}});
0x2: bpccx(19, {{
if(passesCondition(Ccr<7:4>, COND2))
+ {
+ //warn("Took branch!\n");
NNPC = xc->readPC() + disp;
+ }
else
+ {
+ //warn("Didn't take branch!\n");
handle_annul
+ }
}});
}
}
((Rs1 & val2) | (carryin & (Rs1 | val2)))<0:>)<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);
- 0x1A: umulcc({{
+ 0x1A: IntOpCcRes::umulcc({{
uint64_t resTemp;
Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>;
- Y = resTemp<63:32>;}},
- {{0}},{{0}},{{0}},{{0}});
- 0x1B: smulcc({{
+ Y = resTemp<63:32>;}});
+ 0x1B: IntOpCcRes::smulcc({{
int64_t resTemp;
Rd = resTemp = Rs1.sdw<31:0> * Rs2_or_imm13.sdw<31:0>;
- Y = resTemp<63:32>;}},
- {{0}},{{0}},{{0}},{{0}});
+ Y = resTemp<63:32>;}});
0x1C: subccc({{
int64_t resTemp, val2 = Rs2_or_imm13;
int64_t carryin = Ccr<0:0>;
{{(~((Rs1<63:1> + (~(val2 + carryin))<63:1>) + (Rs1<0:> + (~(val2+carryin))<0:> + 1)<63:1>))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);
- 0x1D: udivxcc({{
+ 0x1D: IntOpCcRes::udivxcc({{
if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero;
- else Rd = Rs1.udw / Rs2_or_imm13.udw;}}
- ,{{0}},{{0}},{{0}},{{0}});
+ else Rd = Rs1.udw / Rs2_or_imm13.udw;}});
0x1E: udivcc({{
uint32_t resTemp, val2 = Rs2_or_imm13.udw;
int32_t overflow = 0;
}
}});
0x39: Branch::return({{
- //If both MemAddressNotAligned and
- //a fill trap happen, it's not clear
- //which one should be returned.
Addr target = Rs1 + Rs2_or_imm13;
- if(target & 0x3)
- fault = new MemAddressNotAligned;
- else
- NNPC = target;
if(fault == NoFault)
{
+ //Check for fills which are higher priority than alignment
+ //faults.
if(Canrestore == 0)
{
if(Otherwin)
else
fault = new FillNNormal(Wstate<2:0>);
}
+ //Check for alignment faults
+ else if(target & 0x3)
+ fault = new MemAddressNotAligned;
else
{
- //CWP should be set directly so that it always happens
- //Also, this will allow writing to the new window and
- //reading from the old one
+ NNPC = target;
Cwp = (Cwp - 1 + NWindows) % NWindows;
Cansave = Cansave + 1;
Canrestore = Canrestore - 1;
- //This is here to make sure the CWP is written
- //no matter what. This ensures that the results
- //are written in the new window as well.
- xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
}
}
}});
xc->syscall(R1);
#endif
}
- }});
+ }}, IsSerializeAfter, IsNonSpeculative);
0x2: Trap::tccx({{
if(passesCondition(Ccr<7:4>, COND2))
{
xc->syscall(R1);
#endif
}
- }});
+ }}, IsSerializeAfter, IsNonSpeculative);
}
0x3B: Nop::flush({{/*Instruction memory flush*/}});
0x3C: save({{
- //CWP should be set directly so that it always happens
- //Also, this will allow writing to the new window and
- //reading from the old one
if(Cansave == 0)
{
if(Otherwin)
fault = new SpillNOther(Wstate<5:3>);
else
fault = new SpillNNormal(Wstate<2:0>);
- //Cwp = (Cwp + 2) % NWindows;
}
else if(Cleanwin - Canrestore == 0)
{
- //Cwp = (Cwp + 1) % NWindows;
fault = new CleanWindow;
}
else
{
Cwp = (Cwp + 1) % NWindows;
- Rd = Rs1 + Rs2_or_imm13;
+ Rd_next = Rs1 + Rs2_or_imm13;
Cansave = Cansave - 1;
Canrestore = Canrestore + 1;
- //This is here to make sure the CWP is written
- //no matter what. This ensures that the results
- //are written in the new window as well.
- xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
}
}});
0x3D: restore({{
}
else
{
- //CWP should be set directly so that it always happens
- //Also, this will allow writing to the new window and
- //reading from the old one
Cwp = (Cwp - 1 + NWindows) % NWindows;
- Rd = Rs1 + Rs2_or_imm13;
+ Rd_prev = Rs1 + Rs2_or_imm13;
Cansave = Cansave + 1;
Canrestore = Canrestore - 1;
- //This is here to make sure the CWP is written
- //no matter what. This ensures that the results
- //are written in the new window as well.
- xc->setMiscRegWithEffect(MISCREG_CWP, Cwp);
}
}});
0x3E: decode FCN {