fprintf(f, ")\n");
for (auto &p : cell->connections) {
RTLIL::SigSpec sig = sigmap(p.second);
- sig.expand();
- for (int i = 0; i < sig.size(); i++) {
- RTLIL::SigSpec sigbit(sig.chunks().at(i));
+ for (int i = 0; i < SIZE(sig); i++)
if (sig.size() == 1)
- net_join_db[sigbit].insert(stringf("(portRef %s (instanceRef %s))", EDIF_REF(p.first), EDIF_REF(cell->name)));
+ net_join_db[sig[i]].insert(stringf("(portRef %s (instanceRef %s))", EDIF_REF(p.first), EDIF_REF(cell->name)));
else
- net_join_db[sigbit].insert(stringf("(portRef (member %s %d) (instanceRef %s))", EDIF_REF(p.first), i, EDIF_REF(cell->name)));
- }
+ net_join_db[sig[i]].insert(stringf("(portRef (member %s %d) (instanceRef %s))", EDIF_REF(p.first), i, EDIF_REF(cell->name)));
}
}
for (auto &it : net_join_db) {
assign_map.apply(sig);
#ifndef NDEBUG
RTLIL::SigSpec current_val = values_map(sig);
- current_val.expand();
- for (size_t i = 0; i < current_val.chunks().size(); i++) {
- const RTLIL::SigChunk &chunk = current_val.chunks()[i];
- assert(chunk.wire != NULL || chunk.data.bits[0] == value.bits[i]);
- }
+ for (int i = 0; i < SIZE(current_val); i++)
+ assert(current_val[i].wire != NULL || current_val[i] == value.bits[i]);
#endif
values_map.add(sig, RTLIL::SigSpec(value));
}
return bits_.empty();
}
-void RTLIL::SigSpec::expand()
-{
- pack();
- std::vector<RTLIL::SigChunk> new_chunks;
- for (size_t i = 0; i < chunks_.size(); i++) {
- for (int j = 0; j < chunks_[i].width; j++)
- new_chunks.push_back(chunks_[i].extract(j, 1));
- }
- chunks_.swap(new_chunks);
- check();
-}
-
void RTLIL::SigSpec::optimize()
{
pack();
// check();
}
-bool RTLIL::SigSpec::combine(RTLIL::SigSpec signal, RTLIL::State freeState, bool do_override)
-{
- pack();
- signal.pack();
-
- bool no_collisions = true;
-
- assert(width_ == signal.width_);
- expand();
- signal.expand();
-
- for (size_t i = 0; i < chunks_.size(); i++) {
- bool self_free = chunks_[i].wire == NULL && chunks_[i].data.bits[0] == freeState;
- bool other_free = signal.chunks_[i].wire == NULL && signal.chunks_[i].data.bits[0] == freeState;
- if (!self_free && !other_free) {
- if (do_override)
- chunks_[i] = signal.chunks_[i];
- else
- chunks_[i] = RTLIL::SigChunk(RTLIL::State::Sx, 1);
- no_collisions = false;
- }
- if (self_free && !other_free)
- chunks_[i] = signal.chunks_[i];
- }
-
- optimize();
- return no_collisions;
-}
-
void RTLIL::SigSpec::extend(int width, bool is_signed)
{
pack();
inline RTLIL::SigSpecIterator begin() { RTLIL::SigSpecIterator it; it.sig_p = this; it.index = 0; return it; }
inline RTLIL::SigSpecIterator end() { RTLIL::SigSpecIterator it; it.sig_p = this; it.index = width_; return it; }
- void expand();
void optimize();
RTLIL::SigSpec optimized() const;
void append(const RTLIL::SigSpec &signal);
void append_bit(const RTLIL::SigBit &bit);
- bool combine(RTLIL::SigSpec signal, RTLIL::State freeState = RTLIL::State::Sz, bool do_override = false);
-
void extend(int width, bool is_signed = false);
void extend_u0(int width, bool is_signed = false);
{
log_assert(!undef_mode || model_undef);
sigmap->apply(sig);
- sig.expand();
std::vector<int> vec;
- vec.reserve(sig.chunks().size());
+ vec.reserve(SIZE(sig));
- for (auto &c : sig.chunks())
- if (c.wire == NULL) {
- RTLIL::State bit = c.data.bits.at(0);
+ for (auto &bit : sig)
+ if (bit.wire == NULL) {
if (model_undef && dup_undef && bit == RTLIL::State::Sx)
vec.push_back(ez->frozen_literal());
else
vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
} else {
- std::string name = pf + stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset);
+ std::string name = pf + stringf(bit.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(bit.wire->name), bit.offset);
vec.push_back(ez->frozen_literal(name));
}
return vec;
struct SigPool
{
- typedef std::pair<RTLIL::Wire*,int> bitDef_t;
+ struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
+ bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
+ bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
+ };
+
std::set<bitDef_t> bits;
void clear()
void add(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits.insert(bit);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits.insert(bit);
}
void add(const SigPool &other)
void del(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits.erase(bit);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits.erase(bit);
}
void del(const SigPool &other)
void expand(RTLIL::SigSpec from, RTLIL::SigSpec to)
{
- from.expand();
- to.expand();
- assert(from.chunks().size() == to.chunks().size());
