architecture behaviour of execute1 is
type reg_type is record
e : Execute1ToWritebackType;
- f : Execute1ToFetch1Type;
busy: std_ulogic;
terminate: std_ulogic;
fp_exception_next : std_ulogic;
slow_op_oe : std_ulogic;
slow_op_xerc : xer_common_t;
last_nia : std_ulogic_vector(63 downto 0);
+ redirect : std_ulogic;
+ abs_br : std_ulogic;
+ do_intr : std_ulogic;
+ vector : integer range 0 to 16#fff#;
+ br_offset : std_ulogic_vector(63 downto 0);
+ redir_mode : std_ulogic_vector(3 downto 0);
log_addr_spr : std_ulogic_vector(31 downto 0);
end record;
constant reg_type_init : reg_type :=
- (e => Execute1ToWritebackInit, f => Execute1ToFetch1Init,
+ (e => Execute1ToWritebackInit,
busy => '0', lr_update => '0', terminate => '0',
fp_exception_next => '0', trace_next => '0', prev_op => OP_ILLEGAL,
mul_in_progress => '0', mul_finish => '0', div_in_progress => '0', cntz_in_progress => '0',
slow_op_insn => OP_ILLEGAL, slow_op_rc => '0', slow_op_oe => '0', slow_op_xerc => xerc_init,
- next_lr => (others => '0'), last_nia => (others => '0'), others => (others => '0'));
+ next_lr => (others => '0'), last_nia => (others => '0'),
+ redirect => '0', abs_br => '0', do_intr => '0', vector => 0,
+ br_offset => (others => '0'), redir_mode => "0000",
+ others => (others => '0'));
signal r, rin : reg_type;
variable spr_val : std_ulogic_vector(63 downto 0);
variable addend : std_ulogic_vector(127 downto 0);
variable do_trace : std_ulogic;
+ variable f : Execute1ToFetch1Type;
variable fv : Execute1ToFPUType;
begin
result := (others => '0');
v := r;
v.e := Execute1ToWritebackInit;
+ v.redirect := '0';
+ v.abs_br := '0';
+ v.do_intr := '0';
+ v.vector := 0;
+ v.br_offset := (others => '0');
+ v.redir_mode := ctrl.msr(MSR_IR) & not ctrl.msr(MSR_PR) &
+ not ctrl.msr(MSR_LE) & not ctrl.msr(MSR_SF);
+
lv := Execute1ToLoadstore1Init;
- v.f.redirect := '0';
fv := Execute1ToFPUInit;
-- XER forwarding. To avoid having to track XER hazards, we use
irq_valid := '0';
if ctrl.msr(MSR_EE) = '1' then
if ctrl.dec(63) = '1' then
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#900#, 64));
+ v.vector := 16#900#;
report "IRQ valid: DEC";
irq_valid := '1';
elsif ext_irq_in = '1' then
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#500#, 64));
+ v.vector := 16#500#;
report "IRQ valid: External";
irq_valid := '1';
end if;
v.terminate := '0';
icache_inval <= '0';
v.busy := '0';
- -- send MSR[IR], ~MSR[PR], ~MSR[LE] and ~MSR[SF] up to fetch1
- v.f.virt_mode := ctrl.msr(MSR_IR);
- v.f.priv_mode := not ctrl.msr(MSR_PR);
- v.f.big_endian := not ctrl.msr(MSR_LE);
- v.f.mode_32bit := not ctrl.msr(MSR_SF);
-- Next insn adder used in a couple of places
next_nia := std_ulogic_vector(unsigned(e_in.nia) + 4);
if HAS_FPU and r.fp_exception_next = '1' then
-- This is used for FP-type program interrupts that
-- become pending due to MSR[FE0,FE1] changing from 00 to non-zero.
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64));
+ v.vector := 16#700#;
ctrl_tmp.srr1(63 - 43) <= '1';
ctrl_tmp.srr1(63 - 47) <= '1';
else
-- Generate a trace interrupt rather than executing the next instruction
-- or taking any asynchronous interrupt
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#d00#, 64));
+ v.vector := 16#d00#;
ctrl_tmp.srr1(63 - 33) <= '1';
if r.prev_op = OP_LOAD or r.prev_op = OP_ICBI or r.prev_op = OP_ICBT or
r.prev_op = OP_DCBT or r.prev_op = OP_DCBST or r.prev_op = OP_DCBF then
instr_is_privileged(e_in.insn_type, e_in.insn) then
-- generate a program interrupt
exception := '1';
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64));
+ v.vector := 16#700#;
-- set bit 45 to indicate privileged instruction type interrupt
ctrl_tmp.srr1(63 - 45) <= '1';
report "privileged instruction";
elsif HAS_FPU and valid_in = '1' and ctrl.msr(MSR_FP) = '0' and e_in.fac = FPU then
-- generate a floating-point unavailable interrupt
exception := '1';
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#800#, 64));
+ v.vector := 16#800#;
report "FP unavailable interrupt";
elsif valid_in = '1' and e_in.unit = ALU then
if e_in.insn(1) = '1' then
exception := '1';
exception_nextpc := '1';
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#C00#, 64));
+ v.vector := 16#C00#;
report "sc";
else
illegal := '1';
end loop;
else
-- trap instructions (tw, twi, td, tdi)
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64));
+ v.vector := 16#700#;
-- set bit 46 to say trap occurred
ctrl_tmp.srr1(63 - 46) <= '1';
if or (trapval and insn_to(e_in.insn)) = '1' then
end if;
when OP_RFID =>
- v.f.virt_mode := a_in(MSR_IR) or a_in(MSR_PR);
- v.f.priv_mode := not a_in(MSR_PR);
- v.f.big_endian := not a_in(MSR_LE);
- v.f.mode_32bit := not a_in(MSR_SF);
+ v.redir_mode := (a_in(MSR_IR) or a_in(MSR_PR)) & not a_in(MSR_PR) &
+ not a_in(MSR_LE) & not a_in(MSR_SF);
-- Can't use msr_copy here because the partial function MSR
-- bits should be left unchanged, not zeroed.
