#include "../bfd/bfd.h"
#include "floatformat.h"
#include "regcache.h"
+#include "trad-frame.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
#include "reggroups.h"
#include "regset.h"
#include "value.h"
}
-#define GDB_TARGET_IS_ESAME (TARGET_ARCHITECTURE->mach == bfd_mach_s390_64)
-#define S390_GPR_SIZE (GDB_TARGET_IS_ESAME ? 8 : 4)
-#define S390_FPR_SIZE (8)
-#define S390_MAX_INSTR_SIZE (6)
-#define S390_SYSCALL_OPCODE (0x0a)
-#define S390_SYSCALL_SIZE (2)
-#define S390_SIGCONTEXT_SREGS_OFFSET (8)
-#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
-#define S390_SIGREGS_FP0_OFFSET (144)
-#define S390X_SIGREGS_FP0_OFFSET (216)
-#define S390_UC_MCONTEXT_OFFSET (256)
-#define S390X_UC_MCONTEXT_OFFSET (344)
-#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
-#define s390_NR_sigreturn 119
-#define s390_NR_rt_sigreturn 173
-
-
-
-struct frame_extra_info
-{
- int initialised;
- int good_prologue;
- CORE_ADDR function_start;
- CORE_ADDR skip_prologue_function_start;
- CORE_ADDR saved_pc_valid;
- CORE_ADDR saved_pc;
- CORE_ADDR sig_fixed_saved_pc_valid;
- CORE_ADDR sig_fixed_saved_pc;
- CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
- CORE_ADDR stack_bought_valid;
- CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
- CORE_ADDR sigcontext;
-};
-
-
-static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
-
-static int
-s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
-{
- int instrlen;
-
- static int s390_instrlen[] = {
- 2,
- 4,
- 4,
- 6
- };
- if (target_read_memory (at, &instr[0], 2))
- return -1;
- instrlen = s390_instrlen[instr[0] >> 6];
- if (instrlen > 2)
- {
- if (target_read_memory (at + 2, &instr[2], instrlen - 2))
- return -1;
- }
- return instrlen;
-}
-
-static void
-s390_memset_extra_info (struct frame_extra_info *fextra_info)
-{
- memset (fextra_info, 0, sizeof (struct frame_extra_info));
-}
-
-
/* Prologue analysis. */
/* When we analyze a prologue, we're really doing 'abstract
op1_* and op2_* enums. */
enum
{
- op1_aghi = 0xa7, op2_aghi = 0xb,
- op1_ahi = 0xa7, op2_ahi = 0xa,
- op_ar = 0x1a,
- op_basr = 0x0d,
- op1_bras = 0xa7, op2_bras = 0x5,
- op_l = 0x58,
- op_la = 0x41,
- op1_larl = 0xc0, op2_larl = 0x0,
- op_lgr = 0xb904,
- op1_lghi = 0xa7, op2_lghi = 0x9,
- op1_lhi = 0xa7, op2_lhi = 0x8,
+ op1_lhi = 0xa7, op2_lhi = 0x08,
+ op1_lghi = 0xa7, op2_lghi = 0x09,
op_lr = 0x18,
- op_nr = 0x14,
- op_ngr = 0xb980,
- op_s = 0x5b,
+ op_lgr = 0xb904,
+ op_l = 0x58,
+ op1_ly = 0xe3, op2_ly = 0x58,
+ op1_lg = 0xe3, op2_lg = 0x04,
+ op_lm = 0x98,
+ op1_lmy = 0xeb, op2_lmy = 0x98,
+ op1_lmg = 0xeb, op2_lmg = 0x04,
op_st = 0x50,
- op_std = 0x60,
+ op1_sty = 0xe3, op2_sty = 0x50,
op1_stg = 0xe3, op2_stg = 0x24,
+ op_std = 0x60,
op_stm = 0x90,
+ op1_stmy = 0xeb, op2_stmy = 0x90,
op1_stmg = 0xeb, op2_stmg = 0x24,
- op_lm = 0x98,
- op1_lmg = 0xeb, op2_lmg = 0x04,
- op_svc = 0x0a,
+ op1_aghi = 0xa7, op2_aghi = 0x0b,
+ op1_ahi = 0xa7, op2_ahi = 0x0a,
+ op_ar = 0x1a,
+ op_agr = 0xb908,
+ op_a = 0x5a,
+ op1_ay = 0xe3, op2_ay = 0x5a,
+ op1_ag = 0xe3, op2_ag = 0x08,
+ op_sr = 0x1b,
+ op_sgr = 0xb909,
+ op_s = 0x5b,
+ op1_sy = 0xe3, op2_sy = 0x5b,
+ op1_sg = 0xe3, op2_sg = 0x09,
+ op_nr = 0x14,
+ op_ngr = 0xb980,
+ op_la = 0x41,
+ op1_lay = 0xe3, op2_lay = 0x71,
+ op1_larl = 0xc0, op2_larl = 0x00,
+ op_basr = 0x0d,
+ op_bas = 0x4d,
+ op_bcr = 0x07,
+ op_bc = 0x0d,
+ op1_bras = 0xa7, op2_bras = 0x05,
+ op1_brasl= 0xc0, op2_brasl= 0x05,
+ op1_brc = 0xa7, op2_brc = 0x04,
+ op1_brcl = 0xc0, op2_brcl = 0x04,
};
+/* Read a single instruction from address AT. */
+
+#define S390_MAX_INSTR_SIZE 6
+static int
+s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
+{
+ static int s390_instrlen[] = { 2, 4, 4, 6 };
+ int instrlen;
+
+ if (read_memory_nobpt (at, &instr[0], 2))
+ return -1;
+ instrlen = s390_instrlen[instr[0] >> 6];
+ if (instrlen > 2)
+ {
+ if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
+ return -1;
+ }
+ return instrlen;
+}
+
+
/* The functions below are for recognizing and decoding S/390
instructions of various formats. Each of them checks whether INSN
is an instruction of the given format, with the specified opcodes.
static int
-is_rse (bfd_byte *insn, int op1, int op2,
+is_rsy (bfd_byte *insn, int op1, int op2,
unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
{
if (insn[0] == op1
- /* Yes, insn[5]. insn[4] is unused. */
&& insn[5] == op2)
{
*r1 = (insn[1] >> 4) & 0xf;
*r3 = insn[1] & 0xf;
*b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
return 1;
}
else
static int
-is_rxe (bfd_byte *insn, int op1, int op2,
+is_rxy (bfd_byte *insn, int op1, int op2,
unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
{
if (insn[0] == op1
- /* Yes, insn[5]. insn[4] is unused. */
&& insn[5] == op2)
{
*r1 = (insn[1] >> 4) & 0xf;
*x2 = insn[1] & 0xf;
*b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
return 1;
}
else
L R1, D2(X2, B2)
- Here, X2 and B2 are registers, and D2 is an unsigned 12-bit
+ Here, X2 and B2 are registers, and D2 is a signed 20-bit
constant; the effective address is the sum of all three. If either
X2 or B2 are zero, then it doesn't contribute to the sum --- this
means that r0 can't be used as either X2 or B2.
static void
compute_x_addr (struct prologue_value *addr,
struct prologue_value *gpr,
- unsigned int d2, unsigned int x2, unsigned int b2)
+ int d2, unsigned int x2, unsigned int b2)
{
/* We can't just add stuff directly in addr; it might alias some of
the registers we need to read. */
#define S390_NUM_GPRS 16
#define S390_NUM_FPRS 16
+struct s390_prologue_data {
+
+ /* The size of a GPR or FPR. */
+ int gpr_size;
+ int fpr_size;
+
+ /* The general-purpose registers. */
+ struct prologue_value gpr[S390_NUM_GPRS];
+
+ /* The floating-point registers. */
+ struct prologue_value fpr[S390_NUM_FPRS];
+
+ /* The register spill stack slots in the caller's frame ---
+ general-purpose registers r2 through r15, and floating-point
+ registers. spill[i] is where gpr i+2 gets spilled;
+ spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
+ struct prologue_value spill[S390_NUM_SPILL_SLOTS];
+
+ /* The value of the back chain slot. This is only valid if the stack
+ pointer is known to be less than its original value --- that is,
+ if we have indeed allocated space on the stack. */
+ struct prologue_value back_chain;
+};
+
/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
return pv_definite_yes and set *STACK to point to the slot. If
we're sure that they are not any of our stack slots, then return
pv_definite_no. Otherwise, return pv_maybe.
- - GPR is an array indexed by GPR number giving the current values
- of the general-purpose registers.
