#include "rtl.h"
#include "df.h"
#include "rtl-ssa.h"
+#include "rtl-ssa/internals.h"
#include "rtl-ssa/internals.inl"
#include "cfganal.h"
#include "cfgrtl.h"
#include "predict.h"
+#include "domwalk.h"
using namespace rtl_ssa;
+// Prepare to build information for a function in which all register numbers
+// are less than NUM_REGS and all basic block indices are less than
+// NUM_BB_INDICES
+function_info::build_info::build_info (unsigned int num_regs,
+ unsigned int num_bb_indices)
+ : current_bb (nullptr),
+ current_ebb (nullptr),
+ last_access (num_regs + 1),
+ ebb_live_in_for_debug (nullptr),
+ potential_phi_regs (num_regs),
+ bb_phis (num_bb_indices),
+ bb_mem_live_out (num_bb_indices),
+ bb_to_rpo (num_bb_indices)
+{
+ last_access.safe_grow_cleared (num_regs + 1);
+
+ bitmap_clear (potential_phi_regs);
+
+ // These arrays shouldn't need to be initialized, since we'll always
+ // write to an entry before reading from it. But poison the contents
+ // when checking, just to make sure we don't accidentally use an
+ // uninitialized value.
+ bb_phis.quick_grow (num_bb_indices);
+ bb_mem_live_out.quick_grow (num_bb_indices);
+ bb_to_rpo.quick_grow (num_bb_indices);
+ if (flag_checking)
+ {
+ // Can't do this for bb_phis because it has a constructor.
+ memset (bb_mem_live_out.address (), 0xaf,
+ num_bb_indices * sizeof (bb_mem_live_out[0]));
+ memset (bb_to_rpo.address (), 0xaf,
+ num_bb_indices * sizeof (bb_to_rpo[0]));
+ }
+
+ // Start off with an empty set of phi nodes for each block.
+ for (bb_phi_info &info : bb_phis)
+ bitmap_initialize (&info.regs, &bitmap_default_obstack);
+}
+
+function_info::build_info::~build_info ()
+{
+ for (bb_phi_info &info : bb_phis)
+ bitmap_release (&info.regs);
+}
+
+// A dom_walker for populating the basic blocks.
+class function_info::bb_walker : public dom_walker
+{
+public:
+ bb_walker (function_info *, build_info &);
+ virtual edge before_dom_children (basic_block);
+ virtual void after_dom_children (basic_block);
+
+private:
+ // Information about the function we're building.
+ function_info *m_function;
+ build_info &m_bi;
+
+ // We should treat the exit block as being the last child of this one.
+ // See the comment in the constructor for more information.
+ basic_block m_exit_block_dominator;
+};
+
+// Prepare to walk the blocks in FUNCTION using BI.
+function_info::bb_walker::bb_walker (function_info *function, build_info &bi)
+ : dom_walker (CDI_DOMINATORS, ALL_BLOCKS, bi.bb_to_rpo.address ()),
+ m_function (function),
+ m_bi (bi),
+ m_exit_block_dominator (nullptr)
+{
+ // ??? There is no dominance information associated with the exit block,
+ // so work out its immediate dominator using predecessor blocks. We then
+ // walk the exit block just before popping its immediate dominator.
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn)->preds)
+ if (m_exit_block_dominator)
+ m_exit_block_dominator
+ = nearest_common_dominator (CDI_DOMINATORS,
+ m_exit_block_dominator, e->src);
+ else
+ m_exit_block_dominator = e->src;
+
+ // If the exit block is unreachable, process it last.
+ if (!m_exit_block_dominator)
+ m_exit_block_dominator = ENTRY_BLOCK_PTR_FOR_FN (m_function->m_fn);
+}
+
+edge
+function_info::bb_walker::before_dom_children (basic_block bb)
+{
+ m_function->start_block (m_bi, m_function->bb (bb));
+ return nullptr;
+}
+
+void
+function_info::bb_walker::after_dom_children (basic_block bb)
+{
+ // See the comment in the constructor for details.
+ if (bb == m_exit_block_dominator)
+ {
+ before_dom_children (EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn));
+ after_dom_children (EXIT_BLOCK_PTR_FOR_FN (m_function->m_fn));
+ }
+ m_function->end_block (m_bi, m_function->bb (bb));
+}
+
// See the comment above the declaration.
void
bb_info::print_identifier (pretty_printer *pp) const
// If the end of the block already has an artificial use, that use
// acts to make DEF live at the appropriate point.
