|FHYPOT |hypot |NONE |NONE |NONE |hypot |NONE |
|FRECIP |NONE |half\_recip|native\_recip|NONE |NONE (3)|fre, fres (4) |
|NONE |NONE |NONE |NONE |NONE |compound|NONE |
-|FEXP2M1 |NONE |NONE |NONE |NONE |exp2m1 |NONE |
-|FEXP10M1 |NONE |NONE |NONE |NONE |exp10m1 |NONE |
-|FLOG2P1 |NONE |NONE |NONE |NONE |log2p1 |NONE |
-|FLOG10P1 |NONE |NONE |NONE |NONE |log10p1 |NONE |
+|FEXP2M1 |NONE |NONE |NONE |NONE |exp2m1 |NONE |
+|FEXP10M1|NONE |NONE |NONE |NONE |exp10m1 |NONE |
+|FLOG2P1 |NONE |NONE |NONE |NONE |log2p1 |NONE |
+|FLOG10P1|NONE |NONE |NONE |NONE |log10p1 |NONE |
Note (1) FSINCOS is macro-op fused (see below).
| opcode | Description | pseudocode | Extension |
| ------ | ---------------- | ---------------- | ----------- |
-| FATAN2 | atan2 arc tangent | FRT = atan2(FRB, FRA) | Zarctrignpi |
-| FATAN2PI | atan2 arc tangent / pi | FRT = atan2(FRB, FRA) / pi | Zarctrigpi |
-| FPOW | x power of y | FRT = pow(FRA, FRB) | ZftransAdv |
+| FATAN2 | atan2 arc tangent | FRT = atan2(FRB, FRA) | Zarctrignpi |
+| FATAN2PI | atan2 arc tangent / pi | FRT = atan2(FRB, FRA) / pi | Zarctrigpi |
+| FPOW | x power of y | FRT = pow(FRA, FRB) | ZftransAdv |
| FPOWN | x power of n (n int) | FRT = pow(FRA, RB) | ZftransAdv |
-| FPOWR | x power of y (x +ve) | FRT = exp(FRA log(FRB)) | ZftransAdv |
+| FPOWR | x power of y (x +ve) | FRT = exp(FRA log(FRB)) | ZftransAdv |
| FROOTN | x power 1/n (n integer)| FRT = pow(FRA, 1/RB) | ZftransAdv |
-| FHYPOT | hypotenuse | FRT = sqrt(FRA^2 + FRB^2) | ZftransAdv |
+| FHYPOT | hypotenuse | FRT = sqrt(FRA^2 + FRB^2) | ZftransAdv |
## List of 1-arg transcendental opcodes
-| opcode | Description | pseudocode | Extension |
-| ------ | ---------------- | ---------------- | ----------- |
-| FRSQRT | Reciprocal Square-root | FRT = sqrt(FRA) | Zfrsqrt |
-| FCBRT | Cube Root | FRT = pow(FRA, 1.0 / 3) | ZftransAdv |
-| FRECIP | Reciprocal | FRT = 1.0 / FRA | Zftrans |
-| FEXP2M1 | power-2 minus 1 | FRT = pow(2, FRA) - 1.0 | ZftransExt |
-| FLOG2P1 | log2 plus 1 | FRT = log(2, 1 + FRA) | ZftransExt |
-| FEXP2 | power-of-2 | FRT = pow(2, FRA) | Zftrans |
-| FLOG2 | log2 | FRT = log(2. FRA) | Zftrans |
-| FEXPM1 | exponential minus 1 | FRT = pow(e, FRA) - 1.0 | ZftransExt |
-| FLOG1P | log plus 1 | FRT = log(e, 1 + FRA) | ZftransExt |
-| FEXP | exponential | FRT = pow(e, FRA) | ZftransExt |
-| FLOG | natural log (base e) | FRT = log(e, FRA) | ZftransExt |
-| FEXP10M1 | power-10 minus 1 | FRT = pow(10, FRA) - 1.0 | ZftransExt |
-| FLOG10P1 | log10 plus 1 | FRT = log(10, 1 + FRA) | ZftransExt |
-| FEXP10 | power-of-10 | FRT = pow(10, FRA) | ZftransExt |
-| FLOG10 | log base 10 | FRT = log(10, FRA) | ZftransExt |
+| opcode | Description | pseudocode | Extension |