- - SPILL is an array tracking the spill area of the caller's frame;
- SPILL[i] is the i'th spill slot. The spill slots are designated
- for r2 -- r15, and then f0, f2, f4, and f6.
- - BACK_CHAIN is the value of the back chain slot; it's only valid
- when the current frame actually has some space for a back chain
- slot --- that is, when the current value of the stack pointer
- (according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes
- less than its original value. */
+
+ DATA describes our current state (registers and stack slots). */
static enum pv_boolean
s390_on_stack (struct prologue_value *addr,
CORE_ADDR size,
- struct prologue_value *gpr,
- struct prologue_value *spill,
- struct prologue_value *back_chain,
+ struct s390_prologue_data *data,
struct prologue_value **stack)
{
struct prologue_value gpr_spill_addr;
enum pv_boolean b;
/* Construct the addresses of the spill arrays and the back chain. */
- pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE);
- pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE);
- back_chain_addr = gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * data->gpr_size);
+ pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * data->gpr_size);
+ back_chain_addr = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
/* We have to check for GPR and FPR references using two separate
calls to pv_is_array_ref, since the GPR and FPR spill slots are
isn't really an array.) */
/* Was it a reference to the GPR spill array? */
- b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i);
+ b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, data->gpr_size, &i);
if (b == pv_definite_yes)
{
- *stack = &spill[i];
+ *stack = &data->spill[i];
return pv_definite_yes;
}
if (b == pv_maybe)
return pv_maybe;
/* Was it a reference to the FPR spill array? */
- b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i);
+ b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, data->fpr_size, &i);
if (b == pv_definite_yes)
{
- *stack = &spill[14 + i];
+ *stack = &data->spill[14 + i];
return pv_definite_yes;
}
if (b == pv_maybe)
/* Was it a reference to the back chain?
This isn't quite right. We ought to check whether we have
actually allocated any new frame at all. */
- b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i);
+ b = pv_is_array_ref (addr, size, &back_chain_addr, 1, data->gpr_size, &i);
if (b == pv_definite_yes)
{
- *stack = back_chain;
+ *stack = &data->back_chain;
return pv_definite_yes;
}
if (b == pv_maybe)
}
-/* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN,
- and the return value are as described for s390_on_stack, above.
- Note that, when this returns pv_maybe, we have to assume that all
- of our memory now contains unknown values. */
-static enum pv_boolean
+/* Do a SIZE-byte store of VALUE to ADDR. */
+static void
s390_store (struct prologue_value *addr,
CORE_ADDR size,
struct prologue_value *value,
- struct prologue_value *gpr,
- struct prologue_value *spill,
- struct prologue_value *back_chain)
+ struct s390_prologue_data *data)
{
struct prologue_value *stack;
- enum pv_boolean on_stack
- = s390_on_stack (addr, size, gpr, spill, back_chain, &stack);
- if (on_stack == pv_definite_yes)
- *stack = *value;
+ /* We can do it if it's definitely a reference to something on the stack. */
+ if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
+ {
+ *stack = *value;
+ return;
+ }
- return on_stack;
+ /* Note: If s390_on_stack returns pv_maybe, you might think we should
+ forget our cached values, as any of those might have been hit.
+
+ However, we make the assumption that --since the fields we track
+ are save areas private to compiler, and never directly exposed to
+ the user-- every access to our data is explicit. Hence, every
+ memory access we cannot follow can't hit our data. */
}
-
-/* The current frame looks like a signal delivery frame: the first
- instruction is an 'svc' opcode. If the next frame is a signal
- handler's frame, set FI's saved register map to point into the
- signal context structure. */
+/* Do a SIZE-byte load from ADDR into VALUE. */
static void
-s390_get_signal_frame_info (struct frame_info *fi)
+s390_load (struct prologue_value *addr,
+ CORE_ADDR size,
+ struct prologue_value *value,
+ struct s390_prologue_data *data)
{
- struct frame_info *next_frame = get_next_frame (fi);
+ struct prologue_value *stack;
- if (next_frame
- && get_frame_extra_info (next_frame)
- && get_frame_extra_info (next_frame)->sigcontext)
+ /* If it's a load from an in-line constant pool, then we can
+ simulate that, under the assumption that the code isn't
+ going to change between the time the processor actually
+ executed it creating the current frame, and the time when
+ we're analyzing the code to unwind past that frame. */
+ if (addr->kind == pv_constant)
{
- /* We're definitely backtracing from a signal handler. */
- CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
- CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
- + DEPRECATED_REGISTER_BYTE (S390_R0_REGNUM));
- int reg;
-
- for (reg = 0; reg < S390_NUM_GPRS; reg++)
- {
- saved_regs[S390_R0_REGNUM + reg] = save_reg_addr;
- save_reg_addr += S390_GPR_SIZE;
- }
+ struct section_table *secp;
+ secp = target_section_by_addr (¤t_target, addr->k);
+ if (secp != NULL
+ && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
+ & SEC_READONLY))
+ {
+ pv_set_to_constant (value, read_memory_integer (addr->k, size));
+ return;
+ }
+ }
- save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
- + (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
- S390_SIGREGS_FP0_OFFSET));
- for (reg = 0; reg < S390_NUM_FPRS; reg++)
- {
- saved_regs[S390_F0_REGNUM + reg] = save_reg_addr;
- save_reg_addr += S390_FPR_SIZE;
- }
+ /* If it's definitely a reference to something on the stack,
+ we can do that. */
+ if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
+ {
+ *value = *stack;
+ return;
}
-}
+ /* Otherwise, we don't know the value. */
+ pv_set_to_unknown (value);
+}
+
-static int
-s390_get_frame_info (CORE_ADDR start_pc,
- struct frame_extra_info *fextra_info,
- struct frame_info *fi,
- int init_extra_info)
+/* Analyze the prologue of the function starting at START_PC,
+ continuing at most until CURRENT_PC. Initialize DATA to
+ hold all information we find out about the state of the registers
+ and stack slots. Return the address of the instruction after
+ the last one that changed the SP, FP, or back chain; or zero
+ on error. */
+static CORE_ADDR
+s390_analyze_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc,
+ CORE_ADDR current_pc,
+ struct s390_prologue_data *data)
{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
/* Our return value:
- zero if we were able to read all the instructions we wanted, or
- -1 if we got an error trying to read memory. */
- int result = 0;
+ The address of the instruction after the last one that changed
+ the SP, FP, or back chain; zero if we got an error trying to
+ read memory. */
+ CORE_ADDR result = start_pc;
/* The current PC for our abstract interpretation. */
CORE_ADDR pc;
/* The address of the next instruction after that. */
CORE_ADDR next_pc;
- /* The general-purpose registers. */
- struct prologue_value gpr[S390_NUM_GPRS];
-
- /* The floating-point registers. */
- struct prologue_value fpr[S390_NUM_FPRS];
-
- /* The register spill stack slots in the caller's frame ---
- general-purpose registers r2 through r15, and floating-point
- registers. spill[i] is where gpr i+2 gets spilled;
- spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
- struct prologue_value spill[S390_NUM_SPILL_SLOTS];
-
- /* The value of the back chain slot. This is only valid if the stack
- pointer is known to be less than its original value --- that is,
- if we have indeed allocated space on the stack. */
- struct prologue_value back_chain;
-
- /* The address of the instruction after the last one that changed
- the SP, FP, or back chain. */
- CORE_ADDR after_last_frame_setup_insn = start_pc;
-
/* Set up everything's initial value. */
{
int i;
+ /* For the purpose of prologue tracking, we consider the GPR size to
+ be equal to the ABI word size, even if it is actually larger
+ (i.e. when running a 32-bit binary under a 64-bit kernel). */
+ data->gpr_size = word_size;
+ data->fpr_size = 8;
+
for (i = 0; i < S390_NUM_GPRS; i++)
- pv_set_to_register (&gpr[i], S390_R0_REGNUM + i, 0);
+ pv_set_to_register (&data->gpr[i], S390_R0_REGNUM + i, 0);
for (i = 0; i < S390_NUM_FPRS; i++)
- pv_set_to_register (&fpr[i], S390_F0_REGNUM + i, 0);
+ pv_set_to_register (&data->fpr[i], S390_F0_REGNUM + i, 0);
for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
- pv_set_to_unknown (&spill[i]);
+ pv_set_to_unknown (&data->spill[i]);
- pv_set_to_unknown (&back_chain);
+ pv_set_to_unknown (&data->back_chain);
}
- /* Start interpreting instructions, until we hit something we don't
- know how to interpret. (Ideally, we should stop at the frame's
- real current PC, but at the moment, our callers don't give us
- that info.) */
- for (pc = start_pc; ; pc = next_pc)
+ /* Start interpreting instructions, until we hit the frame's
+ current PC or the first branch instruction. */
+ for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