- unsigned int regno = def->regno ();
- if (find_access (bb->end_insn ()->uses (), regno))
+ use_info *use = def->last_nondebug_insn_use ();
+ if (use && use->insn () == bb->end_insn ())
return;
// Currently there is no need to maintain a backward link from the end
// instruction to the list of live-out uses. Such a list would be
// expensive to update if it was represented using the usual insn_info
// access arrays.
- use_info *use = allocate<use_info> (bb->end_insn (), def->resource (), def);
+ use = allocate<use_info> (bb->end_insn (), def->resource (), def);
use->set_is_live_out_use (true);
add_use (use);
}
m_last_bb = bb;
}
+// Calculate BI.potential_phi_regs and BI.potential_phi_regs_for_debug.
+void
+function_info::calculate_potential_phi_regs (build_info &bi)
+{
+ auto *lr_info = DF_LR_BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (m_fn));
+ bool is_debug = MAY_HAVE_DEBUG_INSNS;
+ for (unsigned int regno = 0; regno < m_num_regs; ++regno)
+ if (regno >= DF_REG_SIZE (DF)
+ // Exclude registers that have a single definition that dominates
+ // all uses. If the definition does not dominate all uses,
+ // the register will be exposed upwards to the entry block but
+ // will not be defined by the entry block.
+ || DF_REG_DEF_COUNT (regno) > 1
+ || (!bitmap_bit_p (&lr_info->def, regno)
+ && bitmap_bit_p (&lr_info->out, regno)))
+ {
+ bitmap_set_bit (bi.potential_phi_regs, regno);
+ if (is_debug)
+ bitmap_set_bit (bi.potential_phi_regs_for_debug, regno);
+ }
+}
+
+// Called while building SSA form using BI. Decide where phi nodes
+// should be placed for each register and initialize BI.bb_phis accordingly.
+void
+function_info::place_phis (build_info &bi)
+{
+ unsigned int num_bb_indices = last_basic_block_for_fn (m_fn);
+
+ // Calculate dominance frontiers.
+ auto_vec<bitmap_head> frontiers;
+ frontiers.safe_grow (num_bb_indices);
+ for (unsigned int i = 0; i < num_bb_indices; ++i)
+ bitmap_initialize (&frontiers[i], &bitmap_default_obstack);
+ compute_dominance_frontiers (frontiers.address ());
+
+ // In extreme cases, the number of live-in registers can be much
+ // greater than the number of phi nodes needed in a block (see PR98863).
+ // Try to reduce the number of operations involving live-in sets by using
+ // PENDING as a staging area: registers in PENDING need phi nodes if
+ // they are live on entry to the corresponding block, but do not need
+ // phi nodes otherwise.
+ auto_vec<bitmap_head> unfiltered;
+ unfiltered.safe_grow (num_bb_indices);
+ for (unsigned int i = 0; i < num_bb_indices; ++i)
+ bitmap_initialize (&unfiltered[i], &bitmap_default_obstack);
+
+ // If block B1 defines R and if B2 is in the dominance frontier of B1,
+ // queue a possible phi node for R in B2.
+ auto_bitmap worklist;
+ for (unsigned int b1 = 0; b1 < num_bb_indices; ++b1)
+ {
+ // Only access DF information for blocks that are known to exist.
+ if (bitmap_empty_p (&frontiers[b1]))
+ continue;
+
+ bitmap b1_def = &DF_LR_BB_INFO (BASIC_BLOCK_FOR_FN (m_fn, b1))->def;
+ bitmap_iterator bmi;
+ unsigned int b2;
+ EXECUTE_IF_SET_IN_BITMAP (&frontiers[b1], 0, b2, bmi)
+ if (bitmap_ior_into (&unfiltered[b2], b1_def)
+ && !bitmap_empty_p (&frontiers[b2]))
+ // Propagate the (potential) new phi node definitions in B2.
