* Andreas Hansson
*/
-#include <sys/mman.h>
-#include <sys/types.h>
-#include <sys/user.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <zlib.h>
-
-#include <cerrno>
-#include <cstdio>
-#include <climits>
-#include <iostream>
-#include <string>
-
#include "arch/registers.hh"
#include "config/the_isa.hh"
#include "debug/LLSC.hh"
{
if (size() % TheISA::PageBytes != 0)
panic("Memory Size not divisible by page size\n");
-
- if (params()->null)
- return;
-
- int map_flags = MAP_ANON | MAP_PRIVATE;
- pmemAddr = (uint8_t *)mmap(NULL, size(),
- PROT_READ | PROT_WRITE, map_flags, -1, 0);
-
- if (pmemAddr == (void *)MAP_FAILED) {
- perror("mmap");
- fatal("Could not mmap!\n");
- }
-
- //If requested, initialize all the memory to 0
- if (p->zero)
- memset(pmemAddr, 0, size());
}
-
-AbstractMemory::~AbstractMemory()
+void
+AbstractMemory::setBackingStore(uint8_t* pmem_addr)
{
- if (pmemAddr)
- munmap((char*)pmemAddr, size());
+ pmemAddr = pmem_addr;
}
void
pkt->cmdString());
}
}
-
-void
-AbstractMemory::serialize(ostream &os)
-{
- if (!pmemAddr)
- return;
-
- gzFile compressedMem;
- string filename = name() + ".physmem";
- long _size = range.size();
-
- SERIALIZE_SCALAR(filename);
- SERIALIZE_SCALAR(_size);
-
- // write memory file
- string thefile = Checkpoint::dir() + "/" + filename.c_str();
- int fd = creat(thefile.c_str(), 0664);
- if (fd < 0) {
- perror("creat");
- fatal("Can't open physical memory checkpoint file '%s'\n", filename);
- }
-
- compressedMem = gzdopen(fd, "wb");
- if (compressedMem == NULL)
- fatal("Insufficient memory to allocate compression state for %s\n",
- filename);
-
- uint64_t pass_size = 0;
- // gzwrite fails if (int)len < 0 (gzwrite returns int)
- for (uint64_t written = 0; written < size(); written += pass_size) {
- pass_size = (uint64_t)INT_MAX < (size() - written) ?
- (uint64_t)INT_MAX : (size() - written);
-
- if (gzwrite(compressedMem, pmemAddr + written,
- (unsigned int) pass_size) != (int)pass_size) {
- fatal("Write failed on physical memory checkpoint file '%s'\n",
- filename);
- }
- }
-
- if (gzclose(compressedMem))
- fatal("Close failed on physical memory checkpoint file '%s'\n",
- filename);
-
- list<LockedAddr>::iterator i = lockedAddrList.begin();
-
- vector<Addr> lal_addr;
- vector<int> lal_cid;
- while (i != lockedAddrList.end()) {
- lal_addr.push_back(i->addr);
- lal_cid.push_back(i->contextId);
- i++;
- }
- arrayParamOut(os, "lal_addr", lal_addr);
- arrayParamOut(os, "lal_cid", lal_cid);
-}
-
-void
-AbstractMemory::unserialize(Checkpoint *cp, const string §ion)
-{
- if (!pmemAddr)
- return;
-
- gzFile compressedMem;
- long *tempPage;
- long *pmem_current;
- uint64_t curSize;
- uint32_t bytesRead;
- const uint32_t chunkSize = 16384;
-
- string filename;
-
- UNSERIALIZE_SCALAR(filename);
-
- filename = cp->cptDir + "/" + filename;
-
- // mmap memoryfile
- int fd = open(filename.c_str(), O_RDONLY);
- if (fd < 0) {
- perror("open");
- fatal("Can't open physical memory checkpoint file '%s'", filename);
- }
-
- compressedMem = gzdopen(fd, "rb");
- if (compressedMem == NULL)
- fatal("Insufficient memory to allocate compression state for %s\n",
- filename);
-
- // unmap file that was mmapped in the constructor
- // This is done here to make sure that gzip and open don't muck with our
- // nice large space of memory before we reallocate it
- munmap((char*)pmemAddr, size());
-
- long _size;
- UNSERIALIZE_SCALAR(_size);
- if (_size > params()->range.size())