{
bfd_byte insn[S390_MAX_INSTR_SIZE];
int insn_len = s390_readinstruction (insn, pc);
/* Fields for various kinds of instructions. */
- unsigned int b2, r1, r2, d2, x2, r3;
- int i2;
+ unsigned int b2, r1, r2, x2, r3;
+ int i2, d2;
/* The values of SP, FP, and back chain before this instruction,
for detecting instructions that change them. */
/* If we got an error trying to read the instruction, report it. */
if (insn_len < 0)
{
- result = -1;
+ result = 0;
break;
}
next_pc = pc + insn_len;
- pre_insn_sp = gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
- pre_insn_back_chain = back_chain;
-
- /* A special case, first --- only recognized as the very first
- instruction of the function, for signal delivery frames:
- SVC i --- system call */
- if (pc == start_pc
- && is_rr (insn, op_svc, &r1, &r2))
- {
- if (fi)
- s390_get_signal_frame_info (fi);
- break;
- }
-
- /* AHI r1, i2 --- add halfword immediate */
- else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
- pv_add_constant (&gpr[r1], i2);
+ pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ pre_insn_back_chain = data->back_chain;
+ /* LHI r1, i2 --- load halfword immediate */
+ if (word_size == 4
+ && is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
+ pv_set_to_constant (&data->gpr[r1], i2);
- /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
- else if (GDB_TARGET_IS_ESAME
- && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
- pv_add_constant (&gpr[r1], i2);
+ /* LGHI r1, i2 --- load halfword immediate (64-bit version) */
+ else if (word_size == 8
+ && is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
+ pv_set_to_constant (&data->gpr[r1], i2);
- /* AR r1, r2 -- add register */
- else if (is_rr (insn, op_ar, &r1, &r2))
- pv_add (&gpr[r1], &gpr[r1], &gpr[r2]);
+ /* LR r1, r2 --- load from register */
+ else if (word_size == 4
+ && is_rr (insn, op_lr, &r1, &r2))
+ data->gpr[r1] = data->gpr[r2];
- /* BASR r1, 0 --- branch and save
- Since r2 is zero, this saves the PC in r1, but doesn't branch. */
- else if (is_rr (insn, op_basr, &r1, &r2)
- && r2 == 0)
- pv_set_to_constant (&gpr[r1], next_pc);
+ /* LGR r1, r2 --- load from register (64-bit version) */
+ else if (word_size == 8
+ && is_rre (insn, op_lgr, &r1, &r2))
+ data->gpr[r1] = data->gpr[r2];
- /* BRAS r1, i2 --- branch relative and save */
- else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
+ /* L r1, d2(x2, b2) --- load */
+ else if (word_size == 4
+ && is_rx (insn, op_l, &r1, &d2, &x2, &b2))
{
- pv_set_to_constant (&gpr[r1], next_pc);
- next_pc = pc + i2 * 2;
+ struct prologue_value addr;
- /* We'd better not interpret any backward branches. We'll
- never terminate. */
- if (next_pc <= pc)
- break;
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &data->gpr[r1], data);
}
- /* L r1, d2(x2, b2) --- load */
- else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2))
+ /* LY r1, d2(x2, b2) --- load (long-displacement version) */
+ else if (word_size == 4
+ && is_rxy (insn, op1_ly, op2_ly, &r1, &d2, &x2, &b2))
{
struct prologue_value addr;
- struct prologue_value *stack;
-
- compute_x_addr (&addr, gpr, d2, x2, b2);
-
- /* If it's a load from an in-line constant pool, then we can
- simulate that, under the assumption that the code isn't
- going to change between the time the processor actually
- executed it creating the current frame, and the time when
- we're analyzing the code to unwind past that frame. */
- if (addr.kind == pv_constant
- && start_pc <= addr.k
- && addr.k < next_pc)
- pv_set_to_constant (&gpr[r1],
- read_memory_integer (addr.k, 4));
-
- /* If it's definitely a reference to something on the stack,
- we can do that. */
- else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
- == pv_definite_yes)
- gpr[r1] = *stack;
-
- /* Otherwise, we don't know the value. */
- else
- pv_set_to_unknown (&gpr[r1]);
- }
-
- /* LA r1, d2(x2, b2) --- load address */
- else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
- compute_x_addr (&gpr[r1], gpr, d2, x2, b2);
-
- /* LARL r1, i2 --- load address relative long */
- else if (GDB_TARGET_IS_ESAME
- && is_ril (insn, op1_larl, op2_larl, &r1, &i2))
- pv_set_to_constant (&gpr[r1], pc + i2 * 2);
-
- /* LGR r1, r2 --- load from register */
- else if (GDB_TARGET_IS_ESAME
- && is_rre (insn, op_lgr, &r1, &r2))
- gpr[r1] = gpr[r2];
- /* LHI r1, i2 --- load halfword immediate */
- else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
- pv_set_to_constant (&gpr[r1], i2);
-
- /* LGHI r1, i2 --- load halfword immediate --- 64-bit version */
- else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
- pv_set_to_constant (&gpr[r1], i2);
-
- /* LR r1, r2 --- load from register */
- else if (is_rr (insn, op_lr, &r1, &r2))
- gpr[r1] = gpr[r2];
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &data->gpr[r1], data);
+ }
- /* NGR r1, r2 --- logical and --- 64-bit version */
- else if (GDB_TARGET_IS_ESAME
- && is_rre (insn, op_ngr, &r1, &r2))
- pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
+ /* LG r1, d2(x2, b2) --- load (64-bit version) */
+ else if (word_size == 8
+ && is_rxy (insn, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
- /* NR r1, r2 --- logical and */
- else if (is_rr (insn, op_nr, &r1, &r2))
- pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 8, &data->gpr[r1], data);
+ }
- /* NGR r1, r2 --- logical and --- 64-bit version */
- else if (GDB_TARGET_IS_ESAME
- && is_rre (insn, op_ngr, &r1, &r2))
- pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
+ /* ST r1, d2(x2, b2) --- store */
+ else if (word_size == 4
+ && is_rx (insn, op_st, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
- /* NR r1, r2 --- logical and */
- else if (is_rr (insn, op_nr, &r1, &r2))
- pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_store (&addr, 4, &data->gpr[r1], data);
+ }
- /* S r1, d2(x2, b2) --- subtract from memory */
- else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2))
+ /* STY r1, d2(x2, b2) --- store (long-displacement version) */
+ else if (word_size == 4
+ && is_rxy (insn, op1_sty, op2_sty, &r1, &d2, &x2, &b2))
{
struct prologue_value addr;
- struct prologue_value value;
- struct prologue_value *stack;
-
- compute_x_addr (&addr, gpr, d2, x2, b2);
-
- /* If it's a load from an in-line constant pool, then we can
- simulate that, under the assumption that the code isn't
- going to change between the time the processor actually
- executed it and the time when we're analyzing it. */
- if (addr.kind == pv_constant
- && start_pc <= addr.k
- && addr.k < pc)
- pv_set_to_constant (&value, read_memory_integer (addr.k, 4));
-
- /* If it's definitely a reference to something on the stack,
- we could do that. */
- else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
- == pv_definite_yes)
- value = *stack;
-
- /* Otherwise, we don't know the value. */
- else
- pv_set_to_unknown (&value);
-
- pv_subtract (&gpr[r1], &gpr[r1], &value);
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_store (&addr, 4, &data->gpr[r1], data);
}
- /* ST r1, d2(x2, b2) --- store */
- else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2))
+ /* STG r1, d2(x2, b2) --- store (64-bit version) */
+ else if (word_size == 8
+ && is_rxy (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
{
struct prologue_value addr;
- compute_x_addr (&addr, gpr, d2, x2, b2);
-
- /* The below really should be '4', not 'S390_GPR_SIZE'; this
- instruction always stores 32 bits, regardless of the full
- size of the GPR. */
- if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain)
- == pv_maybe)
- /* If we can't be sure that it's *not* a store to
- something we're tracing, then we would have to mark all
- our memory as unknown --- after all, it *could* be a
- store to any of them --- so we might as well just stop
- interpreting. */
- break;
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_store (&addr, 8, &data->gpr[r1], data);
}
/* STD r1, d2(x2,b2) --- store floating-point register */
{
struct prologue_value addr;
- compute_x_addr (&addr, gpr, d2, x2, b2);
-
- if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain)
- == pv_maybe)
- /* If we can't be sure that it's *not* a store to
- something we're tracing, then we would have to mark all
- our memory as unknown --- after all, it *could* be a
- store to any of them --- so we might as well just stop
- interpreting. */
- break;
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_store (&addr, 8, &data->fpr[r1], data);
}
- /* STG r1, d2(x2, b2) --- 64-bit store */
- else if (GDB_TARGET_IS_ESAME
- && is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
+ /* STM r1, r3, d2(b2) --- store multiple */
+ else if (word_size == 4
+ && is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
{
+ int regnum;
+ int offset;
struct prologue_value addr;
- compute_x_addr (&addr, gpr, d2, x2, b2);
-
- /* The below really should be '8', not 'S390_GPR_SIZE'; this
- instruction always stores 64 bits, regardless of the full
- size of the GPR. */
- if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain)
- == pv_maybe)
- /* If we can't be sure that it's *not* a store to
- something we're tracing, then we would have to mark all
- our memory as unknown --- after all, it *could* be a
