pool<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
pool<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
- typedef std::pair<SigSpec, IdString> clkdomain_t;
+ typedef SigSpec clkdomain_t;
std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells;
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
unassigned_cells.erase(cell);
expand_queue_up.insert(cell);
- clkdomain_t key(abc9_clock, cell->type);
+ clkdomain_t key(abc9_clock);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
- log(" %d cells in clk=%s cell=%s\n", GetSize(it.second), log_signal(it.first.first), log_id(it.first.second));
+ log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
design->selection_stack.emplace_back(false);
design->selected_active_module = module->name.str();
for (auto &it : assigned_cells) {
std::string target = delay_target;
if (target.empty()) {
- for (auto b : assign_map(it.first.first))
+ for (auto b : assign_map(it.first))
if (b.wire) {
auto jt = b.wire->attributes.find("\\abc9_period");
if (jt != b.wire->attributes.end()) {
target = stringf("-D %d", jt->second.as_int());
- log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first.first));
+ log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first));
break;
}
}
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC1 below
);
+ // Since this is an async flop, async behaviour is dealt with here
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC0 below
);
+ // Since this is an async flop, async behaviour is dealt with here
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
end endgenerate
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
- // Since this is an async flop, async behaviour is also dealt with
- // using the $_ABC9_ASYNC box by abc9_map.v
- \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC1 below
);
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
end
else begin
assign Q = QQ;
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC0 below
);
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
end endgenerate
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
- \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR), .Y(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC0 below
);
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end
else begin
assign Q = QQ;
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC1 below
);
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
end endgenerate
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
- \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC0 below
);
+ \$__ABC9_ASYNC0 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
end
else begin
assign Q = QQ;
// control is not directly
// supported by abc9 but its
// behaviour is captured by
- // $__ABC9_ASYNC below
+ // $__ABC9_ASYNC1 below
);
+ \$__ABC9_ASYNC1 abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
end endgenerate
\$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
- \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE), .Y(QQ));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
module \$__ABC9_FF_ (input D, output Q);
endmodule
+// Box to emulate async behaviour of FDC*
(* abc_box_id = 1000 *)
-module \$__ABC9_ASYNC (input A, S, output Y);
+module \$__ABC9_ASYNC0 (input A, S, output Y);
+ assign Y = S ? 1'b0 : A;
endmodule
-// Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
+// Box to emulate async behaviour of FDP*
+(* abc_box_id = 1001 *)
+module \$__ABC9_ASYNC1 (input A, S, output Y);
+ assign Y = S ? 1'b0 : A;
+endmodule
+
+// Box to emulate comb/seq behaviour of RAM{32,64} and SRL{16,32}
// Necessary since RAMD* and SRL* have both combinatorial (i.e.
// same-cycle read operation) and sequential (write operation
// is only committed on the next clock edge).
(* abc9_box_id=2000 *)
module \$__ABC9_LUT6 (input A, input [5:0] S, output Y);
endmodule
-// Box to emulate comb/seq behaviour of RAMD128
+// Box to emulate comb/seq behaviour of RAM128
(* abc9_box_id=2001 *)
module \$__ABC9_LUT7 (input A, input [6:0] S, output Y);
endmodule
// ============================================================================
-module \$__ABC9_ASYNC (input A, S, output Y);
+(* techmap_celltype = "$__ABC9_ASYNC0 $__ABC9_ASYNC1" *)
+module \$__ABC9_ASYNC01 (input A, S, output Y);
assign Y = A;
endmodule
592 540 520 356 - 512 548 292 - 228
580 526 507 398 385 508 528 378 380 114
-# Box to emulate async behaviour of FD[CP]*
+# Box to emulate async behaviour of FDC*
# Inputs: A S
# Outputs: Y
-$__ABC9_ASYNC 1000 0 2 1
+$__ABC9_ASYNC0 1000 1 2 1
+0 764
+
+# Box to emulate async behaviour of FDP*
+# Inputs: A S
+# Outputs: Y
+$__ABC9_ASYNC1 1001 1 2 1
0 764
# The following FD*.{CE,R,CLR,PRE) are offset by 46ps to
# Inputs: C CE D R \$currQ
# Outputs: Q
-FDRE 1001 1 5 1
+FDRE 1100 1 5 1
0 151 0 446 0
# Inputs: C CE D R \$currQ
# Outputs: Q
-FDRE_1 1002 1 5 1
+FDRE_1 1101 1 5 1
0 151 0 446 0
# Inputs: C CE CLR D \$currQ
# Outputs: Q
-FDCE 1003 1 5 1
+FDCE 1102 1 5 1
0 151 806 0 0
# Inputs: C CE CLR D \$currQ
# Outputs: Q
-FDCE_1 1004 1 5 1
+FDCE_1 1103 1 5 1
0 151 806 0 0
# Inputs: C CE D PRE \$currQ
# Outputs: Q
-FDPE 1005 1 5 1
+FDPE 1104 1 5 1
0 151 0 806 0
# Inputs: C CE D PRE \$currQ
# Outputs: Q
-FDPE_1 1006 1 5 1
+FDPE_1 1105 1 5 1
0 151 0 806 0
# Inputs: C CE D S \$currQ
# Outputs: Q
-FDSE 1007 1 5 1
+FDSE 1106 1 5 1
0 151 0 446 0
# Inputs: C CE D S \$currQ
# Outputs: Q
-FDSE_1 1008 1 5 1
+FDSE_1 1107 1 5 1
0 151 0 446 0
# SLICEM/A6LUT
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
-(* abc9_box_id=1001, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1100, lib_whitebox, abc9_flop *)
module FDRE (
(* abc9_arrival=303 *)
output reg Q,
endcase endgenerate
endmodule
-(* abc9_box_id=1002, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1101, lib_whitebox, abc9_flop *)
module FDRE_1 (
(* abc9_arrival=303 *)
output reg Q,
Q <= d;
endmodule
-(* abc9_box_id=1003, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1102, lib_whitebox, abc9_flop *)
module FDCE (
(* abc9_arrival=303 *)
output reg Q,
endcase endgenerate
endmodule
-(* abc9_box_id=1004, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1103, lib_whitebox, abc9_flop *)
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
-(* abc9_box_id=1005, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1104, lib_whitebox, abc9_flop *)
module FDPE (
(* abc9_arrival=303 *)
output reg Q,
endcase endgenerate
endmodule
-(* abc9_box_id=1006, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1105, lib_whitebox, abc9_flop *)
module FDPE_1 (
(* abc9_arrival=303 *)
output reg Q,
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
-(* abc9_box_id=1007, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1106, lib_whitebox, abc9_flop *)
module FDSE (
(* abc9_arrival=303 *)
output reg Q,
endcase endgenerate
endmodule
-(* abc9_box_id=1008, lib_whitebox, abc9_flop *)
+(* abc9_box_id=1107, lib_whitebox, abc9_flop *)
module FDSE_1 (
(* abc9_arrival=303 *)
output reg Q,