBumpActivity(Var v) { varBumpActivity(v, var_inc); }
+inline void Solver::varBumpActivity(Var v, double inc) {
+ if ( (activity[v] += inc) > 1e100 ) {
+ // Rescale:
+ for (int i = 0; i < nVars(); i++)
+ activity[i] *= 1e-100;
+ var_inc *= 1e-100; }
+
+ // Update order_heap with respect to new activity:
+ if (order_heap.inHeap(v))
+ order_heap.decrease(v); }
+
+inline void Solver::claDecayActivity() { cla_inc *= (1 / clause_decay); }
+inline void Solver::claBumpActivity (Clause& c) {
+ if ( (c.activity() += cla_inc) > 1e20 ) {
+ // Rescale:
+ for (int i = 0; i < learnts.size(); i++)
+ ca[learnts[i]].activity() *= 1e-20;
+ cla_inc *= 1e-20; } }
+
+inline void Solver::checkGarbage(void){ return checkGarbage(garbage_frac); }
+inline void Solver::checkGarbage(double gf){
+ if (ca.wasted() > ca.size() * gf)
+ garbageCollect(); }
+
+// NOTE: enqueue does not set the ok flag! (only public methods do)
+inline bool Solver::enqueue (Lit p, CRef from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
+inline bool Solver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
+inline bool Solver::addEmptyClause () { add_tmp.clear(); return addClause_(add_tmp); }
+inline bool Solver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
+inline bool Solver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
+inline bool Solver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
+inline bool Solver::addClause (Lit p, Lit q, Lit r, Lit s){ add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); add_tmp.push(s); return addClause_(add_tmp); }
+
+inline bool Solver::isRemoved (CRef cr) const { return ca[cr].mark() == 1; }
+inline bool Solver::locked (const Clause& c) const { return value(c[0]) == l_True && reason(var(c[0])) != CRef_Undef && ca.lea(reason(var(c[0]))) == &c; }
+inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
+
+inline int Solver::decisionLevel () const { return trail_lim.size(); }
+inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level(x) & 31); }
+inline lbool Solver::value (Var x) const { return assigns[x]; }
+inline lbool Solver::value (Lit p) const { return assigns[var(p)] ^ sign(p); }
+inline lbool Solver::modelValue (Var x) const { return model[x]; }
+inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
+inline int Solver::nAssigns () const { return trail.size(); }
+inline int Solver::nClauses () const { return num_clauses; }
+inline int Solver::nLearnts () const { return num_learnts; }
+inline int Solver::nVars () const { return next_var; }
+// TODO: nFreeVars() is not quite correct, try to calculate right instead of adapting it like below:
+inline int Solver::nFreeVars () const { return (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]); }
+inline void Solver::setPolarity (Var v, lbool b){ user_pol[v] = b; }
+inline void Solver::setDecisionVar(Var v, bool b)
+{
+ if ( b && !decision[v]) dec_vars++;
+ else if (!b && decision[v]) dec_vars--;
+
+ decision[v] = b;
+ insertVarOrder(v);
+}
+inline void Solver::setConfBudget(int64_t x){ conflict_budget = conflicts + x; }
+inline void Solver::setPropBudget(int64_t x){ propagation_budget = propagations + x; }
+inline void Solver::interrupt(){ asynch_interrupt = true; }
+inline void Solver::clearInterrupt(){ asynch_interrupt = false; }
+inline void Solver::budgetOff(){ conflict_budget = propagation_budget = -1; }
+inline bool Solver::withinBudget() const {
+ return !asynch_interrupt &&
+ (conflict_budget < 0 || conflicts < (uint64_t)conflict_budget) &&
+ (propagation_budget < 0 || propagations < (uint64_t)propagation_budget); }
+
+// FIXME: after the introduction of asynchronous interrruptions the solve-versions that return a
+// pure bool do not give a safe interface. Either interrupts must be possible to turn off here, or
+// all calls to solve must return an 'lbool'. I'm not yet sure which I prefer.