- store to any of them --- so we might as well just stop
- interpreting. */
- break;
+ for (regnum = r1, offset = 0;
+ regnum <= r3;
+ regnum++, offset += 4)
+ {
+ compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
+ s390_store (&addr, 4, &data->gpr[regnum], data);
+ }
}
- /* STM r1, r3, d2(b2) --- store multiple */
- else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
+ /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version) */
+ else if (word_size == 4
+ && is_rsy (insn, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2))
{
int regnum;
int offset;
regnum <= r3;
regnum++, offset += 4)
{
- compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
-
- if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain)
- == pv_maybe)
- /* If we can't be sure that it's *not* a store to
- something we're tracing, then we would have to mark all
- our memory as unknown --- after all, it *could* be a
- store to any of them --- so we might as well just stop
- interpreting. */
- break;
+ compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
+ s390_store (&addr, 4, &data->gpr[regnum], data);
}
-
- /* If we left the loop early, we should stop interpreting
- altogether. */
- if (regnum <= r3)
- break;
}
- /* STMG r1, r3, d2(b2) --- store multiple, 64-bit */
- else if (GDB_TARGET_IS_ESAME
- && is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
+ /* STMG r1, r3, d2(b2) --- store multiple (64-bit version) */
+ else if (word_size == 8
+ && is_rsy (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
{
int regnum;
int offset;
regnum <= r3;
regnum++, offset += 8)
{
- compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
-
- if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain)
- == pv_maybe)
- /* If we can't be sure that it's *not* a store to
- something we're tracing, then we would have to mark all
- our memory as unknown --- after all, it *could* be a
- store to any of them --- so we might as well just stop
- interpreting. */
- break;
+ compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
+ s390_store (&addr, 8, &data->gpr[regnum], data);
}
+ }
+
+ /* AHI r1, i2 --- add halfword immediate */
+ else if (word_size == 4
+ && is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
+ pv_add_constant (&data->gpr[r1], i2);
+
+ /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
+ else if (word_size == 8
+ && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
+ pv_add_constant (&data->gpr[r1], i2);
+
+ /* AR r1, r2 -- add register */
+ else if (word_size == 4
+ && is_rr (insn, op_ar, &r1, &r2))
+ pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* AGR r1, r2 -- add register (64-bit version) */
+ else if (word_size == 8
+ && is_rre (insn, op_agr, &r1, &r2))
+ pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* A r1, d2(x2, b2) -- add */
+ else if (word_size == 4
+ && is_rx (insn, op_a, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &value, data);
+
+ pv_add (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* AY r1, d2(x2, b2) -- add (long-displacement version) */
+ else if (word_size == 4
+ && is_rxy (insn, op1_ay, op2_ay, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &value, data);
+
+ pv_add (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* AG r1, d2(x2, b2) -- add (64-bit version) */
+ else if (word_size == 8
+ && is_rxy (insn, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 8, &value, data);
+
+ pv_add (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* SR r1, r2 -- subtract register */
+ else if (word_size == 4
+ && is_rr (insn, op_sr, &r1, &r2))
+ pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* SGR r1, r2 -- subtract register (64-bit version) */
+ else if (word_size == 8
+ && is_rre (insn, op_sgr, &r1, &r2))
+ pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* S r1, d2(x2, b2) -- subtract */
+ else if (word_size == 4
+ && is_rx (insn, op_s, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &value, data);
+
+ pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* SY r1, d2(x2, b2) -- subtract (long-displacement version) */
+ else if (word_size == 4
+ && is_rxy (insn, op1_sy, op2_sy, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 4, &value, data);
+
+ pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* SG r1, d2(x2, b2) -- subtract (64-bit version) */
+ else if (word_size == 8
+ && is_rxy (insn, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
+ {
+ struct prologue_value addr;
+ struct prologue_value value;
+
+ compute_x_addr (&addr, data->gpr, d2, x2, b2);
+ s390_load (&addr, 8, &value, data);
+
+ pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
+ }
+
+ /* NR r1, r2 --- logical and */
+ else if (word_size == 4
+ && is_rr (insn, op_nr, &r1, &r2))
+ pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* NGR r1, r2 >--- logical and (64-bit version) */
+ else if (word_size == 8
+ && is_rre (insn, op_ngr, &r1, &r2))
+ pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);
+
+ /* LA r1, d2(x2, b2) --- load address */
+ else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
+ compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
+
+ /* LAY r1, d2(x2, b2) --- load address (long-displacement version) */
+ else if (is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
+ compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);
+
+ /* LARL r1, i2 --- load address relative long */
+ else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+ pv_set_to_constant (&data->gpr[r1], pc + i2 * 2);
+
+ /* BASR r1, 0 --- branch and save
+ Since r2 is zero, this saves the PC in r1, but doesn't branch. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ && r2 == 0)
+ pv_set_to_constant (&data->gpr[r1], next_pc);
+
+ /* BRAS r1, i2 --- branch relative and save */
+ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
+ {
+ pv_set_to_constant (&data->gpr[r1], next_pc);
+ next_pc = pc + i2 * 2;
- /* If we left the loop early, we should stop interpreting
- altogether. */
- if (regnum <= r3)
+ /* We'd better not interpret any backward branches. We'll
+ never terminate. */
+ if (next_pc <= pc)
break;
}
+ /* Terminate search when hitting any other branch instruction. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
+ || is_rr (insn, op_bcr, &r1, &r2)
+ || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+ || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
+ || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
+ || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
+ break;
+
else
/* An instruction we don't know how to simulate. The only
safe thing to do would be to set every value we're tracking
- to 'unknown'. Instead, we'll be optimistic: we just stop
- interpreting, and assume that the machine state we've got
- now is good enough for unwinding the stack. */
- break;
+ to 'unknown'. Instead, we'll be optimistic: we assume that
+ we *can* interpret every instruction that the compiler uses
+ to manipulate any of the data we're interested in here --
+ then we can just ignore anything else. */
+ ;
/* Record the address after the last instruction that changed
the FP, SP, or backlink. Ignore instructions that changed
restore instructions. (The back chain is never restored,
just popped.) */
{
- struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ struct prologue_value *sp = &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ struct prologue_value *fp = &data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
if ((! pv_is_identical (&pre_insn_sp, sp)
&& ! pv_is_register (sp, S390_SP_REGNUM, 0))
|| (! pv_is_identical (&pre_insn_fp, fp)
&& ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
- || ! pv_is_identical (&pre_insn_back_chain, &back_chain))
- after_last_frame_setup_insn = next_pc;
+ || ! pv_is_identical (&pre_insn_back_chain, &data->back_chain))
+ result = next_pc;
}
}
- /* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state
- of the machine as of the first instruction we couldn't interpret
- (hopefully the first non-prologue instruction). */
- {
- /* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure
- that out. */
- CORE_ADDR frame_size = -1;
-
- /* The value the SP had upon entry to the function, or
- (CORE_ADDR) -1 if we can't figure that out. */
- CORE_ADDR original_sp = -1;
-
- /* Are we using S390_FRAME_REGNUM as a frame pointer register? */
- int using_frame_pointer = 0;
-
- /* If S390_FRAME_REGNUM is some constant offset from the SP, then
- that strongly suggests that we're going to use that as our
- frame pointer register, not the SP. */
- {
- struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
-
- if (fp->kind == pv_register
- && fp->reg == S390_SP_REGNUM)
- using_frame_pointer = 1;
- }
-
- /* If we were given a frame_info structure, we may be able to use
- the frame's base address to figure out the actual value of the
- original SP. */
- if (fi && get_frame_base (fi))
- {
- int frame_base_regno;
- struct prologue_value *frame_base;
-
- /* The meaning of the frame base depends on whether the
- function uses a frame pointer register other than the SP or
- not (see s390_read_fp):
- - If the function does use a frame pointer register other
- than the SP, then the frame base is that register's
- value.