+ bitmap_set_bit (worklist, b2);
+ }
+
+ while (!bitmap_empty_p (worklist))
+ {
+ unsigned int b1 = bitmap_first_set_bit (worklist);
+ bitmap_clear_bit (worklist, b1);
+
+ // Restrict the phi nodes to registers that are live on entry to
+ // the block.
+ bitmap b1_in = DF_LR_IN (BASIC_BLOCK_FOR_FN (m_fn, b1));
+ bitmap b1_phis = &bi.bb_phis[b1].regs;
+ if (!bitmap_ior_and_into (b1_phis, &unfiltered[b1], b1_in))
+ continue;
+
+ // If block B1 has a phi node for R and if B2 is in the dominance
+ // frontier of B1, queue a possible phi node for R in B2.
+ bitmap_iterator bmi;
+ unsigned int b2;
+ EXECUTE_IF_SET_IN_BITMAP (&frontiers[b1], 0, b2, bmi)
+ if (bitmap_ior_into (&unfiltered[b2], b1_phis)
+ && !bitmap_empty_p (&frontiers[b2]))
+ bitmap_set_bit (worklist, b2);
+ }
+
+ basic_block cfg_bb;
+ FOR_ALL_BB_FN (cfg_bb, m_fn)
+ {
+ // Calculate the set of phi nodes for blocks that don't have any
+ // dominance frontiers. We only need to do this once per block.
+ unsigned int i = cfg_bb->index;
+ bb_phi_info &phis = bi.bb_phis[i];
+ if (bitmap_empty_p (&frontiers[i]))
+ bitmap_and (&phis.regs, &unfiltered[i], DF_LR_IN (cfg_bb));
+
+ // Create an array that contains all phi inputs for this block.
+ // See the comment above the member variables for more information.
+ phis.num_phis = bitmap_count_bits (&phis.regs);
+ phis.num_preds = EDGE_COUNT (cfg_bb->preds);
+ unsigned int num_inputs = phis.num_phis * phis.num_preds;
+ if (num_inputs != 0)
+ {
+ phis.inputs = XOBNEWVEC (&m_temp_obstack, set_info *, num_inputs);
+ memset (phis.inputs, 0, num_inputs * sizeof (phis.inputs[0]));
+ }
+ }
+
+ // Free the temporary bitmaps.
+ for (unsigned int i = 0; i < num_bb_indices; ++i)
+ {
+ bitmap_release (&frontiers[i]);
+ bitmap_release (&unfiltered[i]);
+ }
+}
+
// Called while building SSA form using BI, with BI.current_bb being
// the entry block.
//
auto *set = allocate<set_info> (insn, full_register (regno));
append_def (set);
m_temp_defs.safe_push (set);
- bi.record_reg_def (regno, set);
+ bi.record_reg_def (set);
}
// Create a definition that reflects the state of memory on entry to
finish_insn_accesses (insn);
}
+// Lazily calculate the value of BI.ebb_live_in_for_debug for BI.current_ebb.
+void
+function_info::calculate_ebb_live_in_for_debug (build_info &bi)
+{
+ gcc_checking_assert (bitmap_empty_p (bi.tmp_ebb_live_in_for_debug));
+ bi.ebb_live_in_for_debug = bi.tmp_ebb_live_in_for_debug;
+ bitmap_and (bi.ebb_live_in_for_debug, bi.potential_phi_regs_for_debug,
+ DF_LR_IN (bi.current_ebb->first_bb ()->cfg_bb ()));
+ bitmap_tree_view (bi.ebb_live_in_for_debug);
+}
+
// Called while building SSA form using BI. Create phi nodes for the
-// current EBB, leaving backedge inputs to be filled in later. Set
-// bi.last_access to the values that are live on entry to the EBB,
-// regardless of whether or not they are phi nodes.
+// current EBB.
void
function_info::add_phi_nodes (build_info &bi)
{
ebb_info *ebb = bi.current_ebb;
basic_block cfg_bb = ebb->first_bb ()->cfg_bb ();
- auto *lr_info = DF_LR_BB_INFO (cfg_bb);
- // Get a local cache of the predecessor blocks' live out values.
- unsigned int num_preds = EDGE_COUNT (cfg_bb->preds);
- auto_vec<const bb_live_out_info *, 16> pred_live_outs (num_preds);
- bool has_backedge = false;
- bool has_eh_edge = false;
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, cfg_bb->preds)
+ // Create the register phis for this EBB.