+inline bool Solver::solve () { budgetOff(); assumptions.clear(); return solve_() == l_True; }
+inline bool Solver::solve (Lit p) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_() == l_True; }
+inline bool Solver::solve (Lit p, Lit q) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_() == l_True; }
+inline bool Solver::solve (Lit p, Lit q, Lit r) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_() == l_True; }
+inline bool Solver::solve (const vec<Lit>& assumps){ budgetOff(); assumps.copyTo(assumptions); return solve_() == l_True; }
+inline lbool Solver::solveLimited (const vec<Lit>& assumps){ assumps.copyTo(assumptions); return solve_(); }
+inline bool Solver::okay () const { return ok; }
+
+inline ClauseIterator Solver::clausesBegin() const { return ClauseIterator(ca, &clauses[0]); }
+inline ClauseIterator Solver::clausesEnd () const { return ClauseIterator(ca, &clauses[clauses.size()]); }
+inline TrailIterator Solver::trailBegin () const { return TrailIterator(&trail[0]); }
+inline TrailIterator Solver::trailEnd () const {
+ return TrailIterator(&trail[decisionLevel() == 0 ? trail.size() : trail_lim[0]]); }
+
+inline void Solver::toDimacs (const char* file){ vec<Lit> as; toDimacs(file, as); }
+inline void Solver::toDimacs (const char* file, Lit p){ vec<Lit> as; as.push(p); toDimacs(file, as); }
+inline void Solver::toDimacs (const char* file, Lit p, Lit q){ vec<Lit> as; as.push(p); as.push(q); toDimacs(file, as); }
+inline void Solver::toDimacs (const char* file, Lit p, Lit q, Lit r){ vec<Lit> as; as.push(p); as.push(q); as.push(r); toDimacs(file, as); }
+
+
+//=================================================================================================
+// Debug etc:
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/***********************************************************************************[SolverTypes.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+
+#ifndef Minisat_SolverTypes_h
+#define Minisat_SolverTypes_h
+
+#include <assert.h>
+
+#include "libs/minisat/IntTypes.h"
+#include "libs/minisat/Alg.h"
+#include "libs/minisat/Vec.h"
+#include "libs/minisat/IntMap.h"
+#include "libs/minisat/Map.h"
+#include "libs/minisat/Alloc.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// Variables, literals, lifted booleans, clauses:
+
+
+// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
+// so that they can be used as array indices.
+
+typedef int Var;
+#if defined(MINISAT_CONSTANTS_AS_MACROS)
+#define var_Undef (-1)
+#else
+ const Var var_Undef = -1;
+#endif
+
+
+struct Lit {
+ int x;
+
+ // Use this as a constructor:
+ friend Lit mkLit(Var var, bool sign = false);
+
+ bool operator == (Lit p) const { return x == p.x; }
+ bool operator != (Lit p) const { return x != p.x; }
+ bool operator < (Lit p) const { return x < p.x; } // '<' makes p, ~p adjacent in the ordering.
+};
+
+
+inline Lit mkLit (Var var, bool sign) { Lit p; p.x = var + var + (int)sign; return p; }
+inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
+inline Lit operator ^(Lit p, bool b) { Lit q; q.x = p.x ^ (unsigned int)b; return q; }
+inline bool sign (Lit p) { return p.x & 1; }
+inline int var (Lit p) { return p.x >> 1; }
+
+// Mapping Literals to and from compact integers suitable for array indexing:
+inline int toInt (Var v) { return v; }
+inline int toInt (Lit p) { return p.x; }
+inline Lit toLit (int i) { Lit p; p.x = i; return p; }
+
+//const Lit lit_Undef = mkLit(var_Undef, false); // }- Useful special constants.
+//const Lit lit_Error = mkLit(var_Undef, true ); // }
+
+const Lit lit_Undef = { -2 }; // }- Useful special constants.
+const Lit lit_Error = { -1 }; // }
+
+struct MkIndexLit { vec<Lit>::Size operator()(Lit l) const { return vec<Lit>::Size(l.x); } };
+
+template<class T> class VMap : public IntMap<Var, T>{};
+template<class T> class LMap : public IntMap<Lit, T, MkIndexLit>{};
+class LSet : public IntSet<Lit, MkIndexLit>{};
+
+//=================================================================================================
+// Lifted booleans:
+//
+// NOTE: this implementation is optimized for the case when comparisons between values are mostly
+// between one variable and one constant. Some care had to be taken to make sure that gcc
+// does enough constant propagation to produce sensible code, and this appears to be somewhat
+// fragile unfortunately.
+
+class lbool {
+ uint8_t value;
+
+public:
+ explicit lbool(uint8_t v) : value(v) { }
+
+ lbool() : value(0) { }
+ explicit lbool(bool x) : value(!x) { }
+
+ bool operator == (lbool b) const { return ((b.value&2) & (value&2)) | (!(b.value&2)&(value == b.value)); }
+ bool operator != (lbool b) const { return !(*this == b); }
+ lbool operator ^ (bool b) const { return lbool((uint8_t)(value^(uint8_t)b)); }
+
+ lbool operator && (lbool b) const {
+ uint8_t sel = (this->value << 1) | (b.value << 3);
+ uint8_t v = (0xF7F755F4 >> sel) & 3;
+ return lbool(v); }
+
+ lbool operator || (lbool b) const {
+ uint8_t sel = (this->value << 1) | (b.value << 3);
+ uint8_t v = (0xFCFCF400 >> sel) & 3;
+ return lbool(v); }
+
+ friend int toInt (lbool l);
+ friend lbool toLbool(int v);
+};
+inline int toInt (lbool l) { return l.value; }
+inline lbool toLbool(int v) { return lbool((uint8_t)v); }
+
+#if defined(MINISAT_CONSTANTS_AS_MACROS)
+ #define l_True (lbool((uint8_t)0)) // gcc does not do constant propagation if these are real constants.