- for (size_t i = 0; i < from.chunks().size(); i++) {
- bitDef_t bit_from(from.chunks()[i].wire, from.chunks()[i].offset);
- bitDef_t bit_to(to.chunks()[i].wire, to.chunks()[i].offset);
- if (bit_from.first == NULL || bit_to.first == NULL)
- continue;
- if (bits.count(bit_from) > 0)
+ assert(SIZE(from) == SIZE(to));
+ for (int i = 0; i < SIZE(from); i++) {
+ bitDef_t bit_from(from[i]), bit_to(to[i]);
+ if (bit_from.first != NULL && bit_to.first != NULL && bits.count(bit_from) > 0)
bits.insert(bit_to);
}
}
RTLIL::SigSpec extract(RTLIL::SigSpec sig)
{
RTLIL::SigSpec result;
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- bitDef_t bit(c.wire, c.offset);
- if (bits.count(bit) > 0)
- result.append(c);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL && bits.count(bit))
+ result.append_bit(bit);
return result;
}
RTLIL::SigSpec remove(RTLIL::SigSpec sig)
{
RTLIL::SigSpec result;
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- bitDef_t bit(c.wire, c.offset);
- if (bits.count(bit) == 0)
- result.append(c);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL && bits.count(bit) == 0)
+ result.append(bit);
return result;
}
bool check_any(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- bitDef_t bit(c.wire, c.offset);
- if (bits.count(bit) != 0)
+ for (auto &bit : sig)
+ if (bit.wire != NULL && bits.count(bit))
return true;
- }
return false;
}
bool check_all(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- bitDef_t bit(c.wire, c.offset);
- if (bits.count(bit) == 0)
+ for (auto &bit : sig)
+ if (bit.wire != NULL && bits.count(bit) == 0)
return false;
- }
return true;
}
RTLIL::SigSpec export_one()
{
- RTLIL::SigSpec sig;
- for (auto &bit : bits) {
- sig.append(RTLIL::SigSpec(bit.first, bit.second));
- break;
- }
- return sig;
+ for (auto &bit : bits)
+ return RTLIL::SigSpec(bit.first, bit.second);
+ return RTLIL::SigSpec();
}
RTLIL::SigSpec export_all()
{
- RTLIL::SigSpec sig;
+ std::set<RTLIL::SigBit> sig;
for (auto &bit : bits)
- sig.append(RTLIL::SigSpec(bit.first, bit.second));
- sig.sort_and_unify();
+ sig.insert(RTLIL::SigBit(bit.first, bit.second));
return sig;
}
template <typename T, class Compare = std::less<T>>
struct SigSet
{
- typedef std::pair<RTLIL::Wire*,int> bitDef_t;
+ struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
+ bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
+ bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
+ };
+
std::map<bitDef_t, std::set<T, Compare>> bits;
void clear()
void insert(RTLIL::SigSpec sig, T data)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits[bit].insert(data);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits[bit].insert(data);
}
void insert(RTLIL::SigSpec sig, const std::set<T> &data)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits[bit].insert(data.begin(), data.end());
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits[bit].insert(data.begin(), data.end());
}
void erase(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits[bit].clear();
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits[bit].clear();
}
void erase(RTLIL::SigSpec sig, T data)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits[bit].erase(data);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits[bit].erase(data);
}
void erase(RTLIL::SigSpec sig, const std::set<T> &data)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- bits[bit].erase(data.begin(), data.end());
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bits[bit].erase(data.begin(), data.end());
}
void find(RTLIL::SigSpec sig, std::set<T> &result)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- for (auto &data : bits[bit])
- result.insert(data);
- }
+ for (auto &bit : sig)
+ if (bit.wire != NULL) {
+ auto &data = bits[bit];
+ result.insert(data.begin(), data.end());
+ }
}
std::set<T> find(RTLIL::SigSpec sig)
bool has(RTLIL::SigSpec sig)
{
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire == NULL)
- continue;
- assert(c.width == 1);
- bitDef_t bit(c.wire, c.offset);
- if (bits.count(bit))
+ for (auto &bit : sig)
+ if (bit.wire != NULL && bits.count(bit))
return true;
- }
return false;
}
};
struct SigMap
{
- typedef std::pair<RTLIL::Wire*,int> bitDef_t;
+ struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
+ bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
+ bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
+ };
struct shared_bit_data_t {
RTLIL::SigBit map_to;
}
// internal helper function
- void register_bit(const RTLIL::SigBit &b)