- fatal("Memory size has changed! size %lld, param size %lld\n",
- _size, params()->range.size());
-
- pmemAddr = (uint8_t *)mmap(NULL, size(),
- PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
-
- if (pmemAddr == (void *)MAP_FAILED) {
- perror("mmap");
- fatal("Could not mmap physical memory!\n");
- }
-
- curSize = 0;
- tempPage = (long*)malloc(chunkSize);
- if (tempPage == NULL)
- fatal("Unable to malloc memory to read file %s\n", filename);
-
- /* Only copy bytes that are non-zero, so we don't give the VM system hell */
- while (curSize < size()) {
- bytesRead = gzread(compressedMem, tempPage, chunkSize);
- if (bytesRead == 0)
- break;
-
- assert(bytesRead % sizeof(long) == 0);
-
- for (uint32_t x = 0; x < bytesRead / sizeof(long); x++)
- {
- if (*(tempPage+x) != 0) {
- pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
- *pmem_current = *(tempPage+x);
- }
- }
- curSize += bytesRead;
- }
-
- free(tempPage);
-
- if (gzclose(compressedMem))
- fatal("Close failed on physical memory checkpoint file '%s'\n",
- filename);
-
- vector<Addr> lal_addr;
- vector<int> lal_cid;
- arrayParamIn(cp, section, "lal_addr", lal_addr);
- arrayParamIn(cp, section, "lal_cid", lal_cid);
- for(int i = 0; i < lal_addr.size(); i++)
- lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i]));
-}
class System;
+/**
+ * Locked address class that represents a physical address and a
+ * context id.
+ */
+class LockedAddr {
+
+ private:
+
+ // on alpha, minimum LL/SC granularity is 16 bytes, so lower
+ // bits need to masked off.
+ static const Addr Addr_Mask = 0xf;
+
+ public:
+
+ // locked address
+ Addr addr;
+
+ // locking hw context
+ const int contextId;
+
+ static Addr mask(Addr paddr) { return (paddr & ~Addr_Mask); }
+
+ // check for matching execution context
+ bool matchesContext(Request *req) const
+ {
+ return (contextId == req->contextId());
+ }
+
+ LockedAddr(Request *req) : addr(mask(req->getPaddr())),
+ contextId(req->contextId())
+ {}
+
+ // constructor for unserialization use
+ LockedAddr(Addr _addr, int _cid) : addr(_addr), contextId(_cid)
+ {}
+};
+
/**
* An abstract memory represents a contiguous block of physical
* memory, with an associated address range, and also provides basic
// Should the memory appear in the global address map
bool inAddrMap;
- class LockedAddr {
-
- public:
- // on alpha, minimum LL/SC granularity is 16 bytes, so lower
- // bits need to masked off.
- static const Addr Addr_Mask = 0xf;
-
- static Addr mask(Addr paddr) { return (paddr & ~Addr_Mask); }
-
- Addr addr; // locked address
- int contextId; // locking hw context
-
- // check for matching execution context
- bool matchesContext(Request *req)
- {
- return (contextId == req->contextId());
- }
-
- LockedAddr(Request *req) : addr(mask(req->getPaddr())),
- contextId(req->contextId())
- {
- }
- // constructor for unserialization use
- LockedAddr(Addr _addr, int _cid) : addr(_addr), contextId(_cid)
- {
- }
- };
-
std::list<LockedAddr> lockedAddrList;
// helper function for checkLockedAddrs(): we really want to
typedef AbstractMemoryParams Params;
AbstractMemory(const Params* p);
- virtual ~AbstractMemory();
+ virtual ~AbstractMemory() {}
+
+ /**
+ * See if this is a null memory that should never store data and
+ * always return zero.
+ *
+ * @return true if null
+ */
+ bool isNull() const { return params()->null; }
+
+ /**
+ * See if this memory should be initialized to zero or not.