+ bb_phi_info &phis = bi.bb_phis[cfg_bb->index];
+ unsigned int num_preds = phis.num_preds;
+ unsigned int regno;
+ bitmap_iterator in_bi;
+ EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, in_bi)
{
- bb_info *pred_bb = this->bb (e->src);
- const bb_live_out_info *live_out = &bi.bb_live_out[e->src->index];
-
- // In LR (but not LIVE), the registers live on entry to a block must
- // normally be a subset of the registers live on exit from any
- // given predecessor block. The exceptions are EH edges, which
- // implicitly clobber all registers in eh_edge_abi.full_reg_clobbers ().
- // Thus if a register is upwards exposed in an EH handler, it won't
- // be propagated across the EH edge.
- //
- // Excluding that special case, all registers live on entry to
- // EBB are also live on exit from PRED_BB and were (or will be)
- // considered when creating LIVE_OUT.
- gcc_checking_assert ((e->flags & EDGE_EH)
- || !bitmap_intersect_compl_p (&lr_info->in,
- DF_LR_OUT (e->src)));
- if (!pred_bb || !pred_bb->head_insn ())
- {
- has_backedge = true;
- live_out = nullptr;
- }
- has_eh_edge |= (e->flags & EDGE_EH);
- pred_live_outs.quick_push (live_out);
- }
-
- // PRED_REG_INDICES[I] tracks the index into PRED_LIVE_OUTS[I]->reg_values
- // of the first unused entry.
- auto_vec<unsigned int, 16> pred_reg_indices (num_preds);
- pred_reg_indices.quick_grow_cleared (num_preds);
-
- // Use this array to build up the list of inputs to each phi.
- m_temp_defs.safe_grow (num_preds);
+ gcc_checking_assert (bitmap_bit_p (bi.potential_phi_regs, regno));
- // Return true if the current phi is degenerate, i.e. if all its inputs
- // are the same.
- auto is_degenerate_phi = [&]()
- {
- if (has_backedge)
- return false;
+ // Create an array of phi inputs, to be filled in later.
+ auto *inputs = XOBNEWVEC (&m_obstack, access_info *, num_preds);
+ memset (inputs, 0, sizeof (access_info *) * num_preds);
- for (unsigned int i = 1; i < num_preds; ++i)
- if (m_temp_defs[i] != m_temp_defs[0])
- return false;
+ // Later code works out the correct mode of the phi. Use BLKmode
+ // as a placeholder for now.
+ phi_info *phi = create_phi (ebb, { E_BLKmode, regno },
+ inputs, num_preds);
+ bi.record_reg_def (phi);
+ }
- return true;
- };
+ bitmap_copy (bi.ebb_def_regs, &phis.regs);
- // Finish calculating the live-in value for RESOURCE. Decide how to
- // represent the value of RESOURCE on entry to EBB and return its definition.
- auto finish_phi = [&](resource_info resource) -> set_info *
+ // Collect the live-in memory definitions and record whether they're
+ // all the same.
+ m_temp_defs.reserve (num_preds);
+ set_info *mem_value = nullptr;
+ bool mem_phi_is_degenerate = true;
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, cfg_bb->preds)
{
- access_info **inputs;
- unsigned int num_inputs;
- if (is_degenerate_phi ())
+ bb_info *pred_bb = this->bb (e->src);
+ if (pred_bb && pred_bb->head_insn ())
{
- auto *input = safe_as_a<set_info *> (m_temp_defs[0]);
- if (!input)
- // The live-in value is completely uninitialized.
- return nullptr;
-
- unsigned int regno = input->regno ();
- if (input->is_reg () && !bitmap_bit_p (bi.ebb_use, regno))
- // The live-in value comes from a single source and there
- // are no uses of it within the EBB itself. We therefore
- // don't need a phi node.
- return input;
-
- // The live-in value comes from a single source and might be
- // used by the EBB itself. Create a degenerate phi for it.