+ #define l_False (lbool((uint8_t)1))
+ #define l_Undef (lbool((uint8_t)2))
+#else
+ const lbool l_True ((uint8_t)0);
+ const lbool l_False((uint8_t)1);
+ const lbool l_Undef((uint8_t)2);
+#endif
+
+
+//=================================================================================================
+// Clause -- a simple class for representing a clause:
+
+class Clause;
+typedef RegionAllocator<uint32_t>::Ref CRef;
+
+class Clause {
+ struct {
+ unsigned mark : 2;
+ unsigned learnt : 1;
+ unsigned has_extra : 1;
+ unsigned reloced : 1;
+ unsigned size : 27; } header;
+ union { Lit lit; float act; uint32_t abs; CRef rel; } data[0];
+
+ friend class ClauseAllocator;
+
+ // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
+ Clause(const vec<Lit>& ps, bool use_extra, bool learnt) {
+ header.mark = 0;
+ header.learnt = learnt;
+ header.has_extra = use_extra;
+ header.reloced = 0;
+ header.size = ps.size();
+
+ for (int i = 0; i < ps.size(); i++)
+ data[i].lit = ps[i];
+
+ if (header.has_extra){
+ if (header.learnt)
+ data[header.size].act = 0;
+ else
+ calcAbstraction();
+ }
+ }
+
+ // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
+ Clause(const Clause& from, bool use_extra){
+ header = from.header;
+ header.has_extra = use_extra; // NOTE: the copied clause may lose the extra field.
+
+ for (int i = 0; i < from.size(); i++)
+ data[i].lit = from[i];
+
+ if (header.has_extra){
+ if (header.learnt)
+ data[header.size].act = from.data[header.size].act;
+ else
+ data[header.size].abs = from.data[header.size].abs;
+ }
+ }
+
+public:
+ void calcAbstraction() {
+ assert(header.has_extra);
+ uint32_t abstraction = 0;
+ for (int i = 0; i < size(); i++)
+ abstraction |= 1 << (var(data[i].lit) & 31);
+ data[header.size].abs = abstraction; }
+
+
+ int size () const { return header.size; }
+ void shrink (int i) { assert(i <= size()); if (header.has_extra) data[header.size-i] = data[header.size]; header.size -= i; }
+ void pop () { shrink(1); }
+ bool learnt () const { return header.learnt; }
+ bool has_extra () const { return header.has_extra; }
+ uint32_t mark () const { return header.mark; }
+ void mark (uint32_t m) { header.mark = m; }
+ const Lit& last () const { return data[header.size-1].lit; }
+
+ bool reloced () const { return header.reloced; }
+ CRef relocation () const { return data[0].rel; }
+ void relocate (CRef c) { header.reloced = 1; data[0].rel = c; }
+
+ // NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
+ // subsumption operations to behave correctly.
