template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
/// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
- const complex<_Tp>&);
+ const complex<_Tp>&);
/// Return @a x to the @a y'th power.
template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
/// Return complex sine of @a z.
* @param Tp Type of real and imaginary values.
*/
template<typename _Tp>
- class complex
+ struct complex
{
- public:
/// Value typedef.
typedef _Tp value_type;
template<typename _Up>
complex<_Tp>& operator/=(const complex<_Up>&);
+ const complex& __rep() const;
+
private:
_Tp _M_real;
_Tp _M_imag;
_M_real = __r / __n;
return *this;
}
+
+ template<typename _Tp>
+ inline const complex<_Tp>&
+ complex<_Tp>::__rep() const { return *this; }
// Operators:
//@{
imag(const complex<_Tp>& __z)
{ return __z.imag(); }
+ // 26.2.7/3 abs(__z): Returns the magnitude of __z.
template<typename _Tp>
inline _Tp
- abs(const complex<_Tp>& __z)
+ __complex_abs(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
return __s;
__x /= __s;
__y /= __s;
- return __s * sqrt(__x * __x + __y * __y);
+ return __s * sqrt(__x * __x + __y * __y);
}
+ inline float
+ __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }
+
+ inline double
+ __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }
+
+ inline long double
+ __complex_abs(const __complex__ long double& __z)
+ {
+ return __builtin_cabsl(__z);
+ }
+
+ template<typename _Tp>
+ inline _Tp
+ abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
+
+
+ // 26.2.7/4: arg(__z): Returns the phase angle of __z.
template<typename _Tp>
inline _Tp
- arg(const complex<_Tp>& __z)
- { return atan2(__z.imag(), __z.real()); }
+ __complex_arg(const complex<_Tp>& __z)
+ {
+ return atan2(__z.imag(), __z.real());
+ }
+
+ inline float
+ __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }
+
+ inline double
+ __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }
+
+ inline long double
+ __complex_arg(const __complex__ long double& __z)
+ { return __builtin_cargl(__z); }
+
+ template<typename _Tp>
+ inline _Tp
+ arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
// 26.2.7/5: norm(__z) returns the squared magintude of __z.
// As defined, norm() is -not- a norm is the common mathematical
{ return complex<_Tp>(__z.real(), -__z.imag()); }
// Transcendentals
+
+ // 26.2.8/1 cos(__z): Returns the cosine of __z.
template<typename _Tp>
inline complex<_Tp>
- cos(const complex<_Tp>& __z)
+ __complex_cos(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
}
+ inline __complex__ float
+ __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }
+
+ inline __complex__ double
+ __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }
+
+ inline __complex__ long double
+ __complex_cos(const __complex__ long double& __z)
+ { return __builtin_ccosl(__z); }
+
template<typename _Tp>
inline complex<_Tp>
- cosh(const complex<_Tp>& __z)
- {
- const _Tp __x = __z.real();
- const _Tp __y = __z.imag();
- return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
- }
+ cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
+
+ // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_cosh(const complex<_Tp>& __z)
+ {
+ const _Tp __x = __z.real();
+ const _Tp __y = __z.imag();
+ return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
+ }
+
+ inline __complex__ float
+ __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }
+
+ inline __complex__ double
+ __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }
+
+ inline __complex__ long double
+ __complex_cosh(const __complex__ long double& __z)
+ { return __builtin_ccoshl(__z); }
template<typename _Tp>
inline complex<_Tp>
- exp(const complex<_Tp>& __z)
+ cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
+
+ // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_exp(const complex<_Tp>& __z)
{ return std::polar(exp(__z.real()), __z.imag()); }
+ inline __complex__ float
+ __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }
+
+ inline __complex__ double
+ __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }
+
+ inline __complex__ long double
+ __complex_exp(const __complex__ long double& __z)
+ { return __builtin_cexpl(__z); }
+
template<typename _Tp>
inline complex<_Tp>
- log(const complex<_Tp>& __z)
+ exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
+
+ // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.
+ // The branch cut is along the negative axis.