+ void register_bit(const RTLIL::SigBit &bit)
{
- bitDef_t bit(b.wire, b.offset);
- if (b.wire && bits.count(bit) == 0) {
+ if (bit.wire && bits.count(bit) == 0) {
shared_bit_data_t *bd = new shared_bit_data_t;
- bd->map_to = b;
+ bd->map_to = bit;
bd->bits.insert(bit);
bits[bit] = bd;
}
}
// internal helper function
- void unregister_bit(const RTLIL::SigBit &b)
+ void unregister_bit(const RTLIL::SigBit &bit)
{
- bitDef_t bit(b.wire, b.offset);
- if (b.wire && bits.count(bit) > 0) {
+ if (bit.wire && bits.count(bit) > 0) {
shared_bit_data_t *bd = bits[bit];
bd->bits.erase(bit);
if (bd->bits.size() == 0)
{
assert(bit1.wire != NULL && bit2.wire != NULL);
- bitDef_t b1(bit1.wire, bit1.offset);
- bitDef_t b2(bit2.wire, bit2.offset);
-
- shared_bit_data_t *bd1 = bits[b1];
- shared_bit_data_t *bd2 = bits[b2];
+ shared_bit_data_t *bd1 = bits[bit1];
+ shared_bit_data_t *bd2 = bits[bit2];
assert(bd1 != NULL && bd2 != NULL);
if (bd1 == bd2)
}
// internal helper function
- void set_bit(const RTLIL::SigBit &b1, const RTLIL::SigBit &b2)
+ void set_bit(const RTLIL::SigBit &bit1, const RTLIL::SigBit &bit2)
{
- assert(b1.wire != NULL);
- bitDef_t bit(b1.wire, b1.offset);
- assert(bits.count(bit) > 0);
- bits[bit]->map_to = b2;
+ assert(bit1.wire != NULL);
+ assert(bits.count(bit1) > 0);
+ bits[bit1]->map_to = bit2;
}
// internal helper function
- void map_bit(RTLIL::SigBit &b) const
+ void map_bit(RTLIL::SigBit &bit) const
{
- bitDef_t bit(b.wire, b.offset);
- if (b.wire && bits.count(bit) > 0)
- b = bits.at(bit)->map_to;
+ if (bit.wire && bits.count(bit) > 0)
+ bit = bits.at(bit)->map_to;
}
void add(RTLIL::SigSpec from, RTLIL::SigSpec to)
unregister_bit(bit);
}
+ void apply(RTLIL::SigBit &bit) const
+ {
+ map_bit(bit);
+ }
+
void apply(RTLIL::SigSpec &sig) const
{
for (auto &bit : sig)
SigMap sigmap(module);
// count how many times a single-bit signal is used
- std::map<RTLIL::SigSpec, int> bit_usage_count;
+ std::map<RTLIL::SigBit, int> bit_usage_count;
// count ouput lines for this module (needed only for summary output at the end)
int line_count = 0;
// (use sigmap to get a uniqe signal name)
RTLIL::SigSpec sig = sigmap(conn.second);
- // split the signal up into single-bit chunks
- sig.expand();
-
- // add each chunk to bit_usage_count, unless it is a constant
- for (auto &c : sig.chunks)
- if (c.wire != NULL)
- bit_usage_count[c]++;
+ // add each bit to bit_usage_count, unless it is a constant
+ for (auto &bit : sig)
+ if (bit.wire != NULL)
+ bit_usage_count[bit]++;
}
// for each wire in the module
// get a signal description for this wire and split it into seperate bits
RTLIL::SigSpec sig = sigmap(wire);
- sig.expand();
// for each bit (unless it is a constant):
// check if it is used at least two times and add to stub_bits otherwise
- for (size_t i = 0; i < sig.chunks.size(); i++)
- if (sig.chunks[i].wire != NULL && (bit_usage_count[sig.chunks[i]] +
- usage_offset) < 2)
+ for (size_t i = 0; i < SIZE(sig); i++)
+ if (sig[i].wire != NULL && (bit_usage_count[sig[i]] + usage_offset) < 2)
stub_bits.insert(i);
// continue if no stub bits found
char type;
int in1, in2, in3;
bool is_port;
- RTLIL::SigSpec sig;
+ RTLIL::SigBit bit;
};
static int map_autoidx;
static SigMap assign_map;
static RTLIL::Module *module;
static std::vector<gate_t> signal_list;
-static std::map<RTLIL::SigSpec, int> signal_map;
+static std::map<RTLIL::SigBit, int> signal_map;
static bool clk_polarity;
static RTLIL::SigSpec clk_sig;
-static int map_signal(RTLIL::SigSpec sig, char gate_type = -1, int in1 = -1, int in2 = -1, int in3 = -1)
+static int map_signal(RTLIL::SigBit bit, char gate_type = -1, int in1 = -1, int in2 = -1, int in3 = -1)
{
- assert(sig.size() == 1);
- assert(sig.chunks().size() == 1);
+ assign_map.apply(bit);
- assign_map.apply(sig);
-
- if (signal_map.count(sig) == 0) {
+ if (signal_map.count(bit) == 0) {
gate_t gate;
gate.id = signal_list.size();
gate.type = -1;
gate.in2 = -1;
gate.in3 = -1;
gate.is_port = false;
- gate.sig = sig;
+ gate.bit = bit;
signal_list.push_back(gate);
- signal_map[sig] = gate.id;
+ signal_map[bit] = gate.id;
}
- gate_t &gate = signal_list[signal_map[sig]];
+ gate_t &gate = signal_list[signal_map[bit]];
if (gate_type >= 0)
gate.type = gate_type;
static void mark_port(RTLIL::SigSpec sig)
{
- assign_map.apply(sig);
- sig.expand();
- for (auto &c : sig.chunks()) {
- if (c.wire != NULL && signal_map.count(c) > 0)
- signal_list[signal_map[c]].is_port = true;
- }
+ for (auto &bit : assign_map(sig))
+ if (bit.wire != NULL && signal_map.count(bit) > 0)