- - If the function doesn't use a frame pointer, then the
- frame base is the SP itself.
- We're duplicating some of the logic of s390_fp_regnum here,
- but we don't want to call that, because it would just do
- exactly the same analysis we've already done above. */
- if (using_frame_pointer)
- frame_base_regno = S390_FRAME_REGNUM;
- else
- frame_base_regno = S390_SP_REGNUM;
-
- frame_base = &gpr[frame_base_regno - S390_R0_REGNUM];
-
- /* We know the frame base address; if the value of whatever
- register it came from is a constant offset from the
- original SP, then we can reconstruct the original SP just
- by subtracting off that constant. */
- if (frame_base->kind == pv_register
- && frame_base->reg == S390_SP_REGNUM)
- original_sp = get_frame_base (fi) - frame_base->k;
- }
-
- /* If the analysis said that the current SP value is the original
- value less some constant, then that constant is the frame size. */
- {
- struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_R0_REGNUM];
-
- if (sp->kind == pv_register
- && sp->reg == S390_SP_REGNUM)
- frame_size = -sp->k;
- }
-
- /* If we knew other registers' current values, we could check if
- the analysis said any of those were related to the original SP
- value, too. But for now, we'll just punt. */
-
- /* If the caller passed in an 'extra info' structure, fill in the
- parts we can. */
- if (fextra_info)
- {
- if (init_extra_info || ! fextra_info->initialised)
- {
- s390_memset_extra_info (fextra_info);
- fextra_info->function_start = start_pc;
- fextra_info->initialised = 1;
- }
-
- if (frame_size != -1)
- {
- fextra_info->stack_bought_valid = 1;
- fextra_info->stack_bought = frame_size;
- }
-
- /* Assume everything was okay, and indicate otherwise when we
- find something amiss. */
- fextra_info->good_prologue = 1;
-
- if (using_frame_pointer)
- /* Actually, nobody cares about the exact PC, so any
- non-zero value will do here. */
- fextra_info->frame_pointer_saved_pc = 1;
-
- /* If we weren't able to find the size of the frame, or find
- the original sp based on actual current register values,
- then we're not going to be able to unwind this frame.
-
- (If we're just doing prologue analysis to set a breakpoint,
- then frame_size might be known, but original_sp unknown; if
- we're analyzing a real frame which uses alloca, then
- original_sp might be known (from the frame pointer
- register), but the frame size might be unknown.) */
- if (original_sp == -1 && frame_size == -1)
- fextra_info->good_prologue = 0;
-
- if (fextra_info->good_prologue)
- fextra_info->skip_prologue_function_start
- = after_last_frame_setup_insn;
- else
- /* If the prologue was too complex for us to make sense of,
- then perhaps it's better to just not skip anything at
- all. */
- fextra_info->skip_prologue_function_start = start_pc;
- }
-
- /* Indicate where registers were saved on the stack, if:
- - the caller seems to want to know,
- - the caller provided an actual SP, and
- - the analysis gave us enough information to actually figure it
- out. */
- if (fi
- && deprecated_get_frame_saved_regs (fi)
- && original_sp != -1)
- {
- int slot_num;
- CORE_ADDR slot_addr;
- CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
-
- /* Scan the spill array; if a spill slot says it holds the
- original value of some register, then record that slot's
- address as the place that register was saved.
-
- Just for kicks, note that, even if registers aren't saved
- in their officially-sanctioned slots, this will still work
- --- we know what really got put where. */
-
- /* First, the slots for r2 -- r15. */
- for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE;
- slot_num < 14;
- slot_num++, slot_addr += S390_GPR_SIZE)
- {
- struct prologue_value *slot = &spill[slot_num];
-
- if (slot->kind == pv_register
- && slot->k == 0)
- saved_regs[slot->reg] = slot_addr;
- }
-
- /* Then, the slots for f0, f2, f4, and f6. They're a
- different size. */
- for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE;
- slot_num < S390_NUM_SPILL_SLOTS;
- slot_num++, slot_addr += S390_FPR_SIZE)
- {
- struct prologue_value *slot = &spill[slot_num];
-
- if (slot->kind == pv_register
- && slot->k == 0)
- saved_regs[slot->reg] = slot_addr;
- }
-
- /* The stack pointer's element of saved_regs[] is special. */
- saved_regs[S390_SP_REGNUM] = original_sp;
- }
- }
-
return result;
}
+/* Advance PC across any function entry prologue instructions to reach
+ some "real" code. */
+static CORE_ADDR
+s390_skip_prologue (CORE_ADDR pc)
+{
+ struct s390_prologue_data data;
+ CORE_ADDR skip_pc;
+ skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data);
+ return skip_pc ? skip_pc : pc;
+}
+
/* Return true if we are in the functin's epilogue, i.e. after the
instruction that destroyed the function's stack frame. */
static int
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
return 1;
+ if (word_size == 4
+ && !read_memory_nobpt (pc - 6, insn, 6)
+ && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
if (word_size == 8
&& !read_memory_nobpt (pc - 6, insn, 6)
- && is_rse (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
+ && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
&& r3 == S390_SP_REGNUM - S390_R0_REGNUM)
return 1;
return 0;
}
+
+/* Normal stack frames. */
+
+struct s390_unwind_cache {
+
+ CORE_ADDR func;
+ CORE_ADDR frame_base;
+ CORE_ADDR local_base;
+
+ struct trad_frame_saved_reg *saved_regs;
+};
+
static int
-s390_check_function_end (CORE_ADDR pc)
+s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
+ struct s390_unwind_cache *info)
{
- bfd_byte instr[S390_MAX_INSTR_SIZE];
- int regidx, instrlen;
+ struct gdbarch *gdbarch = get_frame_arch (next_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ struct s390_prologue_data data;
+ struct prologue_value *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ struct prologue_value *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ int slot_num;
+ CORE_ADDR slot_addr;
+ CORE_ADDR func;
+ CORE_ADDR result;
+ ULONGEST reg;
+ CORE_ADDR prev_sp;
+ int frame_pointer;
+ int size;
+
+ /* Try to find the function start address. If we can't find it, we don't
+ bother searching for it -- with modern compilers this would be mostly
+ pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
+ or else a valid backchain ... */
+ func = frame_func_unwind (next_frame);
+ if (!func)
+ return 0;
- instrlen = s390_readinstruction (instr, pc);
- if (instrlen < 0)
- return -1;
- /* check for BR */
- if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
+ /* Try to analyze the prologue. */
+ result = s390_analyze_prologue (gdbarch, func,
+ frame_pc_unwind (next_frame), &data);
+ if (!result)
return 0;
- regidx = instr[1] & 0xf;
- /* Check for LMG or LG */
- instrlen =
- s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4));
- if (instrlen < 0)
- return -1;
- if (GDB_TARGET_IS_ESAME)
- {
- if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
- return 0;
- }
- else if (instrlen != 4 || instr[0] != 0x98)
- {
- return 0;
- }
- if ((instr[2] >> 4) != 0xf)
+ /* If this was successful, we should have found the instruction that
+ sets the stack pointer register to the previous value of the stack
+ pointer minus the frame size. */
+ if (sp->kind != pv_register || sp->reg != S390_SP_REGNUM)
return 0;
- if (regidx == 14)
- return 1;
- instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8));
- if (instrlen < 0)
- return -1;
- if (GDB_TARGET_IS_ESAME)
- {
- /* Check for LG */
- if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
- return 0;
- }
- else
+
+ /* A frame size of zero at this point can mean either a real
+ frameless function, or else a failure to find the prologue.