+ *
+ * @return true if zero
+ */
+ bool initToZero() const { return params()->zero; }
+
+ /**
+ * Set the host memory backing store to be used by this memory
+ * controller.
+ *
+ * @param pmem_addr Pointer to a segment of host memory
+ */
+ void setBackingStore(uint8_t* pmem_addr);
+
+ /**
+ * Get the list of locked addresses to allow checkpointing.
+ */
+ const std::list<LockedAddr>& getLockedAddrList() const
+ { return lockedAddrList; }
+
+ /**
+ * Add a locked address to allow for checkpointing.
+ */
+ void addLockedAddr(LockedAddr addr) { lockedAddrList.push_back(addr); }
/** read the system pointer
* Implemented for completeness with the setter
*/
virtual void regStats();
- virtual void serialize(std::ostream &os);
- virtual void unserialize(Checkpoint *cp, const std::string §ion);
-
};
#endif //__ABSTRACT_MEMORY_HH__
* Authors: Andreas Hansson
*/
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/user.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <zlib.h>
+
+#include <cerrno>
+#include <climits>
+#include <cstdio>
+#include <iostream>
+#include <string>
+
#include "debug/BusAddrRanges.hh"
+#include "debug/Checkpoint.hh"
+#include "mem/abstract_mem.hh"
#include "mem/physical.hh"
using namespace std;
-PhysicalMemory::PhysicalMemory(const vector<AbstractMemory*>& _memories) :
- size(0)
+PhysicalMemory::PhysicalMemory(const string& _name,
+ const vector<AbstractMemory*>& _memories) :
+ _name(_name), size(0)
{
+ // add the memories from the system to the address map as
+ // appropriate
for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
m != _memories.end(); ++m) {
// only add the memory if it is part of the global address map
if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
fatal("Memory address range for %s is overlapping\n",
(*m)->name());
+ } else {
+ DPRINTF(BusAddrRanges,
+ "Skipping memory %s that is not in global address map\n",
+ (*m)->name());
+ // this type of memory is used e.g. as reference memory by
+ // Ruby, and they also needs a backing store, but should
+ // not be part of the global address map
+
+ // simply do it independently, also note that this kind of
+ // memories are allowed to overlap in the logic address
+ // map
+ vector<AbstractMemory*> unmapped_mems;
+ unmapped_mems.push_back(*m);
+ createBackingStore((*m)->getAddrRange(), unmapped_mems);
}
- DPRINTF(BusAddrRanges,
- "Skipping memory %s that is not in global address map\n",
+ }
+
+ // iterate over the increasing addresses and create as large
+ // chunks as possible of contigous space to be mapped to backing
+ // store, also remember what memories constitute the range so we
+ // can go and find out if we have to init their parts to zero
+ AddrRange curr_range;
+ vector<AbstractMemory*> curr_memories;
+ for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
+ r != addrMap.end(); ++r) {
+ // simply skip past all memories that are null and hence do
+ // not need any backing store
+ if (!r->second->isNull()) {
+ // if the current range is valid, decide if we split or
+ // not
+ if (curr_range.valid()) {
+ // if the ranges are neighbours, then append, this
+ // will eventually be extended to include support for
+ // address striping and merge the interleaved ranges
+ if (curr_range.end + 1 == r->first.start) {
+ DPRINTF(BusAddrRanges,
+ "Merging neighbouring ranges %x:%x and %x:%x\n",
+ curr_range.start, curr_range.end, r->first.start,
+ r->first.end);
+ // update the end of the range and add the current
+ // memory to the list of memories
+ curr_range.end = r->first.end;
+ curr_memories.push_back(r->second);
+ } else {
+ // what we already have is valid, and this is not
+ // contigious, so create the backing store and
+ // then start over
+ createBackingStore(curr_range, curr_memories);
+
+ // remember the current range and reset the current
