USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
+RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire)
+{
+ auto outwire = module->addWire(NEW_ID);
+
+ if (inwire == SigBit(true))
+ {
+ // Constant 1
+ auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
+ xor_cell->setParam("\\INVERT_OUT", true);
+ xor_cell->setPort("\\OUT", outwire);
+ }
+ else if (inwire == SigBit(false))
+ {
+ // Constant 0
+ auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
+ xor_cell->setParam("\\INVERT_OUT", false);
+ xor_cell->setPort("\\OUT", outwire);
+ }
+ else
+ {
+ auto and_to_xor_wire = module->addWire(NEW_ID);
+
+ auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
+ and_cell->setParam("\\TRUE_INP", 1);
+ and_cell->setParam("\\COMP_INP", 0);
+ and_cell->setPort("\\OUT", and_to_xor_wire);
+ and_cell->setPort("\\IN", inwire);
+ and_cell->setPort("\\IN_B", SigSpec());
+
+ auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
+ xor_cell->setParam("\\INVERT_OUT", false);
+ xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
+ xor_cell->setPort("\\OUT", outwire);
+ }
+
+ return outwire;
+}
+
+RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
+{
+ auto outwire = module->addWire(NEW_ID);
+
+ auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
+ and_cell->setParam("\\TRUE_INP", 1);
+ and_cell->setParam("\\COMP_INP", 0);
+ and_cell->setPort("\\OUT", outwire);
+ and_cell->setPort("\\IN", inwire);
+ and_cell->setPort("\\IN_B", SigSpec());
+
+ return outwire;
+}
+
struct Coolrunner2FixupPass : public Pass {
Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
void help() YS_OVERRIDE
}
}
- // Start by buffering FF inputs. FF inputs can only come from either
- // an IO pin or from an XOR. Otherwise AND/XOR cells need to be inserted.
+ // Find all the pterm outputs
+ pool<SigBit> sig_fed_by_pterm;
+ for (auto cell : module->selected_cells())
+ {
+ if (cell->type == "\\ANDTERM")
+ {
+ auto output = sigmap(cell->getPort("\\OUT")[0]);
+ sig_fed_by_pterm.insert(output);
+ }
+ }
+
+ // Find all the bufg outputs
+ pool<SigBit> sig_fed_by_bufg;
+ for (auto cell : module->selected_cells())
+ {
+ if (cell->type == "\\BUFG")
+ {
+ auto output = sigmap(cell->getPort("\\O")[0]);
+ sig_fed_by_bufg.insert(output);
+ }
+ }
+
+ // Find all the bufgsr outputs
+ pool<SigBit> sig_fed_by_bufgsr;
+ for (auto cell : module->selected_cells())
+ {
+ if (cell->type == "\\BUFGSR")
+ {
+ auto output = sigmap(cell->getPort("\\O")[0]);
+ sig_fed_by_bufgsr.insert(output);
+ }
+ }
+
+ // Find all the bufgts outputs
+ pool<SigBit> sig_fed_by_bufgts;
+ for (auto cell : module->selected_cells())
+ {
+ if (cell->type == "\\BUFGTS")
+ {
+ auto output = sigmap(cell->getPort("\\O")[0]);
+ sig_fed_by_bufgts.insert(output);
+ }
+ }
+
for (auto cell : module->selected_cells())
{
if (cell->type.in("\\FDCP", "\\FDCP_N", "\\FDDCP", "\\LDCP", "\\LDCP_N",
"\\FTCP", "\\FTCP_N", "\\FTDCP", "\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
{
+ // Buffering FF inputs. FF inputs can only come from either
+ // an IO pin or from an XOR. Otherwise AND/XOR cells need
+ // to be inserted.
SigBit input;
if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
input = sigmap(cell->getPort("\\T")[0]);
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
- auto and_to_xor_wire = module->addWire(NEW_ID);
- auto xor_to_ff_wire = module->addWire(NEW_ID);
-
- auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
- and_cell->setParam("\\TRUE_INP", 1);
- and_cell->setParam("\\COMP_INP", 0);
- and_cell->setPort("\\OUT", and_to_xor_wire);
- and_cell->setPort("\\IN", input);
- and_cell->setPort("\\IN_B", SigSpec());
-
- auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
- xor_cell->setParam("\\INVERT_OUT", false);
- xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
- xor_cell->setPort("\\OUT", xor_to_ff_wire);
+ auto xor_to_ff_wire = makexorbuffer(module, input);
if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
cell->setPort("\\T", xor_to_ff_wire);
else
cell->setPort("\\D", xor_to_ff_wire);
}
+
+ // Buffering FF clocks. FF clocks can only come from either
+ // a pterm or a bufg. In some cases this will be handled
+ // in coolrunner2_sop (e.g. if clock is generated from
+ // AND-ing two signals) but not in all cases.