+ signal_list[signal_map[bit]].is_port = true;
}
static void extract_cell(RTLIL::Cell *cell, bool keepff)
}
for (auto n : nodes)
- fprintf(f, " n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].sig),
+ fprintf(f, " n%d [label=\"%s\\nid=%d, count=%d\"%s];\n", n, log_signal(signal_list[n].bit),
n, in_counts[n], workpool.count(n) ? ", shape=box" : "");
for (auto &e : edges)
int id = *workpool.begin();
workpool.erase(id);
- // log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].sig));
+ // log("Removing non-loop node %d from graph: %s\n", id, log_signal(signal_list[id].bit));
for (int id2 : edges[id]) {
assert(in_edges_count[id2] > 0);
for (auto &edge_it : edges) {
int id2 = edge_it.first;
- RTLIL::Wire *w1 = signal_list[id1].sig.chunks()[0].wire;
- RTLIL::Wire *w2 = signal_list[id2].sig.chunks()[0].wire;
+ RTLIL::Wire *w1 = signal_list[id1].bit.wire;
+ RTLIL::Wire *w2 = signal_list[id2].bit.wire;
if (w1 != NULL)
continue;
else if (w2 == NULL)
for (int id2 : edges[id1]) {
if (first_line)
log("Breaking loop using new signal %s: %s -> %s\n", log_signal(RTLIL::SigSpec(wire)),
- log_signal(signal_list[id1].sig), log_signal(signal_list[id2].sig));
+ log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
else
log(" %*s %s -> %s\n", int(strlen(log_signal(RTLIL::SigSpec(wire)))), "",
- log_signal(signal_list[id1].sig), log_signal(signal_list[id2].sig));
+ log_signal(signal_list[id1].bit), log_signal(signal_list[id2].bit));
first_line = false;
}
}
edges[id1].swap(edges[id3]);
- module->connections.push_back(RTLIL::SigSig(signal_list[id3].sig, signal_list[id1].sig));
+ module->connections.push_back(RTLIL::SigSig(signal_list[id3].bit, signal_list[id1].bit));
dump_loop_graph(dot_f, dot_nr, edges, workpool, in_edges_count);
}
}
fprintf(f, "\n");
for (auto &si : signal_list)
- fprintf(f, "# n%-5d %s\n", si.id, log_signal(si.sig));
+ fprintf(f, "# n%-5d %s\n", si.id, log_signal(si.bit));
for (auto &si : signal_list) {
- assert(si.sig.size() == 1 && si.sig.chunks().size() == 1);
- if (si.sig.chunks()[0].wire == NULL) {
+ if (si.bit.wire == NULL) {
fprintf(f, ".names n%d\n", si.id);
- if (si.sig.chunks()[0].data.bits[0] == RTLIL::State::S1)
+ if (si.bit == RTLIL::State::S1)
fprintf(f, "1\n");
}
}
snprintf(buffer, 100, "\\n%d", si.id);
RTLIL::SigSig conn;
if (si.type >= 0) {
- conn.first = si.sig;
+ conn.first = si.bit;
conn.second = RTLIL::SigSpec(module->wires[remap_name(buffer)]);
out_wires++;
} else {
conn.first = RTLIL::SigSpec(module->wires[remap_name(buffer)]);
- conn.second = si.sig;
+ conn.second = si.bit;
in_wires++;
}
module->connections.push_back(conn);
if (!used_signals.check_any(s2) && wire->port_id == 0 && !wire->get_bool_attribute("\\keep")) {
del_wires.push_back(wire);
} else {
- s1.expand();
- s2.expand();
- assert(s1.chunks().size() == s2.chunks().size());
+ assert(SIZE(s1) == SIZE(s2));
RTLIL::SigSig new_conn;
- for (size_t i = 0; i < s1.chunks().size(); i++)
- if (s1.chunks()[i] != s2.chunks()[i]) {
- new_conn.first.append(s1.chunks()[i]);
- new_conn.second.append(s2.chunks()[i]);
+ for (int i = 0; i < SIZE(s1); i++)
+ if (s1[i] != s2[i]) {
+ new_conn.first.append_bit(s1[i]);
+ new_conn.second.append_bit(s2[i]);
}
if (new_conn.first.size() > 0) {
new_conn.first.optimize();
RTLIL::SigSpec sig = assign_map(RTLIL::SigSpec(wire));
if (!used_signals_nodrivers.check_any(sig)) {
std::string unused_bits;
- sig.expand();
- for (size_t i = 0; i < sig.chunks().size(); i++) {
- if (sig.chunks()[i].wire == NULL)
+ for (int i = 0; i < SIZE(sig); i++) {
+ if (sig[i].wire == NULL)
continue;
if (!used_signals_nodrivers.check_any(sig)) {
if (!unused_bits.empty())
}
RTLIL::SigSpec new_a, new_b;
- a.expand(), b.expand();
- assert(a.chunks().size() == b.chunks().size());
- for (size_t i = 0; i < a.chunks().size(); i++) {
- if (a.chunks()[i].wire == NULL && b.chunks()[i].wire == NULL && a.chunks()[i].data.bits[0] != b.chunks()[i].data.bits[0] &&
- a.chunks()[i].data.bits[0] <= RTLIL::State::S1 && b.chunks()[i].data.bits[0] <= RTLIL::State::S1) {
+ assert(SIZE(a) == SIZE(b));
+ for (int i = 0; i < SIZE(a); i++) {
+ if (a[i].wire == NULL && b[i].wire == NULL && a[i] != b[i] && a[i].data <= RTLIL::State::S1 && b[i].data <= RTLIL::State::S1) {
RTLIL::SigSpec new_y = RTLIL::SigSpec((cell->type == "$eq" || cell->type == "$eqx") ? RTLIL::State::S0 : RTLIL::State::S1);
new_y.extend(cell->parameters["\\Y_WIDTH"].as_int(), false);
replace_cell(module, cell, "empty", "\\Y", new_y);
goto next_cell;
}
- if (a.chunks()[i] == b.chunks()[i])