+ // set of memories to contain this one
+ curr_range = r->first;
+ curr_memories.clear();
+ curr_memories.push_back(r->second);
+ }
+ } else {
+ // we haven't seen any valid ranges yet, so remember
+ // the current range and reset the current set of
+ // memories to contain this one
+ curr_range = r->first;
+ curr_memories.clear();
+ curr_memories.push_back(r->second);
+ }
+ }
+ }
+
+ // if we have a valid range upon finishing the iteration, then
+ // create the backing store
+ if (curr_range.valid())
+ createBackingStore(curr_range, curr_memories);
+}
+
+void
+PhysicalMemory::createBackingStore(AddrRange range,
+ const vector<AbstractMemory*>& _memories)
+{
+ // perform the actual mmap
+ DPRINTF(BusAddrRanges, "Creating backing store for range %x:%x\n",
+ range.start, range.end);
+ int map_flags = MAP_ANON | MAP_PRIVATE;
+ uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
+ PROT_READ | PROT_WRITE,
+ map_flags, -1, 0);
+
+ if (pmem == (uint8_t*) MAP_FAILED) {
+ perror("mmap");
+ fatal("Could not mmap %d bytes for range %x:%x!\n", range.size(),
+ range.start, range.end);
+ }
+
+ // remember this backing store so we can checkpoint it and unmap
+ // it appropriately
+ backingStore.push_back(make_pair(range, pmem));
+
+ // point the memories to their backing store, and if requested,
+ // initialize the memory range to 0
+ for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
+ m != _memories.end(); ++m) {
+ DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
(*m)->name());
+ (*m)->setBackingStore(pmem);
+
+ // if it should be zero, then go and make it so
+ if ((*m)->initToZero())
+ memset(pmem, 0, (*m)->size());
+
+ // advance the pointer for the next memory in line
+ pmem += (*m)->size();
}
}
+PhysicalMemory::~PhysicalMemory()
+{
+ // unmap the backing store
+ for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
+ s != backingStore.end(); ++s)
+ munmap((char*)s->second, s->first.size());
+}
+
bool
PhysicalMemory::isMemAddr(Addr addr) const
{
assert(m != addrMap.end());
m->second->functionalAccess(pkt);
}
+
+void
+PhysicalMemory::serialize(ostream& os)
+{
+ // serialize all the locked addresses and their context ids
+ vector<Addr> lal_addr;
+ vector<int> lal_cid;
+
+ for (vector<AbstractMemory*>::iterator m = memories.begin();
+ m != memories.end(); ++m) {
+ const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
+ for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
+ l != locked_addrs.end(); ++l) {
+ lal_addr.push_back(l->addr);
+ lal_cid.push_back(l->contextId);
+ }
+ }
+
+ arrayParamOut(os, "lal_addr", lal_addr);
+ arrayParamOut(os, "lal_cid", lal_cid);
+
+ // serialize the backing stores
+ unsigned int nbr_of_stores = backingStore.size();
+ SERIALIZE_SCALAR(nbr_of_stores);
+
+ unsigned int store_id = 0;
+ // store each backing store memory segment in a file
+ for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
+ s != backingStore.end(); ++s) {
+ nameOut(os, csprintf("%s.store%d", name(), store_id));
+ serializeStore(os, store_id++, s->first, s->second);
+ }
+}
+
+void
+PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
+ AddrRange range, uint8_t* pmem)
+{
+ // we cannot use the address range for the name as the
+ // memories that are not part of the address map can overlap
+ string filename = "store" + to_string(store_id) + ".pmem";
+ long range_size = range.size();
+
+ DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
+ filename, range_size);
+
+ SERIALIZE_SCALAR(store_id);
+ SERIALIZE_SCALAR(filename);
+ SERIALIZE_SCALAR(range_size);
+
+ // write memory file
+ string filepath = Checkpoint::dir() + "/" + filename.c_str();
+ int fd = creat(filepath.c_str(), 0664);
+ if (fd < 0) {
+ perror("creat");
+ fatal("Can't open physical memory checkpoint file '%s'\n",
+ filename);
+ }
+
+ gzFile compressed_mem = gzdopen(fd, "wb");