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_log(const complex<_Tp>& __z)
{ return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
+ /*
+ inline __complex__ float
+ __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }
+
+ inline __complex__ double
+ __complex_log(__complex__ double __z) { return __builtin_clog(__z); }
+
+ inline __complex__ long double
+ __complex_log(const __complex__ long double& __z)
+ { return __builtin_clog(__z); } */
+
+ template<typename _Tp>
+ inline complex<_Tp>
+ log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
+
template<typename _Tp>
inline complex<_Tp>
log10(const complex<_Tp>& __z)
{ return std::log(__z) / log(_Tp(10.0)); }
+ // 26.2.8/10 sin(__z): Returns the sine of __z.
template<typename _Tp>
inline complex<_Tp>
- sin(const complex<_Tp>& __z)
+ __complex_sin(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
}
+ inline __complex__ float
+ __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }
+
+ inline __complex__ double
+ __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }
+
+ inline __complex__ long double
+ __complex_sin(const __complex__ long double& __z)
+ { return __builtin_csinl(__z); }
+
template<typename _Tp>
inline complex<_Tp>
- sinh(const complex<_Tp>& __z)
+ sin(const complex<_Tp>& __z) { __complex_sin(__z.__rep()); }
+
+ // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_sinh(const complex<_Tp>& __z)
{
const _Tp __x = __z.real();
const _Tp __y = __z.imag();
return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
}
+ inline __complex__ float
+ __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }
+
+ inline __complex__ double
+ __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }
+
+ inline __complex__ long double
+ __complex_sinh(const __complex__ long double& __z)
+ { return __builtin_csinhl(__z); }
+
+ template<typename _Tp>
+ inline complex<_Tp>
+ sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
+
+ // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
+ // The branch cut is on the negative axis.
template<typename _Tp>
complex<_Tp>
- sqrt(const complex<_Tp>& __z)
+ __complex_sqrt(const complex<_Tp>& __z)
{
_Tp __x = __z.real();
_Tp __y = __z.imag();
}
}
+ inline __complex__ float
+ __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }
+
+ inline __complex__ double
+ __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }
+
+ inline __complex__ long double
+ __complex_sqrt(const __complex__ long double& __z)
+ { return __builtin_csqrtl(__z); }
+
template<typename _Tp>
inline complex<_Tp>
- tan(const complex<_Tp>& __z)
- {
- return std::sin(__z) / std::cos(__z);
- }
+ sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
+ // 26.2.8/14 tan(__z): Return the complex tangent of __z.
+
template<typename _Tp>
inline complex<_Tp>
- tanh(const complex<_Tp>& __z)
- {
- return std::sinh(__z) / std::cosh(__z);
- }
+ __complex_tan(const complex<_Tp>& __z)
+ { return std::sin(__z) / std::cos(__z); }
+
+ inline __complex__ float
+ __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }
+
+ inline __complex__ double
+ __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }
+
+ inline __complex__ long double
+ __complex_tan(const __complex__ long double& __z)
+ { return __builtin_ctanl(__z); }
+
+ template<typename _Tp>
+ inline complex<_Tp>
+ tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
+
+ // 26.2.8/15 tanh(__z): Returns the hyperbolic tangent of __z.
+
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_tanh(const complex<_Tp>& __z)
+ { return std::sinh(__z) / std::cosh(__z); }
+
+ inline __complex__ float
+ __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }
+
+ inline __complex__ double
+ __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }
+
+ inline __complex__ long double
+ __complex_tanh(const __complex__ long double& __z)
+ { return __builtin_ctanhl(__z); }
+ template<typename _Tp>
+ inline complex<_Tp>
+ tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
+
+ // 26.2.8/9 pow(__x, __y): Returns the complex power base of __x
+ // raised to the __y-th power. The branch
+ // cut is on the negative axis.