+ SigBit clock;
+ if (cell->type.in("\\LDCP", "\\LDCP_N"))
+ clock = sigmap(cell->getPort("\\G")[0]);
+ else
+ clock = sigmap(cell->getPort("\\C")[0]);
+
+ if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
+ {
+ log("Buffering clock to \"%s\"\n", cell->name.c_str());
+
+ auto pterm_to_ff_wire = makeptermbuffer(module, clock);
+
+ if (cell->type.in("\\LDCP", "\\LDCP_N"))
+ cell->setPort("\\G", pterm_to_ff_wire);
+ else
+ cell->setPort("\\C", pterm_to_ff_wire);
+ }
+
+ // Buffering FF set/reset. This can only come from either
+ // a pterm or a bufgsr.
+ SigBit set;
+ set = sigmap(cell->getPort("\\PRE")[0]);
+ if (set != SigBit(false))
+ {
+ if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
+ {
+ log("Buffering set to \"%s\"\n", cell->name.c_str());
+
+ auto pterm_to_ff_wire = makeptermbuffer(module, set);
+
+ cell->setPort("\\PRE", pterm_to_ff_wire);
+ }
+ }
+
+ SigBit reset;
+ reset = sigmap(cell->getPort("\\CLR")[0]);
+ if (reset != SigBit(false))
+ {
+ if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
+ {
+ log("Buffering reset to \"%s\"\n", cell->name.c_str());
+
+ auto pterm_to_ff_wire = makeptermbuffer(module, reset);
+
+ cell->setPort("\\CLR", pterm_to_ff_wire);
+ }
+ }
+
+ // Buffering FF clock enable
+ // FIXME: This doesn't fully fix PTC conflicts
+ // FIXME: Need to ensure constant enables are optimized out
+ if (cell->type.in("\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
+ {
+ SigBit ce;
+ ce = sigmap(cell->getPort("\\CE")[0]);
+ if (!sig_fed_by_pterm[ce])
+ {
+ log("Buffering clock enable to \"%s\"\n", cell->name.c_str());
+
+ auto pterm_to_ff_wire = makeptermbuffer(module, ce);
+
+ cell->setPort("\\CE", pterm_to_ff_wire);
+ }
+ }
}
}
- // Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
for (auto cell : module->selected_cells())
{
if (cell->type == "\\IOBUFE")
{
+ // Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
SigBit input = sigmap(cell->getPort("\\I")[0]);
- // Special case: constant 0 and 1 are handled by xc2par
- if (input == SigBit(true) || input == SigBit(false)) {
- log("Not buffering constant IO to \"%s\"\n", cell->name.c_str());
- continue;
- }
-
if (!sig_fed_by_xor[input] && !sig_fed_by_ff[input])
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
- auto and_to_xor_wire = module->addWire(NEW_ID);
- auto xor_to_io_wire = module->addWire(NEW_ID);
+ auto xor_to_io_wire = makexorbuffer(module, input);
+
+ cell->setPort("\\I", xor_to_io_wire);
+ }
- auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
- and_cell->setParam("\\TRUE_INP", 1);
- and_cell->setParam("\\COMP_INP", 0);
- and_cell->setPort("\\OUT", and_to_xor_wire);
- and_cell->setPort("\\IN", input);
- and_cell->setPort("\\IN_B", SigSpec());
+ // Buffer IOBUFE enables. This can only be fed from a pterm
+ // or a bufgts.