+ Lit& operator [] (int i) { return data[i].lit; }
+ Lit operator [] (int i) const { return data[i].lit; }
+ operator const Lit* (void) const { return (Lit*)data; }
+
+ float& activity () { assert(header.has_extra); return data[header.size].act; }
+ uint32_t abstraction () const { assert(header.has_extra); return data[header.size].abs; }
+
+ Lit subsumes (const Clause& other) const;
+ void strengthen (Lit p);
+};
+
+
+//=================================================================================================
+// ClauseAllocator -- a simple class for allocating memory for clauses:
+
+const CRef CRef_Undef = RegionAllocator<uint32_t>::Ref_Undef;
+class ClauseAllocator
+{
+ RegionAllocator<uint32_t> ra;
+
+ static uint32_t clauseWord32Size(int size, bool has_extra){
+ return (sizeof(Clause) + (sizeof(Lit) * (size + (int)has_extra))) / sizeof(uint32_t); }
+
+ public:
+ enum { Unit_Size = RegionAllocator<uint32_t>::Unit_Size };
+
+ bool extra_clause_field;
+
+ ClauseAllocator(uint32_t start_cap) : ra(start_cap), extra_clause_field(false){}
+ ClauseAllocator() : extra_clause_field(false){}
+
+ void moveTo(ClauseAllocator& to){
+ to.extra_clause_field = extra_clause_field;
+ ra.moveTo(to.ra); }
+
+ CRef alloc(const vec<Lit>& ps, bool learnt = false)
+ {
+ assert(sizeof(Lit) == sizeof(uint32_t));
+ assert(sizeof(float) == sizeof(uint32_t));
+ bool use_extra = learnt | extra_clause_field;
+ CRef cid = ra.alloc(clauseWord32Size(ps.size(), use_extra));
+ new (lea(cid)) Clause(ps, use_extra, learnt);
+
+ return cid;
+ }
+
+ CRef alloc(const Clause& from)
+ {
+ bool use_extra = from.learnt() | extra_clause_field;
+ CRef cid = ra.alloc(clauseWord32Size(from.size(), use_extra));
+ new (lea(cid)) Clause(from, use_extra);
+ return cid; }
+
+ uint32_t size () const { return ra.size(); }
+ uint32_t wasted () const { return ra.wasted(); }
+
+ // Deref, Load Effective Address (LEA), Inverse of LEA (AEL):
+ Clause& operator[](CRef r) { return (Clause&)ra[r]; }
+ const Clause& operator[](CRef r) const { return (Clause&)ra[r]; }
+ Clause* lea (CRef r) { return (Clause*)ra.lea(r); }
+ const Clause* lea (CRef r) const { return (Clause*)ra.lea(r);; }
+ CRef ael (const Clause* t){ return ra.ael((uint32_t*)t); }
+
+ void free(CRef cid)
+ {
+ Clause& c = operator[](cid);
+ ra.free(clauseWord32Size(c.size(), c.has_extra()));
+ }
+
+ void reloc(CRef& cr, ClauseAllocator& to)
+ {
+ Clause& c = operator[](cr);
+
+ if (c.reloced()) { cr = c.relocation(); return; }
+
+ cr = to.alloc(c);
+ c.relocate(cr);
+ }
+};
+
+//=================================================================================================
+// Simple iterator classes (for iterating over clauses and top-level assignments):
+
+class ClauseIterator {
+ const ClauseAllocator& ca;
+ const CRef* crefs;
+public:
+ ClauseIterator(const ClauseAllocator& _ca, const CRef* _crefs) : ca(_ca), crefs(_crefs){}
+
+ void operator++(){ crefs++; }
+ const Clause& operator*() const { return ca[*crefs]; }
+
+ // NOTE: does not compare that references use the same clause-allocator:
+ bool operator==(const ClauseIterator& ci) const { return crefs == ci.crefs; }
+ bool operator!=(const ClauseIterator& ci) const { return crefs != ci.crefs; }
+};
+
+
+class TrailIterator {
+ const Lit* lits;
+public:
+ TrailIterator(const Lit* _lits) : lits(_lits){}
+
+ void operator++() { lits++; }
+ Lit operator*() const { return *lits; }
+
+ bool operator==(const TrailIterator& ti) const { return lits == ti.lits; }
+ bool operator!=(const TrailIterator& ti) const { return lits != ti.lits; }
+};
+
+
+//=================================================================================================
+// OccLists -- a class for maintaining occurence lists with lazy deletion:
+
+template<class K, class Vec, class Deleted, class MkIndex = MkIndexDefault<K> >
+class OccLists
+{
+ IntMap<K, Vec, MkIndex> occs;
+ IntMap<K, char, MkIndex> dirty;
+ vec<K> dirties;
+ Deleted deleted;
+
+ public:
+ OccLists(const Deleted& d, MkIndex _index = MkIndex()) :
+ occs(_index),
+ dirty(_index),
+ deleted(d){}
+
+ void init (const K& idx){ occs.reserve(idx); occs[idx].clear(); dirty.reserve(idx, 0); }