+ if (a[i] == b[i])
continue;
- new_a.append(a.chunks()[i]);
- new_b.append(b.chunks()[i]);
+ new_a.append(a[i]);
+ new_b.append(b[i]);
}
if (new_a.size() == 0) {
SigMap assign_map;
int removed_count;
- typedef std::pair<RTLIL::Wire*,int> bitDef_t;
+ struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
+ bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
+ bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
+ };
+
struct bitinfo_t {
int num;
{
std::vector<int> results;
assign_map.apply(sig);
- sig.expand();
- for (auto &c : sig.chunks())
- if (c.wire != NULL) {
- bitDef_t bit(c.wire, c.offset);
+ for (auto &bit : sig)
+ if (bit.wire != NULL) {
if (bit2num.count(bit) == 0) {
bitinfo_t info;
info.num = bit2info.size();
cells.erase(cell);
RTLIL::SigSpec sig_a = assign_map(cell->connections["\\A"]);
- sig_a.sort_and_unify();
- sig_a.expand();
+ std::set<RTLIL::SigBit> new_sig_a_bits;
- RTLIL::SigSpec new_sig_a;
- for (auto &chunk : sig_a.chunks())
+ for (auto &bit : sig_a.to_sigbit_set())
{
- if (chunk.wire == NULL && chunk.data.bits[0] == RTLIL::State::S0) {
+ if (bit == RTLIL::State::S0) {
if (cell->type == "$reduce_and") {
- new_sig_a = RTLIL::SigSpec(RTLIL::State::S0);
+ new_sig_a_bits.clear();
+ new_sig_a_bits.insert(RTLIL::State::S0);
break;
}
continue;
}
- if (chunk.wire == NULL && chunk.data.bits[0] == RTLIL::State::S1) {
+ if (bit == RTLIL::State::S1) {
if (cell->type == "$reduce_or") {
- new_sig_a = RTLIL::SigSpec(RTLIL::State::S1);
+ new_sig_a_bits.clear();
+ new_sig_a_bits.insert(RTLIL::State::S1);
break;
}
continue;
}
- if (chunk.wire == NULL) {
- new_sig_a.append(chunk);
+ if (bit.wire == NULL) {
+ new_sig_a_bits.insert(bit);
continue;
}
bool imported_children = false;
- for (auto child_cell : drivers.find(chunk)) {
+ for (auto child_cell : drivers.find(bit)) {
if (child_cell->type == cell->type) {
opt_reduce(cells, drivers, child_cell);
- if (child_cell->connections["\\Y"].extract(0, 1) == chunk)
- new_sig_a.append(child_cell->connections["\\A"]);
- else
- new_sig_a.append(RTLIL::State::S0);
+ if (child_cell->connections["\\Y"][0] == bit) {
+ std::set<RTLIL::SigBit> child_sig_a_bits = assign_map(child_cell->connections["\\A"]).to_sigbit_set();
+ new_sig_a_bits.insert(child_sig_a_bits.begin(), child_sig_a_bits.end());
+ } else
+ new_sig_a_bits.insert(RTLIL::State::S0);
imported_children = true;
}
}
if (!imported_children)
- new_sig_a.append(chunk);
+ new_sig_a_bits.insert(bit);
}
- new_sig_a.sort_and_unify();
+
+ RTLIL::SigSpec new_sig_a(new_sig_a_bits);
if (new_sig_a != sig_a || sig_a.size() != cell->connections["\\A"].size()) {
log(" New input vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_a));
if (!ez.solve(y_vec, y_values))
log_error("Failed to find solution to SAT problem.\n");
- expected_y.expand();
for (int i = 0; i < expected_y.size(); i++) {
RTLIL::State solution_bit = y_values.at(i) ? RTLIL::State::S1 : RTLIL::State::S0;
- RTLIL::State expected_bit = expected_y.chunks().at(i).data.bits.at(0);
+ RTLIL::State expected_bit = expected_y[i].data;
if (model_undef) {
if (y_values.at(expected_y.size()+i))
solution_bit = RTLIL::State::Sx;
sat_bits += "x";
else
sat_bits += y_values.at(k) ? "1" : "0";
- rtl_bits += expected_y.chunks().at(k).data.bits.at(0) == RTLIL::State::Sx ? "x" :
- expected_y.chunks().at(k).data.bits.at(0) == RTLIL::State::S1 ? "1" : "0";
+ rtl_bits += expected_y[k] == RTLIL::State::Sx ? "x" : expected_y[k] == RTLIL::State::S1 ? "1" : "0";
}
log_error("Found error in SAT model: y[%d] = %s, should be %s:\n SAT: %s\n RTL: %s\n %*s^\n",
int(i), log_signal(solution_bit), log_signal(expected_bit),
if (module_name == "rtl") {
rtl_sig = sig;
- rtl_sig.expand();
sat_check(module, recorded_set_vars, recorded_set_vals, sig, false);
sat_check(module, recorded_set_vars, recorded_set_vals, sig, true);
} else if (rtl_sig.size() > 0) {
- sig.expand();
if (rtl_sig.size() != sig.size())
log_error("Output (y) has a different width in module %s compared to rtl!\n", RTLIL::id2cstr(module->name));
for (int i = 0; i < SIZE(sig); i++)
if (prove_asserts) {
RTLIL::SigSpec asserts_a, asserts_en;
satgen.getAsserts(asserts_a, asserts_en, timestep);
- asserts_a.expand();
- asserts_en.expand();
- for (size_t i = 0; i < asserts_a.chunks().size(); i++)
- log("Import proof for assert: %s when %s.\n", log_signal(asserts_a.chunks()[i]), log_signal(asserts_en.chunks()[i]));
+ for (int i = 0; i < SIZE(asserts_a); i++)
+ log("Import proof for assert: %s when %s.\n", log_signal(asserts_a[i]), log_signal(asserts_en[i]));