+ Perform some sanity checks to verify we really have a
+ frameless function. */
+ if (sp->k == 0)
{
- /* Check for L */
- if (instrlen != 4 || instr[0] != 0x58)
+ /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
+ size zero. This is only possible if the next frame is a sentinel
+ frame, a dummy frame, or a signal trampoline frame. */
+ if (get_frame_type (next_frame) == NORMAL_FRAME
+ /* For some reason, sentinel frames are NORMAL_FRAMEs
+ -- but they have negative frame level. */
+ && frame_relative_level (next_frame) >= 0)
return 0;
- }
- if (instr[2] >> 4 != 0xf)
- return 0;
- if (instr[1] >> 4 != regidx)
- return 0;
- return 1;
-}
-
-static CORE_ADDR
-s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
-{
- CORE_ADDR function_start, test_function_start;
- int loop_cnt, err, function_end;
- struct frame_extra_info fextra_info;
- function_start = get_pc_function_start (pc);
- if (function_start == 0)
- {
- test_function_start = pc;
- if (test_function_start & 1)
- return 0; /* This has to be bogus */
- loop_cnt = 0;
- do
+ /* If we really have a frameless function, %r14 must be valid
+ -- in particular, it must point to a different function. */
+ reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
+ reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
+ if (get_pc_function_start (reg) == func)
{
+ /* However, there is one case where it *is* valid for %r14
+ to point to the same function -- if this is a recursive
+ call, and we have stopped in the prologue *before* the
+ stack frame was allocated.
+
+ Recognize this case by looking ahead a bit ... */
- err =
- s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
- loop_cnt++;
- test_function_start -= 2;
- function_end = s390_check_function_end (test_function_start);
+ struct s390_prologue_data data2;
+ struct prologue_value *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+
+ if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
+ && sp->kind == pv_register
+ && sp->reg == S390_SP_REGNUM
+ && sp->k != 0))
+ return 0;
}
- while (!(function_end == 1 || err || loop_cnt >= 4096 ||
- (fextra_info.good_prologue)));
- if (fextra_info.good_prologue)
- function_start = fextra_info.function_start;
- else if (function_end == 1)
- function_start = test_function_start;
}
- return function_start;
-}
-static int
-s390_frameless_function_invocation (struct frame_info *fi)
-{
- struct frame_extra_info fextra_info, *fextra_info_ptr;
- int frameless = 0;
+ /* OK, we've found valid prologue data. */
+ size = -sp->k;
- if (get_next_frame (fi) == NULL) /* no may be frameless */
+ /* If the frame pointer originally also holds the same value
+ as the stack pointer, we're probably using it. If it holds
+ some other value -- even a constant offset -- it is most
+ likely used as temp register. */
+ if (pv_is_identical (sp, fp))
+ frame_pointer = S390_FRAME_REGNUM;
+ else
+ frame_pointer = S390_SP_REGNUM;
+
+ /* If we've detected a function with stack frame, we'll still have to
+ treat it as frameless if we're currently within the function epilog
+ code at a point where the frame pointer has already been restored.
+ This can only happen in an innermost frame. */
+ if (size > 0
+ && (get_frame_type (next_frame) != NORMAL_FRAME
+ || frame_relative_level (next_frame) < 0))
{
- if (get_frame_extra_info (fi))
- fextra_info_ptr = get_frame_extra_info (fi);
- else
+ /* See the comment in s390_in_function_epilogue_p on why this is
+ not completely reliable ... */
+ if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
{
- fextra_info_ptr = &fextra_info;
- s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
- fextra_info_ptr, fi, 1);
+ memset (&data, 0, sizeof (data));
+ size = 0;
+ frame_pointer = S390_SP_REGNUM;
}
- frameless = (fextra_info_ptr->stack_bought_valid
- && fextra_info_ptr->stack_bought == 0);
}
- return frameless;
-}
+ /* Once we know the frame register and the frame size, we can unwind
+ the current value of the frame register from the next frame, and
+ add back the frame size to arrive that the previous frame's
+ stack pointer value. */
+ prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;
+ /* Scan the spill array; if a spill slot says it holds the
+ original value of some register, then record that slot's
+ address as the place that register was saved. */
-static int
-s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
- CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
-{
- bfd_byte instr[S390_MAX_INSTR_SIZE];
- int instrlen;
- CORE_ADDR scontext;
- int retval = 0;
- CORE_ADDR orig_sp;
- CORE_ADDR temp_sregs;
-
- scontext = temp_sregs = 0;
-
- instrlen = s390_readinstruction (instr, pc);
- if (sigcaller_pc)
- *sigcaller_pc = 0;
- if (((instrlen == S390_SYSCALL_SIZE) &&
- (instr[0] == S390_SYSCALL_OPCODE)) &&
- ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
+ /* Slots for %r2 .. %r15. */
+ for (slot_num = 0, slot_addr = prev_sp + 2 * data.gpr_size;
+ slot_num < 14;
+ slot_num++, slot_addr += data.gpr_size)
{
- if (sighandler_fi)
- {
- if (s390_frameless_function_invocation (sighandler_fi))
- orig_sp = get_frame_base (sighandler_fi);
- else
- orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
- read_memory_integer (get_frame_base (sighandler_fi),
- S390_GPR_SIZE));
- if (orig_sp && sigcaller_pc)
- {
- scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
- if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
- {
- /* We got a new style rt_signal */
- /* get address of read ucontext->uc_mcontext */
- temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
- S390X_UC_MCONTEXT_OFFSET :
- S390_UC_MCONTEXT_OFFSET);
- }
- else
- {
- /* read sigcontext->sregs */
- temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
- read_memory_integer (scontext
- +
- (GDB_TARGET_IS_ESAME
- ?
- S390X_SIGCONTEXT_SREGS_OFFSET
- :
- S390_SIGCONTEXT_SREGS_OFFSET),
- S390_GPR_SIZE));
-
- }
- /* read sigregs->psw.addr */
- *sigcaller_pc =
- ADDR_BITS_REMOVE ((CORE_ADDR)
- read_memory_integer (temp_sregs +
- DEPRECATED_REGISTER_BYTE (S390_PSWA_REGNUM),
- S390_GPR_SIZE));
- }
- }
- retval = 1;
+ struct prologue_value *slot = &data.spill[slot_num];
+
+ if (slot->kind == pv_register
+ && slot->k == 0)
+ info->saved_regs[slot->reg].addr = slot_addr;
}
- if (sregs)
- *sregs = temp_sregs;
- return retval;
-}
-/*
- We need to do something better here but this will keep us out of trouble
- for the moment.
- For some reason the blockframe.c calls us with fi->next->fromleaf
- so this seems of little use to us. */
-static CORE_ADDR
-s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
-{
- CORE_ADDR sigcaller_pc;
- CORE_ADDR pc = 0;
- if (next_fromleaf)
+ /* Slots for %f0 .. %f6. */
+ for (slot_num = 14, slot_addr = prev_sp + 16 * data.gpr_size;
+ slot_num < S390_NUM_SPILL_SLOTS;
+ slot_num++, slot_addr += data.fpr_size)
{
- pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
- /* fix signal handlers */
+ struct prologue_value *slot = &data.spill[slot_num];
+
+ if (slot->kind == pv_register
+ && slot->k == 0)
+ info->saved_regs[slot->reg].addr = slot_addr;
+ }
+
+ /* Function return will set PC to %r14. */
+ info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
+
+ /* In frameless functions, we unwind simply by moving the return
+ address to the PC. However, if we actually stored to the
+ save area, use that -- we might only think the function frameless
+ because we're in the middle of the prologue ... */
+ if (size == 0
+ && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
+ {
+ info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
}
- else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi)))
- pc = s390_frame_saved_pc_nofix (get_next_frame (fi));
- if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi))
- && s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc))
+
+ /* Another sanity check: unless this is a frameless function,
+ we should have found spill slots for SP and PC.
+ If not, we cannot unwind further -- this happens e.g. in
+ libc's thread_start routine. */
+ if (size > 0)
{
- pc = sigcaller_pc;
+ if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
+ || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
+ prev_sp = -1;
}
- return pc;
+
+ /* We use the current value of the frame register as local_base,
+ and the top of the register save area as frame_base. */
+ if (prev_sp != -1)
+ {
+ info->frame_base = prev_sp + 16*word_size + 32;
+ info->local_base = prev_sp - size;
+ }
+
+ info->func = func;
+ return 1;
}
static void
-s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
+ struct s390_unwind_cache *info)
{
- frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
- if (get_frame_pc (fi))
- s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
- get_frame_extra_info (fi), fi, 1);
- else
- s390_memset_extra_info (get_frame_extra_info (fi));
+ struct gdbarch *gdbarch = get_frame_arch (next_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ CORE_ADDR backchain;
+ ULONGEST reg;
+ LONGEST sp;
+
+ /* Get the backchain. */
+ reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ backchain = read_memory_unsigned_integer (reg, word_size);
+
+ /* A zero backchain terminates the frame chain. As additional
+ sanity check, let's verify that the spill slot for SP in the
+ save area pointed to by the backchain in fact links back to
+ the save area. */
+ if (backchain != 0
+ && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
+ && (CORE_ADDR)sp == backchain)
+ {
+ /* We don't know which registers were saved, but it will have
+ to be at least %r14 and %r15. This will allow us to continue
+ unwinding, but other prev-frame registers may be incorrect ... */
+ info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
+ info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
+
+ /* Function return will set PC to %r14. */
+ info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
+
+ /* We use the current value of the frame register as local_base,
+ and the top of the register save area as frame_base. */
+ info->frame_base = backchain + 16*word_size + 32;
+ info->local_base = reg;
+ }
+
+ info->func = frame_pc_unwind (next_frame);
}
-/* If saved registers of frame FI are not known yet, read and cache them.