+ Vec& operator[](const K& idx){ return occs[idx]; }
+ Vec& lookup (const K& idx){ if (dirty[idx]) clean(idx); return occs[idx]; }
+
+ void cleanAll ();
+ void clean (const K& idx);
+ void smudge (const K& idx){
+ if (dirty[idx] == 0){
+ dirty[idx] = 1;
+ dirties.push(idx);
+ }
+ }
+
+ void clear(bool free = true){
+ occs .clear(free);
+ dirty .clear(free);
+ dirties.clear(free);
+ }
+};
+
+
+template<class K, class Vec, class Deleted, class MkIndex>
+void OccLists<K,Vec,Deleted,MkIndex>::cleanAll()
+{
+ for (int i = 0; i < dirties.size(); i++)
+ // Dirties may contain duplicates so check here if a variable is already cleaned:
+ if (dirty[dirties[i]])
+ clean(dirties[i]);
+ dirties.clear();
+}
+
+
+template<class K, class Vec, class Deleted, class MkIndex>
+void OccLists<K,Vec,Deleted,MkIndex>::clean(const K& idx)
+{
+ Vec& vec = occs[idx];
+ int i, j;
+ for (i = j = 0; i < vec.size(); i++)
+ if (!deleted(vec[i]))
+ vec[j++] = vec[i];
+ vec.shrink(i - j);
+ dirty[idx] = 0;
+}
+
+
+//=================================================================================================
+// CMap -- a class for mapping clauses to values:
+
+
+template<class T>
+class CMap
+{
+ struct CRefHash {
+ uint32_t operator()(CRef cr) const { return (uint32_t)cr; } };
+
+ typedef Map<CRef, T, CRefHash> HashTable;
+ HashTable map;
+
+ public:
+ // Size-operations:
+ void clear () { map.clear(); }
+ int size () const { return map.elems(); }
+
+
+ // Insert/Remove/Test mapping:
+ void insert (CRef cr, const T& t){ map.insert(cr, t); }
+ void growTo (CRef cr, const T& t){ map.insert(cr, t); } // NOTE: for compatibility
+ void remove (CRef cr) { map.remove(cr); }
+ bool has (CRef cr, T& t) { return map.peek(cr, t); }
+
+ // Vector interface (the clause 'c' must already exist):
+ const T& operator [] (CRef cr) const { return map[cr]; }
+ T& operator [] (CRef cr) { return map[cr]; }
+
+ // Iteration (not transparent at all at the moment):
+ int bucket_count() const { return map.bucket_count(); }
+ const vec<typename HashTable::Pair>& bucket(int i) const { return map.bucket(i); }
+
+ // Move contents to other map:
+ void moveTo(CMap& other){ map.moveTo(other.map); }
+
+ // TMP debug:
+ void debug(){
+ printf(" --- size = %d, bucket_count = %d\n", size(), map.bucket_count()); }
+};
+
+
+/*_________________________________________________________________________________________________
+|
+| subsumes : (other : const Clause&) -> Lit
+|
+| Description:
+| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
+| by subsumption resolution.
+|
+| Result:
+| lit_Error - No subsumption or simplification
+| lit_Undef - Clause subsumes 'other'
+| p - The literal p can be deleted from 'other'
+|________________________________________________________________________________________________@*/
+inline Lit Clause::subsumes(const Clause& other) const
+{
+ //if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
+ //if (other.size() < size() || (!learnt() && !other.learnt() && (extra.abst & ~other.extra.abst) != 0))
+ assert(!header.learnt); assert(!other.header.learnt);
+ assert(header.has_extra); assert(other.header.has_extra);
+ if (other.header.size < header.size || (data[header.size].abs & ~other.data[other.header.size].abs) != 0)
+ return lit_Error;
+
+ Lit ret = lit_Undef;
+ const Lit* c = (const Lit*)(*this);
+ const Lit* d = (const Lit*)other;
+
+ for (unsigned i = 0; i < header.size; i++) {
+ // search for c[i] or ~c[i]
+ for (unsigned j = 0; j < other.header.size; j++)
+ if (c[i] == d[j])
+ goto ok;
+ else if (ret == lit_Undef && c[i] == ~d[j]){
+ ret = c[i];
+ goto ok;
+ }
+
+ // did not find it
+ return lit_Error;
+ ok:;
+ }
+
+ return ret;
+}
+
+inline void Clause::strengthen(Lit p)
+{
+ remove(*this, p);
+ calcAbstraction();
+}
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/******************************************************************************************[Sort.h]
+Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Sort_h
+#define Minisat_Sort_h
+
+#include "libs/minisat/Vec.h"
+
+//=================================================================================================