prove_bits.push_back(satgen.importAsserts(timestep));
}
RTLIL::SigSpec needleSig = conn.second;
RTLIL::SigSpec haystackSig = haystackCell->connections.at(portMapping.at(conn.first));
- needleSig.expand();
- haystackSig.expand();
-
for (int i = 0; i < std::min(needleSig.size(), haystackSig.size()); i++) {
- RTLIL::Wire *needleWire = needleSig.chunks().at(i).wire, *haystackWire = haystackSig.chunks().at(i).wire;
+ RTLIL::Wire *needleWire = needleSig[i].wire, *haystackWire = haystackSig[i].wire;
if (needleWire != lastNeedleWire || haystackWire != lastHaystackWire)
if (!compareAttributes(wire_attr, needleWire ? needleWire->attributes : emptyAttr, haystackWire ? haystackWire->attributes : emptyAttr))
return false;
int max_fanout = -1, std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> *split = NULL)
{
SigMap sigmap(mod);
- std::map<RTLIL::SigChunk, bit_ref_t> sig_bit_ref;
+ std::map<RTLIL::SigBit, bit_ref_t> sig_bit_ref;
if (sel && !sel->selected(mod)) {
log(" Skipping module %s as it is not selected.\n", id2cstr(mod->name));
for (auto &conn : cell->connections) {
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
- conn_sig.expand();
- for (auto &chunk : conn_sig.chunks())
- if (chunk.wire != NULL)
- sig_use_count[std::pair<RTLIL::Wire*, int>(chunk.wire, chunk.offset)]++;
+ for (auto &bit : conn_sig)
+ if (bit.wire != NULL)
+ sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)]++;
}
}
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
- conn_sig.expand();
- for (size_t i = 0; i < conn_sig.chunks().size(); i++)
+ for (int i = 0; i < conn_sig.size(); i++)
{
- auto &chunk = conn_sig.chunks()[i];
- assert(chunk.width == 1);
+ auto &bit = conn_sig[i];
- if (chunk.wire == NULL) {
+ if (bit.wire == NULL) {
if (constports) {
std::string node = "$const$x";
- if (chunk.data.bits[0] == RTLIL::State::S0) node = "$const$0";
- if (chunk.data.bits[0] == RTLIL::State::S1) node = "$const$1";
- if (chunk.data.bits[0] == RTLIL::State::Sz) node = "$const$z";
+ if (bit == RTLIL::State::S0) node = "$const$0";
+ if (bit == RTLIL::State::S1) node = "$const$1";
+ if (bit == RTLIL::State::Sz) node = "$const$z";
graph.createConnection(cell->name, conn.first, i, node, "\\Y", 0);
} else
- graph.createConstant(cell->name, conn.first, i, int(chunk.data.bits[0]));
+ graph.createConstant(cell->name, conn.first, i, int(bit.data));
continue;
}
- if (max_fanout > 0 && sig_use_count[std::pair<RTLIL::Wire*, int>(chunk.wire, chunk.offset)] > max_fanout)
+ if (max_fanout > 0 && sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)] > max_fanout)
continue;
- if (sel && !sel->selected(mod, chunk.wire))
+ if (sel && !sel->selected(mod, bit.wire))
continue;
- if (sig_bit_ref.count(chunk) == 0) {
- bit_ref_t &bit_ref = sig_bit_ref[chunk];
+ if (sig_bit_ref.count(bit) == 0) {
+ bit_ref_t &bit_ref = sig_bit_ref[bit];
bit_ref.cell = cell->name;
bit_ref.port = conn.first;
bit_ref.bit = i;
}
- bit_ref_t &bit_ref = sig_bit_ref[chunk];
+ bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name, conn.first, i);
}
}
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
- conn_sig.expand();
- for (auto &chunk : conn_sig.chunks())
- if (sig_bit_ref.count(chunk) != 0) {
- bit_ref_t &bit_ref = sig_bit_ref[chunk];
+ for (auto &bit : conn_sig)
+ if (sig_bit_ref.count(bit) != 0) {
+ bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
{
RTLIL::SigSpec conn_sig(wire);
sigmap.apply(conn_sig);
- conn_sig.expand();
- for (auto &chunk : conn_sig.chunks())
- if (sig_bit_ref.count(chunk) != 0) {
- bit_ref_t &bit_ref = sig_bit_ref[chunk];
+ for (auto &bit : conn_sig)
+ if (sig_bit_ref.count(bit) != 0) {
+ bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
for (auto &conn : needle_cell->connections) {
RTLIL::SigSpec sig = sigmap(conn.second);
if (mapping.portMapping.count(conn.first) > 0 && sig2port.has(sigmap(sig))) {
- sig.expand();
for (int i = 0; i < sig.size(); i++)
- for (auto &port : sig2port.find(sig.chunks()[i])) {
+ for (auto &port : sig2port.find(sig[i])) {
RTLIL::SigSpec bitsig = haystack_cell->connections.at(mapping.portMapping[conn.first]).extract(i, 1);
cell->connections.at(port.first).replace(port.second, bitsig);
}
static void simplemap_not(RTLIL::Module *module, RTLIL::Cell *cell)
{
- int width = cell->parameters.at("\\Y_WIDTH").as_int();
-
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.extend(width, cell->parameters.at("\\A_SIGNED").as_bool());
- sig_a.expand();
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
- sig_y.expand();