- &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
- in which case the framedata are read. */
+static struct s390_unwind_cache *
+s390_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
+{
+ struct s390_unwind_cache *info;
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
+
+ info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+ info->func = -1;
+ info->frame_base = -1;
+ info->local_base = -1;
+
+ /* Try to use prologue analysis to fill the unwind cache.
+ If this fails, fall back to reading the stack backchain. */
+ if (!s390_prologue_frame_unwind_cache (next_frame, info))
+ s390_backchain_frame_unwind_cache (next_frame, info);
+
+ return info;
+}
static void
-s390_frame_init_saved_regs (struct frame_info *fi)
+s390_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (next_frame, this_prologue_cache);
- int quick;
+ if (info->frame_base == -1)
+ return;
- if (deprecated_get_frame_saved_regs (fi) == NULL)
- {
- /* zalloc memsets the saved regs */
- frame_saved_regs_zalloc (fi);
- if (get_frame_pc (fi))
- {
- quick = (get_frame_extra_info (fi)
- && get_frame_extra_info (fi)->initialised
- && get_frame_extra_info (fi)->good_prologue);
- s390_get_frame_info (quick
- ? get_frame_extra_info (fi)->function_start
- : s390_sniff_pc_function_start (get_frame_pc (fi), fi),
- get_frame_extra_info (fi), fi, !quick);
- }
- }
+ *this_id = frame_id_build (info->frame_base, info->func);
}
+static void
+s390_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (next_frame, this_prologue_cache);
+ trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+ optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind s390_frame_unwind = {
+ NORMAL_FRAME,
+ s390_frame_this_id,
+ s390_frame_prev_register
+};
+
+static const struct frame_unwind *
+s390_frame_sniffer (struct frame_info *next_frame)
+{
+ return &s390_frame_unwind;
+}
-static CORE_ADDR
-s390_frame_saved_pc_nofix (struct frame_info *fi)
+/* PLT stub stack frames. */
+
+struct s390_pltstub_unwind_cache {
+
+ CORE_ADDR frame_base;
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+static struct s390_pltstub_unwind_cache *
+s390_pltstub_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
{
- if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid)
- return get_frame_extra_info (fi)->saved_pc;
+ struct gdbarch *gdbarch = get_frame_arch (next_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ struct s390_pltstub_unwind_cache *info;
+ ULONGEST reg;
- if (deprecated_generic_find_dummy_frame (get_frame_pc (fi),
- get_frame_base (fi)))
- return deprecated_read_register_dummy (get_frame_pc (fi),
- get_frame_base (fi), S390_PC_REGNUM);
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
- s390_frame_init_saved_regs (fi);
- if (get_frame_extra_info (fi))
- {
- get_frame_extra_info (fi)->saved_pc_valid = 1;
- if (get_frame_extra_info (fi)->good_prologue
- && deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM])
- get_frame_extra_info (fi)->saved_pc
- = ADDR_BITS_REMOVE (read_memory_integer
- (deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM],
- S390_GPR_SIZE));
- else
- get_frame_extra_info (fi)->saved_pc
- = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
- return get_frame_extra_info (fi)->saved_pc;
- }
- return 0;
+ info = FRAME_OBSTACK_ZALLOC (struct s390_pltstub_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ /* The return address is in register %r14. */
+ info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
+
+ /* Retrieve stack pointer and determine our frame base. */
+ reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ info->frame_base = reg + 16*word_size + 32;
+
+ return info;
}
-static CORE_ADDR
-s390_frame_saved_pc (struct frame_info *fi)
+static void
+s390_pltstub_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
{
- CORE_ADDR saved_pc = 0, sig_pc;
+ struct s390_pltstub_unwind_cache *info
+ = s390_pltstub_frame_unwind_cache (next_frame, this_prologue_cache);
+ *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
+}
- if (get_frame_extra_info (fi)
- && get_frame_extra_info (fi)->sig_fixed_saved_pc_valid)
- return get_frame_extra_info (fi)->sig_fixed_saved_pc;
- saved_pc = s390_frame_saved_pc_nofix (fi);
+static void
+s390_pltstub_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct s390_pltstub_unwind_cache *info
+ = s390_pltstub_frame_unwind_cache (next_frame, this_prologue_cache);
+ trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+ optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind s390_pltstub_frame_unwind = {
+ NORMAL_FRAME,
+ s390_pltstub_frame_this_id,
+ s390_pltstub_frame_prev_register
+};
- if (get_frame_extra_info (fi))
- {
- get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1;
- if (saved_pc)
- {
- if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
- saved_pc = sig_pc;
- }
- get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc;
- }
- return saved_pc;
-}
+static const struct frame_unwind *
+s390_pltstub_frame_sniffer (struct frame_info *next_frame)
+{
+ if (!in_plt_section (frame_pc_unwind (next_frame), NULL))
+ return NULL;
+ return &s390_pltstub_frame_unwind;
+}
+/* Signal trampoline stack frames. */
-/* We want backtraces out of signal handlers so we don't set
- (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
+struct s390_sigtramp_unwind_cache {
+ CORE_ADDR frame_base;
+ struct trad_frame_saved_reg *saved_regs;
+};
-static CORE_ADDR
-s390_frame_chain (struct frame_info *thisframe)
+static struct s390_sigtramp_unwind_cache *
+s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
{
- CORE_ADDR prev_fp = 0;
+ struct gdbarch *gdbarch = get_frame_arch (next_frame);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ struct s390_sigtramp_unwind_cache *info;
+ ULONGEST this_sp, prev_sp;
+ CORE_ADDR next_ra, next_cfa, sigreg_ptr;
+ int i;
+
+ if (*this_prologue_cache)
+ return *this_prologue_cache;
- if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe),
- get_frame_base (thisframe)))
- return deprecated_read_register_dummy (get_frame_pc (thisframe),
- get_frame_base (thisframe),
- S390_SP_REGNUM);
+ info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
+ *this_prologue_cache = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ next_ra = frame_pc_unwind (next_frame);
+ next_cfa = this_sp + 16*word_size + 32;
+
+ /* New-style RT frame:
+ retcode + alignment (8 bytes)
+ siginfo (128 bytes)
+ ucontext (contains sigregs at offset 5 words) */
+ if (next_ra == next_cfa)
+ {
+ sigreg_ptr = next_cfa + 8 + 128 + 5*word_size;
+ }
+
+ /* Old-style RT frame and all non-RT frames:
+ old signal mask (8 bytes)
+ pointer to sigregs */
else
{
- int sigreturn = 0;
- CORE_ADDR sregs = 0;
- struct frame_extra_info prev_fextra_info;
+ sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
+ }
- memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
- if (get_frame_pc (thisframe))
- {
- CORE_ADDR saved_pc, sig_pc;
+ /* The sigregs structure looks like this:
+ long psw_mask;
+ long psw_addr;
+ long gprs[16];
+ int acrs[16];
+ int fpc;
+ int __pad;
+ double fprs[16]; */
- saved_pc = s390_frame_saved_pc_nofix (thisframe);
- if (saved_pc)
- {
- if ((sigreturn =
- s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
- saved_pc = sig_pc;
- s390_get_frame_info (s390_sniff_pc_function_start
- (saved_pc, NULL), &prev_fextra_info, NULL,
- 1);
- }
- }
- if (sigreturn)
- {
- /* read sigregs,regs.gprs[11 or 15] */
- prev_fp = read_memory_integer (sregs +
- DEPRECATED_REGISTER_BYTE (S390_R0_REGNUM +
- (prev_fextra_info.