+ if (compressed_mem == NULL)
+ fatal("Insufficient memory to allocate compression state for %s\n",
+ filename);
+
+ uint64_t pass_size = 0;
+
+ // gzwrite fails if (int)len < 0 (gzwrite returns int)
+ for (uint64_t written = 0; written < range.size();
+ written += pass_size) {
+ pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
+ (uint64_t)INT_MAX : (range.size() - written);
+
+ if (gzwrite(compressed_mem, pmem + written,
+ (unsigned int) pass_size) != (int) pass_size) {
+ fatal("Write failed on physical memory checkpoint file '%s'\n",
+ filename);
+ }
+ }
+
+ // close the compressed stream and check that the exit status
+ // is zero
+ if (gzclose(compressed_mem))
+ fatal("Close failed on physical memory checkpoint file '%s'\n",
+ filename);
+
+}
+
+void
+PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
+{
+ // unserialize the locked addresses and map them to the
+ // appropriate memory controller
+ vector<Addr> lal_addr;
+ vector<int> lal_cid;
+ arrayParamIn(cp, section, "lal_addr", lal_addr);
+ arrayParamIn(cp, section, "lal_cid", lal_cid);
+ for(size_t i = 0; i < lal_addr.size(); ++i) {
+ AddrRangeMap<AbstractMemory*>::iterator m = addrMap.find(lal_addr[i]);
+ m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
+ }
+
+ // unserialize the backing stores
+ unsigned int nbr_of_stores;
+ UNSERIALIZE_SCALAR(nbr_of_stores);
+
+ for (unsigned int i = 0; i < nbr_of_stores; ++i) {
+ unserializeStore(cp, csprintf("%s.store%d", section, i));
+ }
+
+}
+
+void
+PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
+{
+ const uint32_t chunk_size = 16384;
+
+ unsigned int store_id;
+ UNSERIALIZE_SCALAR(store_id);
+
+ string filename;
+ UNSERIALIZE_SCALAR(filename);
+ string filepath = cp->cptDir + "/" + filename;
+
+ // mmap memoryfile
+ int fd = open(filepath.c_str(), O_RDONLY);
+ if (fd < 0) {
+ perror("open");
+ fatal("Can't open physical memory checkpoint file '%s'", filename);
+ }
+
+ gzFile compressed_mem = gzdopen(fd, "rb");
+ if (compressed_mem == NULL)
+ fatal("Insufficient memory to allocate compression state for %s\n",
+ filename);
+
+ uint8_t* pmem = backingStore[store_id].second;
+ AddrRange range = backingStore[store_id].first;
+
+ // unmap file that was mmapped in the constructor, this is
+ // done here to make sure that gzip and open don't muck with
+ // our nice large space of memory before we reallocate it
+ munmap((char*) pmem, range.size());
+
+ long range_size;
+ UNSERIALIZE_SCALAR(range_size);
+
+ DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
+ filename, range_size);
+
+ if (range_size != range.size())
+ fatal("Memory range size has changed! Saw %lld, expected %lld\n",
+ range_size, range.size());
+
+ pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
+ MAP_ANON | MAP_PRIVATE, -1, 0);
+
+ if (pmem == (void*) MAP_FAILED) {
+ perror("mmap");
+ fatal("Could not mmap physical memory!\n");
+ }
+
+ uint64_t curr_size = 0;
+ long* temp_page = new long[chunk_size];
+ long* pmem_current;
+ uint32_t bytes_read;
+ while (curr_size < range.size()) {
+ bytes_read = gzread(compressed_mem, temp_page, chunk_size);
+ if (bytes_read == 0)
+ break;
+
+ assert(bytes_read % sizeof(long) == 0);
+
+ for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
+ // Only copy bytes that are non-zero, so we don't give
+ // the VM system hell
+ if (*(temp_page + x) != 0) {
+ pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
+ *pmem_current = *(temp_page + x);
+ }
+ }
+ curr_size += bytes_read;
+ }
+
+ delete[] temp_page;
+
+ if (gzclose(compressed_mem))
+ fatal("Close failed on physical memory checkpoint file '%s'\n",
+ filename);
+}
#define __PHYSICAL_MEMORY_HH__
#include "base/addr_range_map.hh"
-#include "mem/abstract_mem.hh"
-#include "mem/packet.hh"
+#include "mem/port.hh"
+
+/**
+ * Forward declaration to avoid header dependencies.