- inputs = m_temp_defs.begin ();
- num_inputs = 1;
+ mem_value = bi.bb_mem_live_out[pred_bb->index ()];
+ m_temp_defs.quick_push (mem_value);
+ if (mem_value != m_temp_defs[0])
+ mem_phi_is_degenerate = false;
}
else
{
- obstack_grow (&m_obstack, m_temp_defs.address (),
- num_preds * sizeof (access_info *));
- inputs = static_cast<access_info **> (obstack_finish (&m_obstack));
- num_inputs = num_preds;
+ m_temp_defs.quick_push (nullptr);
+ mem_phi_is_degenerate = false;
}
- return create_phi (ebb, resource, inputs, num_inputs);
- };
-
- if (bi.ebb_live_in_for_debug)
- bitmap_clear (bi.ebb_live_in_for_debug);
+ }
- // Get the definition of each live input register, excluding registers
- // that are known to have a single definition that dominates all uses.
- unsigned int regno;
- bitmap_iterator in_bi;
- EXECUTE_IF_AND_IN_BITMAP (&lr_info->in, m_potential_phi_regs,
- 0, regno, in_bi)
+ // Create a phi for memory, on the assumption that something in the
+ // EBB will need it.
+ if (mem_phi_is_degenerate)
{
- for (unsigned int pred_i = 0; pred_i < num_preds; ++pred_i)
- {
- set_info *input = nullptr;
- if (const bb_live_out_info *pred_live_out = pred_live_outs[pred_i])
- {
- // Skip over registers that aren't live on entry to this block.
- unsigned int reg_i = pred_reg_indices[pred_i];
- while (reg_i < pred_live_out->num_reg_values
- && pred_live_out->reg_values[reg_i]->regno () < regno)
- reg_i += 1;
-
- // As we asserted above, REGNO is live out from the predecessor
- // block, at least by the LR reckoning. But there are three
- // cases:
- //
- // (1) The live-out value is well-defined (the normal case),
- // with the definition coming either from the block itself
- // or from a predecessor block. In this case reg_values
- // has a set_info entry for the register.
- //
- // (2) The live-out value was not modified by the predecessor
- // EBB and did not have a defined value on input to that
- // EBB either. In this case reg_values has no entry for
- // the register.
- //
- // (3) The live-out value was modified by the predecessor EBB,
- // but the final modification was a clobber rather than
- // a set. In this case reg_values again has no entry for
- // the register.
- //
- // The phi input for (2) and (3) is undefined, which we
- // represent as a null set_info.
- if (reg_i < pred_live_out->num_reg_values)
- {
- set_info *set = pred_live_out->reg_values[reg_i];
- if (set->regno () == regno)
- {
- input = set;
- reg_i += 1;
- }
- }
-
- // Fully call-clobbered values do not survive across EH edges.
- // In particular, if a call that normally sets a result register
- // throws an exception, the set of the result register should
- // not be treated as live on entry to the EH handler.
- if (has_eh_edge
- && HARD_REGISTER_NUM_P (regno)
- && eh_edge_abi.clobbers_full_reg_p (regno)
- && (EDGE_PRED (cfg_bb, pred_i)->flags & EDGE_EH))
- input = nullptr;
-
- pred_reg_indices[pred_i] = reg_i;
- }
- m_temp_defs[pred_i] = input;
- }
- // Later code works out the correct mode of the phi. Use BLKmode
- // as a placeholder for now.
- bi.record_reg_def (regno, finish_phi ({ E_BLKmode, regno }));
- if (bi.ebb_live_in_for_debug)
- bitmap_set_bit (bi.ebb_live_in_for_debug, regno);
+ access_info *input[] = { mem_value };
+ mem_value = create_phi (ebb, memory, input, 1);
}
-
- // Repeat the process above for memory.
- for (unsigned int pred_i = 0; pred_i < num_preds; ++pred_i)
+ else
{
- set_info *input = nullptr;
- if (const bb_live_out_info *pred_live_out = pred_live_outs[pred_i])
- input = pred_live_out->mem_value;
- m_temp_defs[pred_i] = input;
+ obstack_grow (&m_obstack, m_temp_defs.address (),
+ num_preds * sizeof (access_info *));
+ auto *inputs = static_cast<access_info **> (obstack_finish (&m_obstack));
+ mem_value = create_phi (ebb, memory, inputs, num_preds);
}
- bi.record_mem_def (finish_phi (memory));
-
+ bi.record_mem_def (mem_value);
m_temp_defs.truncate (0);
}
{
unsigned int regno = DF_REF_REGNO (ref);
machine_mode mode = GET_MODE (DF_REF_REAL_REG (ref));
- resource_info resource { mode, regno };
// A definition must be available.