- for (int i = 0; i < width; i++) {
+ sig_a.extend(SIZE(sig_y), cell->parameters.at("\\A_SIGNED").as_bool());
+
+ for (int i = 0; i < SIZE(sig_y); i++) {
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = "$_INV_";
- gate->connections["\\A"] = sig_a.chunks().at(i);
- gate->connections["\\Y"] = sig_y.chunks().at(i);
+ gate->connections["\\A"] = sig_a[i];
+ gate->connections["\\Y"] = sig_y[i];
module->add(gate);
}
}
static void simplemap_pos(RTLIL::Module *module, RTLIL::Cell *cell)
{
- int width = cell->parameters.at("\\Y_WIDTH").as_int();
-
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.extend(width, cell->parameters.at("\\A_SIGNED").as_bool());
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
+ sig_a.extend(SIZE(sig_y), cell->parameters.at("\\A_SIGNED").as_bool());
+
module->connections.push_back(RTLIL::SigSig(sig_y, sig_a));
}
static void simplemap_bu0(RTLIL::Module *module, RTLIL::Cell *cell)
{
- int width = cell->parameters.at("\\Y_WIDTH").as_int();
-
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.extend_u0(width, cell->parameters.at("\\A_SIGNED").as_bool());
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
+ sig_a.extend_u0(SIZE(sig_y), cell->parameters.at("\\A_SIGNED").as_bool());
+
module->connections.push_back(RTLIL::SigSig(sig_y, sig_a));
}
static void simplemap_bitop(RTLIL::Module *module, RTLIL::Cell *cell)
{
- int width = cell->parameters.at("\\Y_WIDTH").as_int();
-
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.extend_u0(width, cell->parameters.at("\\A_SIGNED").as_bool());
- sig_a.expand();
-
RTLIL::SigSpec sig_b = cell->connections.at("\\B");
- sig_b.extend_u0(width, cell->parameters.at("\\B_SIGNED").as_bool());
- sig_b.expand();
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
- sig_y.expand();
+
+ sig_a.extend_u0(SIZE(sig_y), cell->parameters.at("\\A_SIGNED").as_bool());
+ sig_b.extend_u0(SIZE(sig_y), cell->parameters.at("\\B_SIGNED").as_bool());
if (cell->type == "$xnor")
{
- RTLIL::SigSpec sig_t = module->addWire(NEW_ID, width);
- sig_t.expand();
+ RTLIL::SigSpec sig_t = module->addWire(NEW_ID, SIZE(sig_y));
- for (int i = 0; i < width; i++) {
+ for (int i = 0; i < SIZE(sig_y); i++) {
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = "$_INV_";
- gate->connections["\\A"] = sig_t.chunks().at(i);
- gate->connections["\\Y"] = sig_y.chunks().at(i);
+ gate->connections["\\A"] = sig_t[i];
+ gate->connections["\\Y"] = sig_y[i];
module->add(gate);
}
if (cell->type == "$xnor") gate_type = "$_XOR_";
log_assert(!gate_type.empty());
- for (int i = 0; i < width; i++) {
+ for (int i = 0; i < SIZE(sig_y); i++) {
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = gate_type;
- gate->connections["\\A"] = sig_a.chunks().at(i);
- gate->connections["\\B"] = sig_b.chunks().at(i);
- gate->connections["\\Y"] = sig_y.chunks().at(i);
+ gate->connections["\\A"] = sig_a[i];
+ gate->connections["\\B"] = sig_b[i];
+ gate->connections["\\Y"] = sig_y[i];
module->add(gate);
}
}
static void simplemap_reduce(RTLIL::Module *module, RTLIL::Cell *cell)
{
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.expand();
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
if (sig_y.size() == 0)
while (sig_a.size() > 1)
{
RTLIL::SigSpec sig_t = module->addWire(NEW_ID, sig_a.size() / 2);
- sig_t.expand();
for (int i = 0; i < sig_a.size(); i += 2)
{
if (i+1 == sig_a.size()) {
- sig_t.append(sig_a.chunks().at(i));
+ sig_t.append(sig_a[i]);
continue;
}
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = gate_type;
- gate->connections["\\A"] = sig_a.chunks().at(i);
- gate->connections["\\B"] = sig_a.chunks().at(i+1);
- gate->connections["\\Y"] = sig_t.chunks().at(i/2);
+ gate->connections["\\A"] = sig_a[i];
+ gate->connections["\\B"] = sig_a[i+1];
+ gate->connections["\\Y"] = sig_t[i/2];
last_output = &gate->connections["\\Y"];
module->add(gate);
}
static void logic_reduce(RTLIL::Module *module, RTLIL::SigSpec &sig)
{
- sig.expand();
-
while (sig.size() > 1)
{
RTLIL::SigSpec sig_t = module->addWire(NEW_ID, sig.size() / 2);
- sig_t.expand();
for (int i = 0; i < sig.size(); i += 2)
{
if (i+1 == sig.size()) {
- sig_t.append(sig.chunks().at(i));
+ sig_t.append(sig[i]);
continue;
}
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = "$_OR_";
- gate->connections["\\A"] = sig.chunks().at(i);
- gate->connections["\\B"] = sig.chunks().at(i+1);
- gate->connections["\\Y"] = sig_t.chunks().at(i/2);
+ gate->connections["\\A"] = sig[i];
+ gate->connections["\\B"] = sig[i+1];
+ gate->connections["\\Y"] = sig_t[i/2];
module->add(gate);