+ */
+class AbstractMemory;
/**
* The physical memory encapsulates all memories in the system and
* provides basic functionality for accessing those memories without
* going through the memory system and interconnect.
+ *
+ * The physical memory is also responsible for providing the host
+ * system backingstore used by the memories in the simulated guest
+ * system. When the system is created, the physical memory allocates
+ * the backing store based on the address ranges that are populated in
+ * the system, and does so indepentent of how those map to actual
+ * memory controllers. Thus, the physical memory completely abstracts
+ * the mapping of the backing store of the host system and the address
+ * mapping in the guest system. This enables us to arbitrarily change
+ * the number of memory controllers, and their address mapping, as
+ * long as the ranges stay the same.
*/
-class PhysicalMemory
+class PhysicalMemory : public Serializable
{
private:
+ // Name for debugging
+ std::string _name;
+
// Global address map
AddrRangeMap<AbstractMemory*> addrMap;
// The total memory size
uint64_t size;
+ // The physical memory used to provide the memory in the simulated
+ // system
+ std::vector<std::pair<AddrRange, uint8_t*> > backingStore;
+
// Prevent copying
PhysicalMemory(const PhysicalMemory&);
// Prevent assignment
PhysicalMemory& operator=(const PhysicalMemory&);
+ /**
+ * Create the memory region providing the backing store for a
+ * given address range that corresponds to a set of memories in
+ * the simulated system.
+ *
+ * @param range The address range covered
+ * @param memories The memories this range maps to
+ */
+ void createBackingStore(AddrRange range,
+ const std::vector<AbstractMemory*>& _memories);
+
public:
/**
* Create a physical memory object, wrapping a number of memories.
*/
- PhysicalMemory(const std::vector<AbstractMemory*>& _memories);
+ PhysicalMemory(const std::string& _name,
+ const std::vector<AbstractMemory*>& _memories);
+
+ /**
+ * Unmap all the backing store we have used.
+ */
+ ~PhysicalMemory();
/**
- * Nothing to destruct.
+ * Return the name for debugging and for creation of sections for
+ * checkpointing.
*/
- ~PhysicalMemory() { }
+ const std::string name() const { return _name; }
/**
* Check if a physical address is within a range of a memory that
*/
uint64_t totalSize() const { return size; }
+ /**
+ * Get the pointers to the backing store for external host
+ * access. Note that memory in the guest should be accessed using
+ * access() or functionalAccess(). This interface is primarily
+ * intended for CPU models using hardware virtualization. Note
+ * that memories that are null are not present, and that the
+ * backing store may also contain memories that are not part of
+ * the OS-visible global address map and thus are allowed to
+ * overlap.
+ *
+ * @return Pointers to the memory backing store
+ */
+ std::vector<std::pair<AddrRange, uint8_t*> > getBackingStore() const
+ { return backingStore; }
+
/**
+ * Perform an untimed memory access and update all the state
+ * (e.g. locked addresses) and statistics accordingly. The packet
+ * is turned into a response if required.
*
+ * @param pkt Packet performing the access
*/
void access(PacketPtr pkt);
+
+ /**
+ * Perform an untimed memory read or write without changing
+ * anything but the memory itself. No stats are affected by this
+ * access. In addition to normal accesses this also facilitates
+ * print requests.
+ *
+ * @param pkt Packet performing the access
+ */
void functionalAccess(PacketPtr pkt);
-};
+ /**
+ * Serialize all the memories in the system. This is independent
+ * of the logical memory layout, and the serialization only sees
+ * the contigous backing store, independent of how this maps to
+ * logical memories in the guest system.
+ *
+ * @param os stream to serialize to
+ */
+ void serialize(std::ostream& os);
+ /**
+ * Serialize a specific store.
+ *
+ * @param store_id Unique identifier of this backing store
+ * @param range The address range of this backing store
+ * @param pmem The host pointer to this backing store
+ */
+ void serializeStore(std::ostream& os, unsigned int store_id,
+ AddrRange range, uint8_t* pmem);
+
+ /**
+ * Unserialize the memories in the system. As with the
+ * serialization, this action is independent of how the address
+ * ranges are mapped to logical memories in the guest system.