gcc_checking_assert (bitmap_bit_p (&lr_info->in, regno)
|| (flags != DF_REF_AT_TOP
&& bitmap_bit_p (&lr_info->def, regno)));
- set_info *def = bi.current_reg_value (regno);
- auto *use = allocate<use_info> (insn, resource, def);
- add_use (use);
- m_temp_uses.safe_push (use);
+ m_temp_uses.safe_push (create_reg_use (bi, insn, { mode, regno }));
}
// Track the return value of memory by adding an artificial use of
machine_mode mode = GET_MODE (DF_REF_REAL_REG (ref));
resource_info resource { mode, regno };
+ // We rely on the def set being correct.
+ gcc_checking_assert (bitmap_bit_p (&lr_info->def, regno));
+
// If the value isn't used later in the block and isn't live
// on exit, we could instead represent the definition as a
// clobber_info. However, that case should be relatively
set_info *def = allocate<set_info> (insn, resource);
append_def (def);
m_temp_defs.safe_push (def);
- bi.record_reg_def (regno, def);
+ bi.record_reg_def (def);
}
// Model the effect of a memory clobber on an incoming edge by adding
add_insn_to_block (bi, insn);
}
-// Called while building SSA form using BI. Use BI.bb_live_out to record
-// the values that are live out from BI.current_bb.
+// Called while building SSA form using BI. Record live-out register values
+// in the phi inputs of successor blocks and create live-out uses where
+// appropriate. Record the live-out memory value in BI.bb_mem_live_out.
void
function_info::record_block_live_out (build_info &bi)
{
bb_info *bb = bi.current_bb;
ebb_info *ebb = bi.current_ebb;
basic_block cfg_bb = bb->cfg_bb ();
- bb_live_out_info *live_out = &bi.bb_live_out[bb->index ()];
- auto *lr_info = DF_LR_BB_INFO (bb->cfg_bb ());
- // Calculate which subset of m_potential_phi_regs is live out from EBB
- // at the end of BB.
- auto_bitmap live_out_from_ebb;
+ // Record the live-out register values in the phi inputs of
+ // successor blocks.
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, cfg_bb->succs)
{
- bb_info *dest_bb = this->bb (e->dest);
- if (!dest_bb || dest_bb->ebb () != ebb)
- bitmap_ior_and_into (live_out_from_ebb, DF_LR_IN (e->dest),
- m_potential_phi_regs);
+ bb_phi_info &phis = bi.bb_phis[e->dest->index];
+ unsigned int input_i = e->dest_idx * phis.num_phis;
+ unsigned int regno;
+ bitmap_iterator out_bi;
+ EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, out_bi)
+ {
+ phis.inputs[input_i]
+ = live_out_value (bb, bi.current_reg_value (regno));
+ input_i += 1;
+ }
}
- // Record the live-out register values.
- unsigned int regno;
- bitmap_iterator out_bi;
- EXECUTE_IF_AND_IN_BITMAP (&lr_info->out, m_potential_phi_regs,
- 0, regno, out_bi)
- if (set_info *value = live_out_value (bb, bi.current_reg_value (regno)))
+ // Add the set of registers that were defined in this BB to the set
+ // of potentially-live registers defined in the EBB.
+ bitmap_ior_into (bi.ebb_def_regs, &DF_LR_BB_INFO (cfg_bb)->def);
+
+ // Iterate through the registers in LIVE_OUT and see whether we need
+ // to add a live-out use for them.
+ auto record_live_out_regs = [&](bitmap live_out)
+ {
+ unsigned int regno;
+ bitmap_iterator out_bi;
+ EXECUTE_IF_AND_IN_BITMAP (bi.ebb_def_regs, live_out, 0, regno, out_bi)
+ {
+ set_info *value = live_out_value (bb, bi.current_reg_value (regno));
+ if (value && value->ebb () == ebb)
+ add_live_out_use (bb, value);
+ }
+ };
+
+ if (bb == ebb->last_bb ())
+ // All live-out registers might need live-out uses.
+ record_live_out_regs (DF_LR_OUT (cfg_bb));
+ else
+ // Registers might need live-out uses if they are live on entry
+ // to a successor block in a different EBB.