ctrl_tmp.msr(63 downto 31) <= a_in(63 downto 31);
end if;
when OP_ISYNC =>
- v.f.redirect := '1';
- v.f.redirect_nia := next_nia;
+ v.redirect := '1';
+ v.br_offset := std_ulogic_vector(to_unsigned(4, 64));
when OP_ICBI =>
icache_inval <= '1';
ctrl_tmp.cfar <= e_in.nia;
end if;
if e_in.br_pred = '0' then
- if abs_branch = '1' then
- v.f.redirect_nia := b_in;
- else
- v.f.redirect_nia := std_ulogic_vector(signed(e_in.nia) + signed(b_in));
- end if;
+ v.br_offset := b_in;
+ v.abs_br := abs_branch;
else
- v.f.redirect_nia := next_nia;
+ v.br_offset := std_ulogic_vector(to_unsigned(4, 64));
end if;
if taken_branch /= e_in.br_pred then
- v.f.redirect := '1';
+ v.redirect := '1';
end if;
end if;
-- valid_in = 0. Hence they don't happen in the same cycle as any of
-- the cases above which depend on valid_in = 1.
- if r.f.redirect = '1' then
+ if r.redirect = '1' then
v.e.valid := '1';
end if;
if r.lr_update = '1' then
-- The case where MSR[FE0,FE1] goes from zero to non-zero is
-- handled above by mtmsrd and rfid setting v.fp_exception_next.
if HAS_FPU and fp_in.interrupt = '1' then
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64));
+ v.vector := 16#700#;
ctrl_tmp.srr1(63 - 43) <= '1';
exception := '1';
end if;
if illegal = '1' or (HAS_FPU and fp_in.illegal = '1') then
exception := '1';
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#700#, 64));
+ v.vector := 16#700#;
-- Since we aren't doing Hypervisor emulation assist (0xe40) we
-- set bit 44 to indicate we have an illegal
ctrl_tmp.srr1(63 - 44) <= '1';
-- or ISI or ISegI for instruction fetch exceptions
if l_in.exception = '1' then
if l_in.alignment = '1' then
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#600#, 64));
+ v.vector := 16#600#;
elsif l_in.instr_fault = '0' then
if l_in.segment_fault = '0' then
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#300#, 64));
+ v.vector := 16#300#;
else
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#380#, 64));
+ v.vector := 16#380#;
end if;
else
if l_in.segment_fault = '0' then
ctrl_tmp.srr1(63 - 35) <= l_in.perm_error; -- noexec fault
ctrl_tmp.srr1(63 - 44) <= l_in.badtree;
ctrl_tmp.srr1(63 - 45) <= l_in.rc_error;
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#400#, 64));
+ v.vector := 16#400#;
else
- v.f.redirect_nia := std_logic_vector(to_unsigned(16#480#, 64));
+ v.vector := 16#480#;
end if;
end if;
v.e.exc_write_enable := '1';
if exception = '1' or l_in.exception = '1' then
ctrl_tmp.irq_state <= WRITE_SRR1;
- v.f.redirect := '1';
- v.f.virt_mode := '0';
- v.f.priv_mode := '1';
- -- XXX need an interrupt LE bit here, e.g. from LPCR
- v.f.big_endian := '0';
- v.f.mode_32bit := '0';
+ v.redirect := '1';
+ v.do_intr := '1';
end if;
- if v.f.redirect = '1' then
+ if v.redirect = '1' then
v.busy := '1';
v.e.valid := '0';
end if;
+ -- Outputs to fetch1
+ f.redirect := r.redirect;
+ if r.do_intr = '1' then
+ f.redirect_nia := std_ulogic_vector(to_unsigned(r.vector, 64));
+ f.virt_mode := '0';
+ f.priv_mode := '1';
+ -- XXX need an interrupt LE bit here, e.g. from LPCR
+ f.big_endian := '0';
+ f.mode_32bit := '0';
+ else
+ if r.abs_br = '1' then
+ f.redirect_nia := r.br_offset;
+ else
+ f.redirect_nia := std_ulogic_vector(unsigned(r.last_nia) + unsigned(r.br_offset));
+ end if;
+ -- send MSR[IR], ~MSR[PR], ~MSR[LE] and ~MSR[SF] up to fetch1
+ f.virt_mode := r.redir_mode(3);
+ f.priv_mode := r.redir_mode(2);
+ f.big_endian := r.redir_mode(1);
+ f.mode_32bit := r.redir_mode(0);
+ end if;
+
-- Outputs to loadstore1 (async)
lv.op := e_in.insn_type;
lv.nia := e_in.nia;
rin <= v;
-- update outputs
- f_out <= r.f;
+ f_out <= f;
l_out <= lv;
e_out <= r.e;
fp_out <= fv;