}
break;
+ case ir_binop_logic_and:
+ /* FINISHME: Also simplify (a && a) to (a). */
+ if (is_vec_one(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir_constant::zero(mem_ctx, ir->type);
+ }
+ break;
+
+ case ir_binop_logic_xor:
+ /* FINISHME: Also simplify (a ^^ a) to (false). */
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_one(op_const[0])) {
+ this->progress = true;
+ return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
+ ir->operands[1], NULL);
+ } else if (is_vec_one(op_const[1])) {
+ this->progress = true;
+ return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
+ ir->operands[0], NULL);
+ }
+ break;
+
+ case ir_binop_logic_or:
+ /* FINISHME: Also simplify (a || a) to (a). */
+ if (is_vec_zero(op_const[0])) {
+ this->progress = true;
+ return ir->operands[1];
+ } else if (is_vec_zero(op_const[1])) {
+ this->progress = true;
+ return ir->operands[0];
+ } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
+ ir_constant_data data;
+
+ for (unsigned i = 0; i < 16; i++)
+ data.b[i] = true;
+
+ this->progress = true;
+ return new(mem_ctx) ir_constant(ir->type, &data);
+ }
+ break;
+
case ir_unop_rcp:
if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
this->progress = true;