+// Some sorting algorithms for vec's
+
+
+namespace Minisat {
+
+template<class T>
+struct LessThan_default {
+ bool operator () (T x, T y) { return x < y; }
+};
+
+
+template <class T, class LessThan>
+void selectionSort(T* array, int size, LessThan lt)
+{
+ int i, j, best_i;
+ T tmp;
+
+ for (i = 0; i < size-1; i++){
+ best_i = i;
+ for (j = i+1; j < size; j++){
+ if (lt(array[j], array[best_i]))
+ best_i = j;
+ }
+ tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
+ }
+}
+template <class T> static inline void selectionSort(T* array, int size) {
+ selectionSort(array, size, LessThan_default<T>()); }
+
+template <class T, class LessThan>
+void sort(T* array, int size, LessThan lt)
+{
+ if (size <= 15)
+ selectionSort(array, size, lt);
+
+ else{
+ T pivot = array[size / 2];
+ T tmp;
+ int i = -1;
+ int j = size;
+
+ for(;;){
+ do i++; while(lt(array[i], pivot));
+ do j--; while(lt(pivot, array[j]));
+
+ if (i >= j) break;
+
+ tmp = array[i]; array[i] = array[j]; array[j] = tmp;
+ }
+
+ sort(array , i , lt);
+ sort(&array[i], size-i, lt);
+ }
+}
+template <class T> static inline void sort(T* array, int size) {
+ sort(array, size, LessThan_default<T>()); }
+
+
+//=================================================================================================
+// For 'vec's:
+
+
+template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
+ sort((T*)v, v.size(), lt); }
+template <class T> void sort(vec<T>& v) {
+ sort(v, LessThan_default<T>()); }
+
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+#define __STDC_FORMAT_MACROS
+#define __STDC_LIMIT_MACROS
+/***************************************************************************************[System.cc]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#include <signal.h>
+#include <stdio.h>
+
+#include "libs/minisat/System.h"
+
+#if defined(__linux__)
+
+#include <stdlib.h>
+
+using namespace Minisat;
+
+static inline int memReadStat(int field)
+{
+ char name[256];
+ pid_t pid = getpid();
+ int value;
+
+ sprintf(name, "/proc/%d/statm", pid);
+ FILE* in = fopen(name, "rb");
+ if (in == NULL) return 0;
+
+ for (; field >= 0; field--)
+ if (fscanf(in, "%d", &value) != 1)
+ printf("ERROR! Failed to parse memory statistics from \"/proc\".\n"), exit(1);
+ fclose(in);
+ return value;
+}
+
+
+static inline int memReadPeak(void)
+{
+ char name[256];
+ pid_t pid = getpid();
+
+ sprintf(name, "/proc/%d/status", pid);
+ FILE* in = fopen(name, "rb");
+ if (in == NULL) return 0;
+
+ // Find the correct line, beginning with "VmPeak:":
+ int peak_kb = 0;
+ while (!feof(in) && fscanf(in, "VmPeak: %d kB", &peak_kb) != 1)
+ while (!feof(in) && fgetc(in) != '\n')
+ ;
+ fclose(in);
+
+ return peak_kb;
+}
+
+double Minisat::memUsed() { return (double)memReadStat(0) * (double)getpagesize() / (1024*1024); }
+double Minisat::memUsedPeak(bool strictlyPeak) {
+ double peak = memReadPeak() / (double)1024;
+ return peak == 0 && !strictlyPeak ? memUsed() : peak; }
+
+#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__gnu_hurd__)
+
+double Minisat::memUsed() {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return (double)ru.ru_maxrss / 1024; }
+double Minisat::memUsedPeak() { return memUsed(); }
+
+
+#elif defined(__APPLE__)
+#include <malloc/malloc.h>
+
+double Minisat::memUsed() {
+ malloc_statistics_t t;
+ malloc_zone_statistics(NULL, &t);
+ return (double)t.max_size_in_use / (1024*1024); }
+double Minisat::memUsedPeak() { return memUsed(); }
+
+#else
+double Minisat::memUsed() { return 0; }
+double Minisat::memUsedPeak() { return 0; }
+#endif
+
+
+void Minisat::setX86FPUPrecision()
+{
+#if defined(__linux__) && defined(_FPU_EXTENDED) && defined(_FPU_DOUBLE) && defined(_FPU_GETCW)
+ // Only correct FPU precision on Linux architectures that needs and supports it:
+ fpu_control_t oldcw, newcw;
+ _FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw);
+ printf("WARNING: for repeatability, setting FPU to use double precision\n");
+#endif
+}
+
+
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+void Minisat::limitMemory(uint64_t max_mem_mb)
+{
+// FIXME: OpenBSD does not support RLIMIT_AS. Not sure how well RLIMIT_DATA works instead.