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __z, int __n)
return std::polar(exp(__y * __t.real()), __y * __t.imag());
}
+ template<typename _Tp>
+ inline complex<_Tp>
+ __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
+ { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }
+
+ inline __complex__ float
+ __complex_pow(__complex__ float __x, __complex__ float __y)
+ { return __builtin_cpowf(__x, __y); }
+
+ inline __complex__ double
+ __complex_pow(__complex__ double __x, __complex__ double __y)
+ { return __builtin_cpow(__x, __y); }
+
+ inline __complex__ long double
+ __complex_pow(__complex__ long double& __x, __complex__ long double& __y)
+ { return __builtin_cpowl(__x, __y); }
+
template<typename _Tp>
inline complex<_Tp>
pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
- {
- return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));
- }
+ { return __complex_pow(__x, __y); }
template<typename _Tp>
inline complex<_Tp>
// 26.2.3 complex specializations
// complex<float> specialization
- template<> class complex<float>
- {
- public:
- typedef float value_type;
-
- complex(float = 0.0f, float = 0.0f);
+ template<>
+ struct complex<float>
+ {
+ typedef float value_type;
+ typedef __complex__ float _ComplexT;
+
+ complex(_ComplexT __z) : _M_value(__z) { }
+
+ complex(float = 0.0f, float = 0.0f);
#ifdef _GLIBCXX_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
+ complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
- explicit complex(const complex<double>&);
- explicit complex(const complex<long double>&);
-
- float& real();
- const float& real() const;
- float& imag();
- const float& imag() const;
-
- complex<float>& operator=(float);
- complex<float>& operator+=(float);
- complex<float>& operator-=(float);
- complex<float>& operator*=(float);
- complex<float>& operator/=(float);
-
- // Let's the compiler synthetize the copy and assignment
- // operator. It always does a pretty good job.
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<float>&operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<float>& operator+=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>& operator-=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>& operator*=(const complex<_Tp>&);
- template<class _Tp>
- complex<float>&operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ float _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<double>;
- friend class complex<long double>;
- };
+ explicit complex(const complex<double>&);
+ explicit complex(const complex<long double>&);
+
+ float& real();
+ const float& real() const;
+ float& imag();
+ const float& imag() const;
+
+ complex<float>& operator=(float);
+ complex<float>& operator+=(float);
+ complex<float>& operator-=(float);
+ complex<float>& operator*=(float);
+ complex<float>& operator/=(float);
+
+ // Let's the compiler synthetize the copy and assignment
+ // operator. It always does a pretty good job.
+ // complex& operator= (const complex&);
+ template<typename _Tp>
+ complex<float>&operator=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<float>& operator+=(const complex<_Tp>&);
+ template<class _Tp>
+ complex<float>& operator-=(const complex<_Tp>&);
+ template<class _Tp>
+ complex<float>& operator*=(const complex<_Tp>&);
+ template<class _Tp>
+ complex<float>&operator/=(const complex<_Tp>&);
+
+ const _ComplexT& __rep() const { return _M_value; }
+
+ private:
+ _ComplexT _M_value;
+ };
inline float&
complex<float>::real()
// 26.2.3 complex specializations
// complex<double> specialization
- template<> class complex<double>
- {
- public:
- typedef double value_type;
+ template<>
+ struct complex<double>
+ {
+ typedef double value_type;
+ typedef __complex__ double _ComplexT;
+
+ complex(_ComplexT __z) : _M_value(__z) { }
- complex(double =0.0, double =0.0);
+ complex(double = 0.0, double = 0.0);
#ifdef _GLIBCXX_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
+ complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
- complex(const complex<float>&);
- explicit complex(const complex<long double>&);
+ complex(const complex<float>&);
+ explicit complex(const complex<long double>&);
+
+ double& real();
+ const double& real() const;
+ double& imag();
+ const double& imag() const;
+
+ complex<double>& operator=(double);
+ complex<double>& operator+=(double);
+ complex<double>& operator-=(double);
+ complex<double>& operator*=(double);
+ complex<double>& operator/=(double);
+
+ // The compiler will synthetize this, efficiently.