+| ------ | ---------------- | ---------------- | ---------- |
+| FRSQRT | Reciprocal Square-root | FRT = sqrt(FRA) | Zfrsqrt |
+| FCBRT | Cube Root | FRT = pow(FRA, 1.0 / 3) | ZftransAdv |
+| FRECIP | Reciprocal | FRT = 1.0 / FRA | Zftrans |
+| FEXP2M1 | power-2 minus 1 | FRT = pow(2, FRA) - 1.0 | ZftransExt |
+| FLOG2P1 | log2 plus 1 | FRT = log(2, 1 + FRA) | ZftransExt |
+| FEXP2 | power-of-2 | FRT = pow(2, FRA) | Zftrans |
+| FLOG2 | log2 | FRT = log(2. FRA) | Zftrans |
+| FEXPM1 | exponential minus 1 | FRT = pow(e, FRA) - 1.0 | ZftransExt |
+| FLOG1P | log plus 1 | FRT = log(e, 1 + FRA) | ZftransExt |
+| FEXP | exponential | FRT = pow(e, FRA) | ZftransExt |
+| FLOG | natural log (base e) | FRT = log(e, FRA) | ZftransExt |
+| FEXP10M1 | power-10 minus 1 | FRT = pow(10, FRA) - 1.0 | ZftransExt |
+| FLOG10P1 | log10 plus 1 | FRT = log(10, 1 + FRA) | ZftransExt |
+| FEXP10 | power-of-10 | FRT = pow(10, FRA) | ZftransExt |
+| FLOG10 | log base 10 | FRT = log(10, FRA) | ZftransExt |
## List of 1-arg trigonometric opcodes
| FASIN | arcsin (radians) | FRT = asin(FRA) | Zarctrignpi |
| FACOS | arccos (radians) | FRT = acos(FRA) | Zarctrignpi |
| FATAN | arctan (radians) | FRT = atan(FRA) | Zarctrignpi |
-| FSINPI | sin times pi | FRT = sin(pi * FRA) | Ztrigpi |
-| FCOSPI | cos times pi | FRT = cos(pi * FRA) | Ztrigpi |
-| FTANPI | tan times pi | FRT = tan(pi * FRA) | Ztrigpi |
-| FASINPI | arcsin / pi | FRT = asin(FRA) / pi | Zarctrigpi |
-| FACOSPI | arccos / pi | FRT = acos(FRA) / pi | Zarctrigpi |
-| FATANPI | arctan / pi | FRT = atan(FRA) / pi | Zarctrigpi |
-| FSINH | hyperbolic sin (radians) | FRT = sinh(FRA) | Zfhyp |
-| FCOSH | hyperbolic cos (radians) | FRT = cosh(FRA) | Zfhyp |
-| FTANH | hyperbolic tan (radians) | FRT = tanh(FRA) | Zfhyp |
-| FASINH | inverse hyperbolic sin | FRT = asinh(FRA) | Zfhyp |
-| FACOSH | inverse hyperbolic cos | FRT = acosh(FRA) | Zfhyp |
-| FATANH | inverse hyperbolic tan | FRT = atanh(FRA) | Zfhyp |
+| FSINPI | sin times pi | FRT = sin(pi * FRA) | Ztrigpi |
+| FCOSPI | cos times pi | FRT = cos(pi * FRA) | Ztrigpi |
+| FTANPI | tan times pi | FRT = tan(pi * FRA) | Ztrigpi |
+| FASINPI | arcsin / pi | FRT = asin(FRA) / pi | Zarctrigpi |
+| FACOSPI | arccos / pi | FRT = acos(FRA) / pi | Zarctrigpi |
+| FATANPI | arctan / pi | FRT = atan(FRA) / pi | Zarctrigpi |
+| FSINH | hyperbolic sin (radians) | FRT = sinh(FRA) | Zfhyp |
+| FCOSH | hyperbolic cos (radians) | FRT = cosh(FRA) | Zfhyp |
+| FTANH | hyperbolic tan (radians) | FRT = tanh(FRA) | Zfhyp |
+| FASINH | inverse hyperbolic sin | FRT = asinh(FRA) | Zfhyp |
+| FACOSH | inverse hyperbolic cos | FRT = acosh(FRA) | Zfhyp |
+| FATANH | inverse hyperbolic tan | FRT = atanh(FRA) | Zfhyp |
[[!inline pages="openpower/power_trans_ops" raw=yes ]]