+#if defined(__OpenBSD__)
+#define RLIMIT_AS RLIMIT_DATA
+#endif
+
+ // Set limit on virtual memory:
+ if (max_mem_mb != 0){
+ rlim_t new_mem_lim = (rlim_t)max_mem_mb * 1024*1024;
+ rlimit rl;
+ getrlimit(RLIMIT_AS, &rl);
+ if (rl.rlim_max == RLIM_INFINITY || new_mem_lim < rl.rlim_max){
+ rl.rlim_cur = new_mem_lim;
+ if (setrlimit(RLIMIT_AS, &rl) == -1)
+ printf("WARNING! Could not set resource limit: Virtual memory.\n");
+ }
+ }
+
+#if defined(__OpenBSD__)
+#undef RLIMIT_AS
+#endif
+}
+#else
+void Minisat::limitMemory(uint64_t /*max_mem_mb*/)
+{
+ printf("WARNING! Memory limit not supported on this architecture.\n");
+}
+#endif
+
+
+#if !defined(_MSC_VER) && !defined(__MINGW32__)
+void Minisat::limitTime(uint32_t max_cpu_time)
+{
+ if (max_cpu_time != 0){
+ rlimit rl;
+ getrlimit(RLIMIT_CPU, &rl);
+ if (rl.rlim_max == RLIM_INFINITY || (rlim_t)max_cpu_time < rl.rlim_max){
+ rl.rlim_cur = max_cpu_time;
+ if (setrlimit(RLIMIT_CPU, &rl) == -1)
+ printf("WARNING! Could not set resource limit: CPU-time.\n");
+ }
+ }
+}
+#else
+void Minisat::limitTime(uint32_t /*max_cpu_time*/)
+{
+ printf("WARNING! CPU-time limit not supported on this architecture.\n");
+}
+#endif
+
+
+void Minisat::sigTerm(void handler(int))
+{
+ signal(SIGINT, handler);
+ signal(SIGTERM,handler);
+#ifdef SIGXCPU
+ signal(SIGXCPU,handler);
+#endif
+}
--- /dev/null
+/****************************************************************************************[System.h]
+Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_System_h
+#define Minisat_System_h
+
+#if defined(__linux__)
+#include <fpu_control.h>
+#endif
+
+#include "libs/minisat/IntTypes.h"
+
+//-------------------------------------------------------------------------------------------------
+
+namespace Minisat {
+
+static inline double cpuTime(void); // CPU-time in seconds.
+
+extern double memUsed(); // Memory in mega bytes (returns 0 for unsupported architectures).
+extern double memUsedPeak(bool strictlyPeak = false); // Peak-memory in mega bytes (returns 0 for unsupported architectures).
+
+extern void setX86FPUPrecision(); // Make sure double's are represented with the same precision
+ // in memory and registers.
+
+extern void limitMemory(uint64_t max_mem_mb); // Set a limit on total memory usage. The exact
+ // semantics varies depending on architecture.
+
+extern void limitTime(uint32_t max_cpu_time); // Set a limit on maximum CPU time. The exact
+ // semantics varies depending on architecture.
+
+extern void sigTerm(void handler(int)); // Set up handling of available termination signals.
+
+}
+
+//-------------------------------------------------------------------------------------------------
+// Implementation of inline functions:
+
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#include <time.h>
+
+static inline double Minisat::cpuTime(void) { return (double)clock() / CLOCKS_PER_SEC; }
+
+#else
+#include <sys/time.h>
+#include <sys/resource.h>
+#include <unistd.h>
+
+static inline double Minisat::cpuTime(void) {
+ struct rusage ru;
+ getrusage(RUSAGE_SELF, &ru);
+ return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
+
+#endif
+
+#endif
--- /dev/null
+#!/bin/bash
+
+rm -fv LICENSE *.cc *.h
+git clone --depth 1 https://github.com/niklasso/minisat minisat_upstream
+rm minisat_upstream/minisat/*/Main.cc
+mv minisat_upstream/LICENSE minisat_upstream/minisat/*/*.{h,cc} .