+ // complex& operator= (const complex&);
+ template<typename _Tp>
+ complex<double>& operator=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<double>& operator+=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<double>& operator-=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<double>& operator*=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<double>& operator/=(const complex<_Tp>&);
- double& real();
- const double& real() const;
- double& imag();
- const double& imag() const;
-
- complex<double>& operator=(double);
- complex<double>& operator+=(double);
- complex<double>& operator-=(double);
- complex<double>& operator*=(double);
- complex<double>& operator/=(double);
-
- // The compiler will synthetize this, efficiently.
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<double>& operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator+=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator-=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator*=(const complex<_Tp>&);
- template<typename _Tp>
- complex<double>& operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ double _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<float>;
- friend class complex<long double>;
- };
+ const _ComplexT& __rep() const { return _M_value; }
+
+ private:
+ _ComplexT _M_value;
+ };
inline double&
complex<double>::real()
// 26.2.3 complex specializations
// complex<long double> specialization
- template<> class complex<long double>
- {
- public:
- typedef long double value_type;
+ template<>
+ struct complex<long double>
+ {
+ typedef long double value_type;
+ typedef __complex__ long double _ComplexT;
- complex(long double = 0.0L, long double = 0.0L);
+ complex(_ComplexT __z) : _M_value(__z) { }
+
+ complex(long double = 0.0L, long double = 0.0L);
#ifdef _GLIBCXX_BUGGY_COMPLEX
- complex(const complex& __z) : _M_value(__z._M_value) { }
+ complex(const complex& __z) : _M_value(__z._M_value) { }
#endif
- complex(const complex<float>&);
- complex(const complex<double>&);
-
- long double& real();
- const long double& real() const;
- long double& imag();
- const long double& imag() const;
-
- complex<long double>& operator= (long double);
- complex<long double>& operator+= (long double);
- complex<long double>& operator-= (long double);
- complex<long double>& operator*= (long double);
- complex<long double>& operator/= (long double);
-
- // The compiler knows how to do this efficiently
- // complex& operator= (const complex&);
- template<typename _Tp>
- complex<long double>& operator=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator+=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator-=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator*=(const complex<_Tp>&);
- template<typename _Tp>
- complex<long double>& operator/=(const complex<_Tp>&);
-
- private:
- typedef __complex__ long double _ComplexT;
- _ComplexT _M_value;
-
- complex(_ComplexT __z) : _M_value(__z) { }
-
- friend class complex<float>;
- friend class complex<double>;
- };
+ complex(const complex<float>&);
+ complex(const complex<double>&);
+
+ long double& real();
+ const long double& real() const;
+ long double& imag();
+ const long double& imag() const;
+
+ complex<long double>& operator= (long double);
+ complex<long double>& operator+= (long double);
+ complex<long double>& operator-= (long double);
+ complex<long double>& operator*= (long double);
+ complex<long double>& operator/= (long double);
+
+ // The compiler knows how to do this efficiently
+ // complex& operator= (const complex&);
+ template<typename _Tp>
+ complex<long double>& operator=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<long double>& operator+=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<long double>& operator-=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<long double>& operator*=(const complex<_Tp>&);
+ template<typename _Tp>
+ complex<long double>& operator/=(const complex<_Tp>&);
+
+ const _ComplexT& __rep() const { return _M_value; }
+
+ private:
+ _ComplexT _M_value;
+ };
inline
complex<long double>::complex(long double __r, long double __i)
// inlining. It suffices that class specializations be defined.
inline
complex<float>::complex(const complex<double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
+ : _M_value(__z.__rep()) { }
inline
complex<float>::complex(const complex<long double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
+ : _M_value(__z.__rep()) { }
inline
complex<double>::complex(const complex<float>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
+ : _M_value(__z.__rep()) { }
inline
complex<double>::complex(const complex<long double>& __z)
- {
- __real__ _M_value = __z.real();
- __imag__ _M_value = __z.imag();
- }
+ : _M_value(__z.__rep()) { }
inline
complex<long double>::complex(const complex<float>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
+ : _M_value(__z.__rep()) { }
inline
complex<long double>::complex(const complex<double>& __z)
- : _M_value(_ComplexT(__z._M_value)) { }
+ : _M_value(__z.__rep()) { }
} // namespace std
#endif /* _GLIBCXX_COMPLEX */