+ */
+ void unserialize(Checkpoint* cp, const std::string& section);
+ /**
+ * Unserialize a specific backing store, identified by a section.
+ */
+ void unserializeStore(Checkpoint* cp, const std::string& section);
+
+};
#endif //__PHYSICAL_MEMORY_HH__
warn("!!!! Checkpoint ver %#x is older than current ver %#x !!!!\n",
cpt_ver, gem5CheckpointVersion);
warn("You might experience some issues when restoring and should run "
- "the checkpoint upgrader (util/cpt_upgrade.py) on your "
+ "the checkpoint upgrader (util/cpt_upgrader.py) on your "
"checkpoint\n");
warn("**********************************************************\n");
} else if (cpt_ver > gem5CheckpointVersion) {
* SimObject shouldn't cause the version number to increase, only changes to
* existing objects such as serializing/unserializing more state, changing sizes
* of serialized arrays, etc. */
-static const uint64_t gem5CheckpointVersion = 0x0000000000000001;
+static const uint64_t gem5CheckpointVersion = 0x0000000000000002;
template <class T>
void paramOut(std::ostream &os, const std::string &name, const T ¶m);
#include "debug/Loader.hh"
#include "debug/WorkItems.hh"
#include "kern/kernel_stats.hh"
+#include "mem/abstract_mem.hh"
#include "mem/physical.hh"
#include "params/System.hh"
#include "sim/byteswap.hh"
virtProxy(_systemPort),
loadAddrMask(p->load_addr_mask),
nextPID(0),
- physmem(p->memories),
+ physmem(name() + ".physmem", p->memories),
memoryMode(p->mem_mode),
workItemsBegin(0),
workItemsEnd(0),
SERIALIZE_SCALAR(pagePtr);
SERIALIZE_SCALAR(nextPID);
serializeSymtab(os);
+
+ // also serialize the memories in the system
+ nameOut(os, csprintf("%s.physmem", name()));
+ physmem.serialize(os);
}
UNSERIALIZE_SCALAR(pagePtr);
UNSERIALIZE_SCALAR(nextPID);
unserializeSymtab(cp, section);
+
+ // also unserialize the memories in the system
+ physmem.unserialize(cp, csprintf("%s.physmem", name()));
}
void
import sys, os
import os.path as osp
-def from_0(cpt):
- pass
-
# An example of a translator
-def from_1(cpt):
+def from_0(cpt):
if cpt.get('root','isa') == 'arm':
for sec in cpt.sections():
import re
#mr.insert(26,0)
cpt.set(sec, 'miscRegs', ' '.join(str(x) for x in mr))
+# The backing store supporting the memories in the system has changed
+# in that it is now stored globally per address range. As a result the
+# actual storage is separate from the memory controllers themselves.
+def from_1(cpt):
+ for sec in cpt.sections():
+ import re
+ # Search for a physical memory
+ if re.search('.*sys.*\.physmem$', sec):
+ # Add the number of stores attribute to the global physmem
+ cpt.set(sec, 'nbr_of_stores', '1')
+
+ # Get the filename and size as this is moving to the
+ # specific backing store
+ mem_filename = cpt.get(sec, 'filename')
+ mem_size = cpt.get(sec, '_size')
+ cpt.remove_option(sec, 'filename')
+ cpt.remove_option(sec, '_size')
+
+ # Get the name so that we can create the new section
+ system_name = str(sec).split('.')[0]
+ section_name = system_name + '.physmem.store0'
+ cpt.add_section(section_name)
+ cpt.set(section_name, 'store_id', '0')
+ cpt.set(section_name, 'range_size', mem_size)
+ cpt.set(section_name, 'filename', mem_filename)
+ elif re.search('.*sys.*\.\w*mem$', sec):
+ # Due to the lack of information about a start address,
+ # this migration only works if there is a single memory in
+ # the system, thus starting at 0
+ raise ValueError("more than one memory detected (" + sec + ")")
+
migrations = []
migrations.append(from_0)
migrations.append(from_1)