+ if (cell->hasPort("\\E"))
+ {
+ SigBit oe;
+ oe = sigmap(cell->getPort("\\E")[0]);
+ if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
+ {
+ log("Buffering output enable to \"%s\"\n", cell->name.c_str());
- auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
- xor_cell->setParam("\\INVERT_OUT", false);
- xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
- xor_cell->setPort("\\OUT", xor_to_io_wire);
+ auto pterm_to_oe_wire = makeptermbuffer(module, oe);
- cell->setPort("\\I", xor_to_io_wire);
+ cell->setPort("\\E", pterm_to_oe_wire);
+ }
}
}
}
}
// Check for special P-term usage
- bool is_special_pterm = false;
- bool special_pterm_can_invert = false;
- if (special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output))
- {
- is_special_pterm = true;
- if (!special_pterms_no_inv[sop_output].size())
- special_pterm_can_invert = true;
- }
+ bool is_special_pterm =
+ special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output);
// Construct AND cells
pool<SigBit> intermed_wires;
// Special P-term handling
if (is_special_pterm)
{
- if (!has_invert || special_pterm_can_invert)
+ // Can always connect the P-term directly if it's going
+ // into something invert-capable
+ for (auto x : special_pterms_inv[sop_output])
{
- // Can connect the P-term directly to the special term sinks
- for (auto x : special_pterms_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
- for (auto x : special_pterms_no_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
- }
+ std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
- if (has_invert)
- {
- if (special_pterm_can_invert)
+ // If this signal is indeed inverted, flip the cell polarity
+ if (has_invert)
{
- log_assert(special_pterms_no_inv[sop_output].size() == 0);
-
- for (auto x : special_pterms_inv[sop_output])
- {
- auto cell = std::get<0>(x);
- // Need to invert the polarity of the cell
- if (cell->type == "\\FDCP") cell->type = "\\FDCP_N";
- else if (cell->type == "\\FDCP_N") cell->type = "\\FDCP";
- else if (cell->type == "\\FTCP") cell->type = "\\FTCP_N";
- else if (cell->type == "\\FTCP_N") cell->type = "\\FTCP";
- else if (cell->type == "\\FDCPE") cell->type = "\\FDCPE_N";
- else if (cell->type == "\\FDCPE_N") cell->type = "\\FDCPE";
- else if (cell->type == "\\LDCP") cell->type = "\\LDCP_N";
- else if (cell->type == "\\LDCP_N") cell->type = "\\LDCP";
- else log_assert(!"Internal error! Bad cell type!");
- }
+ auto cell = std::get<0>(x);
+ if (cell->type == "\\FDCP") cell->type = "\\FDCP_N";
+ else if (cell->type == "\\FDCP_N") cell->type = "\\FDCP";
+ else if (cell->type == "\\FTCP") cell->type = "\\FTCP_N";
+ else if (cell->type == "\\FTCP_N") cell->type = "\\FTCP";
+ else if (cell->type == "\\FDCPE") cell->type = "\\FDCPE_N";
+ else if (cell->type == "\\FDCPE_N") cell->type = "\\FDCPE";
+ else if (cell->type == "\\LDCP") cell->type = "\\LDCP_N";
+ else if (cell->type == "\\LDCP_N") cell->type = "\\LDCP";
+ else log_assert(!"Internal error! Bad cell type!");
}
- else
- {
- // Need to construct a feed-through term
- auto feedthrough_out = module->addWire(NEW_ID);
- auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
- feedthrough_cell->setParam("\\TRUE_INP", 1);
- feedthrough_cell->setParam("\\COMP_INP", 0);
- feedthrough_cell->setPort("\\OUT", feedthrough_out);
- feedthrough_cell->setPort("\\IN", sop_output);
- feedthrough_cell->setPort("\\IN_B", SigSpec());
+ }
- for (auto x : special_pterms_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
- for (auto x : special_pterms_no_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
- }
+ // If it's going into something that's not invert-capable,
+ // connect it directly only if this signal isn't inverted
+ if (!has_invert)
+ {
+ for (auto x : special_pterms_no_inv[sop_output])
+ std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
}
+
+ // Otherwise, a feedthrough P-term has to be created. Leave that to happen
+ // in the coolrunner2_fixup pass.
}
}
else
xor_cell->setParam("\\INVERT_OUT", has_invert);
xor_cell->setPort("\\IN_ORTERM", or_to_xor_wire);
xor_cell->setPort("\\OUT", sop_output);
-
- if (is_special_pterm)
- {
- // Need to construct a feed-through term
- auto feedthrough_out = module->addWire(NEW_ID);
- auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
- feedthrough_cell->setParam("\\TRUE_INP", 1);
- feedthrough_cell->setParam("\\COMP_INP", 0);
- feedthrough_cell->setPort("\\OUT", feedthrough_out);
- feedthrough_cell->setPort("\\IN", sop_output);
- feedthrough_cell->setPort("\\IN_B", SigSpec());
-
- for (auto x : special_pterms_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
- for (auto x : special_pterms_no_inv[sop_output])
- std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
- }
}
// Finally, remove the $sop cell