return true;
}
+ if (cell->type == "$_BUF_" || cell->type == "$equiv")
+ {
+ std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep);
+ std::vector<int> y = importDefSigSpec(cell->getPort("\\Y"), timestep);
+ extendSignalWidthUnary(a, y, cell);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
+ ez->assume(ez->vec_eq(a, yy));
+
+ if (model_undef) {
+ std::vector<int> undef_a = importUndefSigSpec(cell->getPort("\\A"), timestep);
+ std::vector<int> undef_y = importUndefSigSpec(cell->getPort("\\Y"), timestep);
+ extendSignalWidthUnary(undef_a, undef_y, cell, false);
+ ez->assume(ez->vec_eq(undef_a, undef_y));
+ undefGating(y, yy, undef_y);
+ }
+ return true;
+ }
+
if (cell->type == "$assert")
{
std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
ezDefaultSAT ez;
SatGen satgen;
int max_seq;
+ bool verbose;
- EquivSimpleWorker(Cell *equiv_cell, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq) :
+ EquivSimpleWorker(Cell *equiv_cell, SigMap &sigmap, dict<SigBit, Cell*> &bit2driver, int max_seq, bool verbose) :
module(equiv_cell->module), equiv_cell(equiv_cell), sigmap(sigmap),
- bit2driver(bit2driver), satgen(&ez, &sigmap), max_seq(max_seq)
+ bit2driver(bit2driver), satgen(&ez, &sigmap), max_seq(max_seq), verbose(verbose)
{
}
pool<SigBit> seed_a = { bit_a };
pool<SigBit> seed_b = { bit_b };
- log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell));
- log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort("\\Y")));
+ if (verbose) {
+ log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell));
+ log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort("\\Y")));
+ } else {
+ log(" Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort("\\Y")));
+ }
int step = max_seq;
while (1)
problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end());
problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end());
- log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
- GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
- (GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
+ if (verbose)
+ log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n",
+ GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b),
+ (GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells));
for (auto cell : problem_cells)
- satgen.importCell(cell, step+1);
+ if (!satgen.importCell(cell, step+1))
+ log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
- log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez.numCnfVariables(), ez.numCnfClauses());
+ if (verbose)
+ log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez.numCnfVariables(), ez.numCnfClauses());
if (!ez.solve()) {
- log(" Proved equivalence! Marking $equiv cell as proven.\n");
+ log(verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n");
equiv_cell->setPort("\\B", equiv_cell->getPort("\\A"));
return true;
}
- log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step);
+ if (verbose)
+ log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step);
if (--step < 0) {
- log(" Reached sequence limit.\n");
+ if (verbose)
+ log(" Reached sequence limit.\n");
break;
}
if (seed_a.empty() && seed_b.empty()) {
- log(" No nets to continue in previous time step.\n");
+ if (verbose)
+ log(" No nets to continue in previous time step.\n");
break;
}
if (seed_a.empty()) {
- log(" No nets on A-side to continue in previous time step.\n");
+ if (verbose)
+ log(" No nets on A-side to continue in previous time step.\n");
break;
}
if (seed_b.empty()) {
- log(" No nets on B-side to continue in previous time step.\n");
+ if (verbose)
+ log(" No nets on B-side to continue in previous time step.\n");
break;
}
- #if 0
- log(" Continuing analysis in previous time step with the following nets:\n");
- for (auto bit : seed_a)
- log(" A: %s\n", log_signal(bit));
- for (auto bit : seed_b)
- log(" B: %s\n", log_signal(bit));
- #else
- log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
- #endif
+ if (verbose) {
+ #if 0
+ log(" Continuing analysis in previous time step with the following nets:\n");
+ for (auto bit : seed_a)
+ log(" A: %s\n", log_signal(bit));
+ for (auto bit : seed_b)
+ log(" B: %s\n", log_signal(bit));
+ #else
+ log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b));
+ #endif
+ }
}
+ if (!verbose)
+ log(" failed.\n");
return false;
}
};
log("\n");
log("This command tries to prove $equiv cells using a simple direct SAT approach.\n");
log("\n");
+ log(" -v\n");
+ log(" verbose output\n");
+ log("\n");
log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 1)\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, Design *design)
{
+ bool verbose = false;
int success_counter = 0;
int max_seq = 1;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
+ if (args[argidx] == "-v") {
+ verbose = true;
+ continue;
+ }
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
max_seq = atoi(args[++argidx].c_str());
continue;
}
for (auto cell : unproven_equiv_cells) {
- EquivSimpleWorker worker(cell, sigmap, bit2driver, max_seq);
+ EquivSimpleWorker worker(cell, sigmap, bit2driver, max_seq, verbose);
if (worker.run())
success_counter++;
}