+ FOR_EACH_EDGE (e, ei, cfg_bb->succs)
{
- if (value->ebb () == ebb && bitmap_bit_p (live_out_from_ebb, regno))
- add_live_out_use (bb, value);
- obstack_ptr_grow (&m_temp_obstack, value);
+ bb_info *dest_bb = this->bb (e->dest);
+ if (dest_bb->ebb () != ebb || dest_bb == ebb->first_bb ())
+ record_live_out_regs (DF_LR_IN (e->dest));
}
- live_out->num_reg_values = (obstack_object_size (&m_temp_obstack)
- / sizeof (set_info *));
- auto *data = obstack_finish (&m_temp_obstack);
- live_out->reg_values = static_cast<set_info **> (data);
+ // Record the live-out memory value.
+ bi.bb_mem_live_out[cfg_bb->index]
+ = live_out_value (bb, bi.current_mem_value ());
+}
+
+// Add BB and its contents to the SSA information.
+void
+function_info::start_block (build_info &bi, bb_info *bb)
+{
+ ebb_info *ebb = bb->ebb ();
+
+ // We (need to) add all blocks from one EBB before moving on to the next.
+ bi.current_bb = bb;
+ if (bb == ebb->first_bb ())
+ bi.current_ebb = ebb;
+ else
+ gcc_assert (bi.current_ebb == ebb);
- live_out->mem_value = live_out_value (bb, bi.current_mem_value ());
+ // Record the start of this block's definitions in the definitions stack.
+ bi.old_def_stack_limit.safe_push (bi.def_stack.length ());
+
+ // Add the block itself.
+ append_bb (bb);
+
+ // If the block starts an EBB, create the phi insn. This insn should exist
+ // for all EBBs, even if they don't (yet) need phis.
+ if (bb == ebb->first_bb ())
+ ebb->set_phi_insn (append_artificial_insn (bb));
+
+ if (bb->index () == ENTRY_BLOCK)
+ {
+ add_entry_block_defs (bi);
+ record_block_live_out (bi);
+ return;
+ }
+
+ if (EDGE_COUNT (bb->cfg_bb ()->preds) == 0)
+ {
+ // Leave unreachable blocks empty, since there is no useful
+ // liveness information for them, and anything they do will
+ // be wasted work. In a cleaned-up cfg, the only unreachable
+ // block we should see is the exit block of a noreturn function.
+ bb->set_head_insn (append_artificial_insn (bb));
+ bb->set_end_insn (append_artificial_insn (bb));
+ return;
+ }
+
+ // If the block starts an EBB, create the phi nodes.
+ if (bb == ebb->first_bb ())
+ add_phi_nodes (bi);
+
+ // Process the contents of the block.
+ add_artificial_accesses (bi, DF_REF_AT_TOP);
+ if (bb->index () != EXIT_BLOCK)
+ add_block_contents (bi);
+ add_artificial_accesses (bi, df_ref_flags ());
+ record_block_live_out (bi);
+
+ // If we needed to calculate a live-in set for debug purposes,
+ // reset it to null at the end of the EBB. Convert the underlying
+ // bitmap to an empty list view, ready for the next calculation.
+ if (bi.ebb_live_in_for_debug && bb == ebb->last_bb ())
+ {
+ bitmap_clear (bi.tmp_ebb_live_in_for_debug);
+ bitmap_list_view (bi.tmp_ebb_live_in_for_debug);
+ bi.ebb_live_in_for_debug = nullptr;
+ }
}
-// Called while building SSA form using BI. Check if BI.current_bb has
-// any outgoing backedges. If so, use the up-to-date contents of
-// BI.bb_live_out to populate the associated inputs of any phi nodes.
+// Finish adding BB and the blocks that it dominates to the SSA information.
void
-function_info::populate_backedge_phis (build_info &bi)
+function_info::end_block (build_info &bi, bb_info *bb)
{
- bb_info *bb = bi.current_bb;
- basic_block cfg_bb = bb->cfg_bb ();
- const bb_live_out_info *live_out = &bi.bb_live_out[bb->index ()];
+ // Restore the register last_access information to the state it was
+ // in before we started processing BB.