+rm -rf minisat_upstream
+
+sed -i -e 's,^#include *"minisat/[^/]\+,#include "libs/minisat,' *.cc *.h
+sed -i -e 's/PRIi64/ & /' Options.h
+sed -i -e '1 i #define __STDC_LIMIT_MACROS' *.cc
+sed -i -e '1 i #define __STDC_FORMAT_MACROS' *.cc
--- /dev/null
+/*******************************************************************************************[Vec.h]
+Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson
+Copyright (c) 2007-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+#ifndef Minisat_Vec_h
+#define Minisat_Vec_h
+
+#include <assert.h>
+#include <limits>
+#include <new>
+
+#include "libs/minisat/IntTypes.h"
+#include "libs/minisat/XAlloc.h"
+
+namespace Minisat {
+
+//=================================================================================================
+// Automatically resizable arrays
+//
+// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
+
+template<class T, class _Size = int>
+class vec {
+public:
+ typedef _Size Size;
+private:
+ T* data;
+ Size sz;
+ Size cap;
+
+ // Don't allow copying (error prone):
+ vec<T>& operator=(vec<T>& other);
+ vec (vec<T>& other);
+
+ static inline Size max(Size x, Size y){ return (x > y) ? x : y; }
+
+public:
+ // Constructors:
+ vec() : data(NULL), sz(0), cap(0) { }
+ explicit vec(Size size) : data(NULL), sz(0), cap(0) { growTo(size); }
+ vec(Size size, const T& pad) : data(NULL), sz(0), cap(0) { growTo(size, pad); }
+ ~vec() { clear(true); }
+
+ // Pointer to first element:
+ operator T* (void) { return data; }
+
+ // Size operations:
+ Size size (void) const { return sz; }
+ void shrink (Size nelems) { assert(nelems <= sz); for (Size i = 0; i < nelems; i++) sz--, data[sz].~T(); }
+ void shrink_ (Size nelems) { assert(nelems <= sz); sz -= nelems; }
+ int capacity (void) const { return cap; }
+ void capacity (Size min_cap);
+ void growTo (Size size);
+ void growTo (Size size, const T& pad);
+ void clear (bool dealloc = false);
+
+ // Stack interface:
+ void push (void) { if (sz == cap) capacity(sz+1); new (&data[sz]) T(); sz++; }
+ //void push (const T& elem) { if (sz == cap) capacity(sz+1); data[sz++] = elem; }
+ void push (const T& elem) { if (sz == cap) capacity(sz+1); new (&data[sz++]) T(elem); }
+ void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
+ void pop (void) { assert(sz > 0); sz--, data[sz].~T(); }
+ // NOTE: it seems possible that overflow can happen in the 'sz+1' expression of 'push()', but
+ // in fact it can not since it requires that 'cap' is equal to INT_MAX. This in turn can not
+ // happen given the way capacities are calculated (below). Essentially, all capacities are
+ // even, but INT_MAX is odd.
+
+ const T& last (void) const { return data[sz-1]; }
+ T& last (void) { return data[sz-1]; }
+
+ // Vector interface:
+ const T& operator [] (Size index) const { return data[index]; }
+ T& operator [] (Size index) { return data[index]; }
+
+ // Duplicatation (preferred instead):
+ void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (Size i = 0; i < sz; i++) copy[i] = data[i]; }
+ void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
+};
+
+
+template<class T, class _Size>
+void vec<T,_Size>::capacity(Size min_cap) {
+ if (cap >= min_cap) return;
+ Size add = max((min_cap - cap + 1) & ~1, ((cap >> 1) + 2) & ~1); // NOTE: grow by approximately 3/2
+ const Size size_max = std::numeric_limits<Size>::max();
+ if ( ((size_max <= std::numeric_limits<int>::max()) && (add > size_max - cap))
+ || (((data = (T*)::realloc(data, (cap += add) * sizeof(T))) == NULL) && errno == ENOMEM) )
+ throw OutOfMemoryException();
+ }
+
+
+template<class T, class _Size>
+void vec<T,_Size>::growTo(Size size, const T& pad) {
+ if (sz >= size) return;
+ capacity(size);
+ for (Size i = sz; i < size; i++) data[i] = pad;
+ sz = size; }
+
+
+template<class T, class _Size>
+void vec<T,_Size>::growTo(Size size) {
+ if (sz >= size) return;
+ capacity(size);
+ for (Size i = sz; i < size; i++) new (&data[i]) T();
+ sz = size; }
+
+
+template<class T, class _Size>
+void vec<T,_Size>::clear(bool dealloc) {
+ if (data != NULL){
+ for (Size i = 0; i < sz; i++) data[i].~T();
+ sz = 0;
+ if (dealloc) free(data), data = NULL, cap = 0; } }
+
+//=================================================================================================
+}
+
+#endif
--- /dev/null
+/****************************************************************************************[XAlloc.h]
+Copyright (c) 2009-2010, Niklas Sorensson
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+associated documentation files (the "Software"), to deal in the Software without restriction,
+including without limitation the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all copies or
+substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
+OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+**************************************************************************************************/
+
+
+#ifndef Minisat_XAlloc_h
+#define Minisat_XAlloc_h
+
+#include <errno.h>
+#include <stdlib.h>
+
+namespace Minisat {
+
+//=================================================================================================
+// Simple layer on top of malloc/realloc to catch out-of-memory situtaions and provide some typing:
+
+class OutOfMemoryException{};
+static inline void* xrealloc(void *ptr, size_t size)
+{
+ void* mem = realloc(ptr, size);
+ if (mem == NULL && errno == ENOMEM){
+ throw OutOfMemoryException();
+ }else
+ return mem;
+}
+
+//=================================================================================================
+}
+
+#endif