}
static void simplemap_mux(RTLIL::Module *module, RTLIL::Cell *cell)
{
- int width = cell->parameters.at("\\WIDTH").as_int();
-
RTLIL::SigSpec sig_a = cell->connections.at("\\A");
- sig_a.expand();
-
RTLIL::SigSpec sig_b = cell->connections.at("\\B");
- sig_b.expand();
-
RTLIL::SigSpec sig_y = cell->connections.at("\\Y");
- sig_y.expand();
- for (int i = 0; i < width; i++) {
+ for (int i = 0; i < SIZE(sig_y); i++) {
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = "$_MUX_";
- gate->connections["\\A"] = sig_a.chunks().at(i);
- gate->connections["\\B"] = sig_b.chunks().at(i);
+ gate->connections["\\A"] = sig_a[i];
+ gate->connections["\\B"] = sig_b[i];
gate->connections["\\S"] = cell->connections.at("\\S");
- gate->connections["\\Y"] = sig_y.chunks().at(i);
+ gate->connections["\\Y"] = sig_y[i];
module->add(gate);
}
}
char clr_pol = cell->parameters.at("\\CLR_POLARITY").as_bool() ? 'P' : 'N';
RTLIL::SigSpec sig_s = cell->connections.at("\\SET");
- sig_s.expand();
-
RTLIL::SigSpec sig_r = cell->connections.at("\\CLR");
- sig_r.expand();
-
RTLIL::SigSpec sig_q = cell->connections.at("\\Q");
- sig_q.expand();
std::string gate_type = stringf("$_SR_%c%c_", set_pol, clr_pol);
RTLIL::Cell *gate = new RTLIL::Cell;
gate->name = NEW_ID;
gate->type = gate_type;
- gate->connections["\\S"] = sig_s.chunks().at(i);
- gate->connections["\\R"] = sig_r.chunks().at(i);
- gate->connections["\\Q"] = sig_q.chunks().at(i);
+ gate->connections["\\S"] = sig_s[i];
+ gate->connections["\\R"] = sig_r[i];
+ gate->connections["\\Q"] = sig_q[i];
module->add(gate);
}
}
char clk_pol = cell->parameters.at("\\CLK_POLARITY").as_bool() ? 'P' : 'N';
RTLIL::SigSpec sig_clk = cell->connections.at("\\CLK");
-
RTLIL::SigSpec sig_d = cell->connections.at("\\D");
- sig_d.expand();
-
RTLIL::SigSpec sig_q = cell->connections.at("\\Q");
- sig_q.expand();
std::string gate_type = stringf("$_DFF_%c_", clk_pol);
gate->name = NEW_ID;
gate->type = gate_type;
gate->connections["\\C"] = sig_clk;
- gate->connections["\\D"] = sig_d.chunks().at(i);
- gate->connections["\\Q"] = sig_q.chunks().at(i);
+ gate->connections["\\D"] = sig_d[i];
+ gate->connections["\\Q"] = sig_q[i];
module->add(gate);
}
}
char clr_pol = cell->parameters.at("\\CLR_POLARITY").as_bool() ? 'P' : 'N';
RTLIL::SigSpec sig_clk = cell->connections.at("\\CLK");
-
RTLIL::SigSpec sig_s = cell->connections.at("\\SET");
- sig_s.expand();
-
RTLIL::SigSpec sig_r = cell->connections.at("\\CLR");
- sig_r.expand();
-
RTLIL::SigSpec sig_d = cell->connections.at("\\D");
- sig_d.expand();
-
RTLIL::SigSpec sig_q = cell->connections.at("\\Q");
- sig_q.expand();
std::string gate_type = stringf("$_DFFSR_%c%c%c_", clk_pol, set_pol, clr_pol);
gate->name = NEW_ID;
gate->type = gate_type;
gate->connections["\\C"] = sig_clk;
- gate->connections["\\S"] = sig_s.chunks().at(i);
- gate->connections["\\R"] = sig_r.chunks().at(i);
- gate->connections["\\D"] = sig_d.chunks().at(i);
- gate->connections["\\Q"] = sig_q.chunks().at(i);
+ gate->connections["\\S"] = sig_s[i];
+ gate->connections["\\R"] = sig_r[i];
+ gate->connections["\\D"] = sig_d[i];
+ gate->connections["\\Q"] = sig_q[i];
module->add(gate);
}
}
RTLIL::SigSpec sig_clk = cell->connections.at("\\CLK");
RTLIL::SigSpec sig_rst = cell->connections.at("\\ARST");
-
RTLIL::SigSpec sig_d = cell->connections.at("\\D");
- sig_d.expand();
-
RTLIL::SigSpec sig_q = cell->connections.at("\\Q");
- sig_q.expand();
std::string gate_type_0 = stringf("$_DFF_%c%c0_", clk_pol, rst_pol);
std::string gate_type_1 = stringf("$_DFF_%c%c1_", clk_pol, rst_pol);
gate->type = rst_val.at(i) == RTLIL::State::S1 ? gate_type_1 : gate_type_0;
gate->connections["\\C"] = sig_clk;
gate->connections["\\R"] = sig_rst;
- gate->connections["\\D"] = sig_d.chunks().at(i);
- gate->connections["\\Q"] = sig_q.chunks().at(i);
+ gate->connections["\\D"] = sig_d[i];
+ gate->connections["\\Q"] = sig_q[i];
module->add(gate);
}
}
char en_pol = cell->parameters.at("\\EN_POLARITY").as_bool() ? 'P' : 'N';
RTLIL::SigSpec sig_en = cell->connections.at("\\EN");
-
RTLIL::SigSpec sig_d = cell->connections.at("\\D");
- sig_d.expand();
-
RTLIL::SigSpec sig_q = cell->connections.at("\\Q");
- sig_q.expand();
std::string gate_type = stringf("$_DLATCH_%c_", en_pol);
gate->name = NEW_ID;
gate->type = gate_type;
gate->connections["\\E"] = sig_en;
- gate->connections["\\D"] = sig_d.chunks().at(i);
- gate->connections["\\Q"] = sig_q.chunks().at(i);
+ gate->connections["\\D"] = sig_d[i];
+ gate->connections["\\Q"] = sig_q[i];
module->add(gate);
}
}