- frame_pointer_saved_pc
- ? 11 : 15)),
- S390_GPR_SIZE);
- get_frame_extra_info (thisframe)->sigcontext = sregs;
- }
- else
- {
- if (deprecated_get_frame_saved_regs (thisframe))
- {
- int regno;
-
- if (prev_fextra_info.frame_pointer_saved_pc
- && deprecated_get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM])
- regno = S390_FRAME_REGNUM;
- else
- regno = S390_SP_REGNUM;
-
- if (deprecated_get_frame_saved_regs (thisframe)[regno])
- {
- /* The SP's entry of `saved_regs' is special. */
- if (regno == S390_SP_REGNUM)
- prev_fp = deprecated_get_frame_saved_regs (thisframe)[regno];
- else
- prev_fp =
- read_memory_integer (deprecated_get_frame_saved_regs (thisframe)[regno],
- S390_GPR_SIZE);
- }
- }
- }
+ /* Let's ignore the PSW mask, it will not be restored anyway. */
+ sigreg_ptr += word_size;
+
+ /* Next comes the PSW address. */
+ info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
+ sigreg_ptr += word_size;
+
+ /* Then the GPRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += word_size;
+ }
+
+ /* Then the ACRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += 4;
}
- return ADDR_BITS_REMOVE (prev_fp);
-}
-/*
- Whether struct frame_extra_info is actually needed I'll have to figure
- out as our frames are similar to rs6000 there is a possibility
- i386 dosen't need it. */
+ /* The floating-point control word. */
+ info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
+ sigreg_ptr += 8;
-/* Not the most efficent code in the world */
-static int
-s390_fp_regnum (void)
-{
- int regno = S390_SP_REGNUM;
- struct frame_extra_info fextra_info;
+ /* And finally the FPRs. */
+ for (i = 0; i < 16; i++)
+ {
+ info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
+ sigreg_ptr += 8;
+ }
+
+ /* Restore the previous frame's SP. */
+ prev_sp = read_memory_unsigned_integer (
+ info->saved_regs[S390_SP_REGNUM].addr,
+ word_size);
- CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
+ /* Determine our frame base. */
+ info->frame_base = prev_sp + 16*word_size + 32;
- s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
- NULL, 1);
- if (fextra_info.frame_pointer_saved_pc)
- regno = S390_FRAME_REGNUM;
- return regno;
+ return info;
}
-static CORE_ADDR
-s390_read_fp (void)
+static void
+s390_sigtramp_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ struct frame_id *this_id)
{
- return read_register (s390_fp_regnum ());
+ struct s390_sigtramp_unwind_cache *info
+ = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
+ *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
}
-
static void
-s390_pop_frame_regular (struct frame_info *frame)
+s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct s390_sigtramp_unwind_cache *info
+ = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
+ trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+ optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind s390_sigtramp_frame_unwind = {
+ SIGTRAMP_FRAME,
+ s390_sigtramp_frame_this_id,
+ s390_sigtramp_frame_prev_register
+};
+
+static const struct frame_unwind *
+s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
- int regnum;
+ CORE_ADDR pc = frame_pc_unwind (next_frame);
+ bfd_byte sigreturn[2];
- write_register (S390_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
+ if (read_memory_nobpt (pc, sigreturn, 2))
+ return NULL;
- /* Restore any saved registers. */
- if (deprecated_get_frame_saved_regs (frame))
- {
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
- {
- ULONGEST value;
-
- value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
- DEPRECATED_REGISTER_RAW_SIZE (regnum));
- write_register (regnum, value);
- }
-
- /* Actually cut back the stack. Remember that the SP's element of
- saved_regs is the old SP itself, not the address at which it is
- saved. */
- write_register (S390_SP_REGNUM, deprecated_get_frame_saved_regs (frame)[S390_SP_REGNUM]);
- }
+ if (sigreturn[0] != 0x0a /* svc */)
+ return NULL;
- /* Throw away any cached frame information. */
- flush_cached_frames ();
+ if (sigreturn[1] != 119 /* sigreturn */
+ && sigreturn[1] != 173 /* rt_sigreturn */)
+ return NULL;
+
+ return &s390_sigtramp_frame_unwind;
}
-/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
- machine state that was in effect before the frame was created.
- Used in the contexts of the "return" command, and of
- target function calls from the debugger. */
-static void
-s390_pop_frame (void)
+/* Frame base handling. */
+
+static CORE_ADDR
+s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
- /* This function checks for and handles generic dummy frames, and
- calls back to our function for ordinary frames. */
- generic_pop_current_frame (s390_pop_frame_regular);
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (next_frame, this_cache);
+ return info->frame_base;
+}
+
+static CORE_ADDR
+s390_local_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct s390_unwind_cache *info
+ = s390_frame_unwind_cache (next_frame, this_cache);
+ return info->local_base;
+}
+
+static const struct frame_base s390_frame_base = {
+ &s390_frame_unwind,
+ s390_frame_base_address,
+ s390_local_base_address,
+ s390_local_base_address
+};
+
+static CORE_ADDR
+s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST pc;
+ pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
+ return gdbarch_addr_bits_remove (gdbarch, pc);
+}
+
+static CORE_ADDR
+s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST sp;
+ sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ return gdbarch_addr_bits_remove (gdbarch, sp);
}
/* Store updated stack pointer. */
regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
- /* Return stack pointer. */
- return sp;
+ /* We need to return the 'stack part' of the frame ID,
+ which is actually the top of the register save area
+ allocated on the original stack. */
+ return orig_sp + 16*word_size + 32;
}
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
static struct frame_id
s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
- ULONGEST sp;
- frame_unwind_unsigned_register (next_frame, S390_SP_REGNUM, &sp);
- return frame_id_build (sp, frame_pc_unwind (next_frame));
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ CORE_ADDR this_sp = s390_unwind_sp (gdbarch, next_frame);
+ CORE_ADDR prev_sp = read_memory_unsigned_integer (this_sp, word_size);
+
+ return frame_id_build (prev_sp + 16*word_size + 32,
+ frame_pc_unwind (next_frame));
}
static CORE_ADDR
}
+/* Breakpoints. */
+
static const unsigned char *
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
return breakpoint;
}
-/* Advance PC across any function entry prologue instructions to reach some
- "real" code. */
-static CORE_ADDR
-s390_skip_prologue (CORE_ADDR pc)
-{
- struct frame_extra_info fextra_info;
- s390_get_frame_info (pc, &fextra_info, NULL, 1);
- return fextra_info.skip_prologue_function_start;
-}
-
-/* Immediately after a function call, return the saved pc.
- Can't go through the frames for this because on some machines
- the new frame is not set up until the new function executes
- some instructions. */
-static CORE_ADDR
-s390_saved_pc_after_call (struct frame_info *frame)
-{
- return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
-}
+/* Address handling. */
static CORE_ADDR
s390_addr_bits_remove (CORE_ADDR addr)
{
- return (addr) & 0x7fffffff;
+ return addr & 0x7fffffff;
}
static int
return 0;
}
+
+/* Set up gdbarch struct. */
+
static struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
tdep = XCALLOC (1, struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
- /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
- ready to unwind the PC first (see frame.c:get_prev_frame()). */
- set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
-
set_gdbarch_believe_pcc_promotion (gdbarch, 0);
set_gdbarch_char_signed (gdbarch, 0);
- set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
- set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
/* Amount PC must be decremented by after a breakpoint. This is
often the number of bytes returned by BREAKPOINT_FROM_PC but not
always. */
set_gdbarch_decr_pc_after_break (gdbarch, 2);
- set_gdbarch_deprecated_pop_frame (gdbarch, s390_pop_frame);
/* Stack grows downward. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
- set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
- set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
- set_gdbarch_deprecated_target_read_fp (gdbarch, s390_read_fp);
set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
- /* This function that tells us whether the function invocation represented
- by FI does not have a frame on the stack associated with it. If it
- does not, FRAMELESS is set to 1, else 0. */
- set_gdbarch_deprecated_frameless_function_invocation (gdbarch, s390_frameless_function_invocation);
- /* Return saved PC from a frame */
- set_gdbarch_deprecated_frame_saved_pc (gdbarch, s390_frame_saved_pc);
- /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and
- produces the frame's chain-pointer. */
- set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
- set_gdbarch_deprecated_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
+
set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
- set_gdbarch_deprecated_fp_regnum (gdbarch, S390_SP_REGNUM);
set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
set_gdbarch_frame_align (gdbarch, s390_frame_align);
set_gdbarch_return_value (gdbarch, s390_return_value);
+ /* Frame handling. */
+ set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
+ frame_unwind_append_sniffer (gdbarch, s390_pltstub_frame_sniffer);
+ frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
+ frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
+ frame_base_set_default (gdbarch, &s390_frame_base);
+ set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
+
switch (info.bfd_arch_info->mach)
{
case bfd_mach_s390_31: