--- /dev/null
+#!/usr/bin/env python3
+
+# Copyright (c) 2014 Guy Hutchison
+
+# Redistribution and use in source and binary forms, with or without modification,
+# are permitted provided that the following conditions are met:
+
+# 1. Redistributions of source code must retain the above copyright notice, this
+# list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright notice,
+# this list of conditions and the following disclaimer in the documentation
+# and/or other materials provided with the distribution.
+
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import migen
+import operator
+from migen.fhdl.std import *
+from migen.fhdl.verilog import convert
+
+
+# Join two lists a and b, such that redundant terms are removed
+def join_lists(a, b):
+ z = []
+ for x in a+b:
+ if x not in z:
+ z.append(x)
+ else:
+ z.remove(x)
+ return z
+
+
+def join_operator(list, op):
+ if len(list) == 0:
+ return []
+ elif len(list) == 1:
+ return list[0]
+ elif len(list) == 2:
+ return op(list[0], list[1])
+ else:
+ return op(list[0], join_operator(list[1:], op))
+
+
+def calc_code_bits(data_bits):
+ m = 1
+ c = 0
+
+ while c < data_bits:
+ m += 1
+ c = 2**m - m - 1
+ return m
+
+
+# build_seq() is used to create the selection of bits which need
+# to be checked for a particular data parity bit.
+def build_seq(bnum, out_width):
+ tmp = []
+
+ ptr = 0
+ cur = 0
+ skip = 2**bnum-1
+ if skip == 0:
+ check = 2**bnum
+ else:
+ check = 0
+ while cur < out_width:
+ if check > 0:
+ if (cur != 2**bnum-1):
+ tmp.append(cur)
+ ptr += 1
+ check -= 1
+ if check == 0:
+ skip = 2**bnum
+ else:
+ skip -= 1
+ if skip == 0:
+ check = 2**bnum
+ cur += 1
+
+ return tmp
+
+
+# build_bits() is used for the generator portion, it combines the
+# bit sequences for all input and parity bits which are used and
+# removes redundant terms.
+def build_bits(in_width, gen_parity=True):
+ pnum = 1
+ innum = 0
+ blist = []
+ num_code_bits = calc_code_bits(in_width)
+ out_width = in_width + num_code_bits
+ v = [list()] * out_width
+ code_bit_list = []
+
+ for b in range(out_width):
+ if (b+1) == pnum:
+ pnum = 2*pnum
+ else:
+ v[b] = [innum]
+ innum += 1
+
+ for b in range(num_code_bits):
+ vindex = 2**b-1
+ blist = build_seq(b, out_width)
+ for bli in blist:
+ v[vindex] = join_lists(v[vindex], v[bli])
+ code_bit_list.append(v[vindex])
+
+ # Calculate parity bit
+ if gen_parity:
+ pbit = []
+ for b in v:
+ pbit = join_lists(pbit, b)
+ code_bit_list.append(pbit)
+ return code_bit_list
+
+
+# xor_tree() takes a signal and a list of bits to be applied from
+# the signal and generates a balanced xor tree as output.
+def xor_tree(in_signal, in_bits):
+ if len(in_bits) == 0:
+ print ("ERROR: in_bits must be > 0")
+ elif len(in_bits) == 1:
+ return in_signal[in_bits[0]]
+ elif len(in_bits) == 2:
+ return in_signal[in_bits[0]] ^ in_signal[in_bits[1]]
+ elif len(in_bits) == 3:
+ return in_signal[in_bits[0]] ^ in_signal[in_bits[1]] ^ in_signal[in_bits[2]]
+ else:
+ split = int(len(in_bits)/2)
+ return xor_tree(in_signal, in_bits[0:split]) ^ xor_tree(in_signal, in_bits[split:])
+
+
+# Base class for Hamming code generator/checker.
+
+
+# Hamming code generator class
+
+# The class constructor takes a single required input, which is the number of
+# bits of the input data. The module creates a single output, which is a set
+# of code check bits and a parity bit.
+
+# This generator and its corresponding checker will only generate a single-
+# error correct, double-error detect code. If double-error detection is
+# not desired, the most-significant code_out bit can be left unconnected.
+
+# If generated as a top-level module, contains its suggested module name
+# in self.name and list of ports in self.ports
+class HammingGenerator(Module):
+ def __init__(self, input_size):
+ self.input_size = input_size
+ self.data_in = Signal(input_size)
+ self.code_out = Signal(calc_code_bits(input_size)+1)
+
+ xor_bits = build_bits(self.input_size)
+ for b in range(len(xor_bits)):
+ self.comb += self.code_out[b].eq(xor_tree(self.data_in, xor_bits[b]))
+
+
+# Hamming code checker class
+
+# Constructor takes two parameters:
+# input_size (bits of data bus, not counting check bits)
+# correct (boolean, True if output data should be corrected)
+
+# If used as a check/correct module, the module creates an
+# enable input which can dynamically turn off error correction
+# for debug.
+
+# If double-bit detection is not desired, the most-significant
+# code_in bit can be tied to 0, and the dberr output port left
+# unconnected.
+
+# If generated as a top-level module, contains its suggested module name
+# in self.name and list of ports in self.ports
+class HammingChecker(Module):
+ def __init__(self, input_size, correct=True, gen_parity=True):
+ self.input_size = input_size
+ self.correct = correct
+ self.data_in = Signal(input_size)
+ self.code_bits = calc_code_bits(input_size)
+ self.code_in = Signal(self.code_bits+1)
+ self.code_out = Signal(self.code_bits)
+ self.sberr = Signal()
+ if gen_parity:
+ self.dberr = Signal()
+
+ # vector of which interleaved bit position represents a particular
+ # data bit, used for error correction
+ dbits = []
+
+ # Create interleaved vector of code bits and data bits with code bits
+ # in power-of-two positions
+ pnum = 0
+ dnum = 0
+ self.par_vec = Signal(input_size+self.code_bits)
+ for b in range(input_size+calc_code_bits(input_size)):
+ if b+1 == 2**pnum:
+ self.comb += self.par_vec[b].eq(self.code_in[pnum])
+ pnum += 1
+ else:
+ self.comb += self.par_vec[b].eq(self.data_in[dnum])
+ dbits.append(b)
+ dnum += 1
+
+ if correct:
+ self.enable = Signal()
+ self.correct_out = Signal(input_size)
+ self.data_out = Signal(input_size, name='data_out')
+ for b in range(input_size):
+ self.comb += self.correct_out[b].eq((self.code_out == (dbits[b]+1)) ^ self.data_in[b])
+ self.comb += If(self.enable, self.data_out.eq(self.correct_out)).Else(self.data_out.eq(self.data_in))
+
+ self.comb += self.sberr.eq(self.code_out != 0)
+ if gen_parity:
+ parity = Signal()
+ self.comb += parity.eq(xor_tree(self.data_in, range(input_size)) ^ xor_tree(self.code_in, range(self.code_bits+1)))
+ self.comb += self.dberr.eq(~parity)
+
+ for b in range(calc_code_bits(self.input_size)):
+ bits = [2**b-1]
+ bits += build_seq(b, self.input_size+calc_code_bits(self.input_size))
+ self.comb += self.code_out[b].eq(xor_tree(self.par_vec, bits))