+ unsigned int old_limit = bi.old_def_stack_limit.pop ();
+ while (bi.def_stack.length () > old_limit)
+ {
+ // We pushed a definition in BB if it was the first dominating
+ // definition (and so the previous entry was null). In other
+ // cases we pushed the previous dominating definition.
+ def_info *def = bi.def_stack.pop ();
+ unsigned int regno = def->regno ();
+ if (def->bb () == bb)
+ def = nullptr;
+ bi.last_access[regno + 1] = def;
+ }
+}
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, cfg_bb->succs)
+// Finish setting up the phi nodes for each block, now that we've added
+// the contents of all blocks.
+void
+function_info::populate_phi_inputs (build_info &bi)
+{
+ auto_vec<phi_info *, 32> sorted_phis;
+ for (ebb_info *ebb : ebbs ())
{
- // Check if this edge counts as a backedge in the current traversal.
- bb_info *succ_bb = this->bb (e->dest);
- if (!succ_bb || !succ_bb->head_insn ())
+ if (!ebb->first_phi ())
continue;
- // Although the phis do not keep a defined order long-term, they are
- // still in reverse regno order at this point. We can therefore use
- // a merge operation on the phis and the live-out values.
- unsigned int input_i = e->dest_idx;
- int reg_i = live_out->num_reg_values - 1;
- for (phi_info *phi : succ_bb->ebb ()->phis ())
+ // Get a sorted array of EBB's phi nodes.
+ basic_block cfg_bb = ebb->first_bb ()->cfg_bb ();
+ bb_phi_info &phis = bi.bb_phis[cfg_bb->index];
+ sorted_phis.truncate (0);
+ for (phi_info *phi : ebb->phis ())
+ sorted_phis.safe_push (phi);
+ std::sort (sorted_phis.address (),
+ sorted_phis.address () + sorted_phis.length (),
+ compare_access_infos);
+
+ // Set the inputs of the non-degenerate register phis. All inputs
+ // for one edge come before all inputs for the next edge.
+ set_info **inputs = phis.inputs;
+ unsigned int phi_i = 0;
+ bitmap_iterator bmi;
+ unsigned int regno;
+ EXECUTE_IF_SET_IN_BITMAP (&phis.regs, 0, regno, bmi)
{
- set_info *input = nullptr;
- if (phi->is_mem ())
- input = live_out->mem_value;
- else
+ // Skip intervening degenerate phis.
+ while (sorted_phis[phi_i]->regno () < regno)
+ phi_i += 1;
+ phi_info *phi = sorted_phis[phi_i];
+ gcc_assert (phi->regno () == regno);
+ for (unsigned int input_i = 0; input_i < phis.num_preds; ++input_i)
+ if (set_info *input = inputs[input_i * phis.num_phis])
+ {
+ use_info *use = phi->input_use (input_i);
+ gcc_assert (!use->def ());
+ use->set_def (input);
+ add_use (use);
+ }
+ phi_i += 1;
+ inputs += 1;
+ }
+
+ // Fill in the backedge inputs to any memory phi.
+ phi_info *mem_phi = sorted_phis.last ();
+ if (mem_phi->is_mem () && !mem_phi->is_degenerate ())
+ {
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, cfg_bb->preds)
{
- // Skip over any intervening live-out values.
- unsigned int regno = phi->regno ();
- while (reg_i >= 0)
+ use_info *use = mem_phi->input_use (e->dest_idx);
+ if (!use->def ())
{
- set_info *reg_value = live_out->reg_values[reg_i];
- if (reg_value->regno () < regno)
- break;
- reg_i -= 1;
- if (reg_value->regno () == regno)
- {
- input = reg_value;
- break;
- }
+ use->set_def (bi.bb_mem_live_out[e->src->index]);
+ add_use (use);
}
}
- if (input)
- {
- use_info *use = phi->input_use (input_i);
- gcc_assert (!use->def ());
- use->set_def (input);
- add_use (use);
- }
}
}
}
return best_edge ? best_edge->dest : nullptr;
}
-// Partition the function's blocks into EBBs and build SSA form for all
-// EBBs in the function.
+// Partition the function into extended basic blocks. Create the
+// associated ebb_infos and bb_infos, but don't add the bb_infos
+// to the function list yet.
void
-function_info::process_all_blocks ()
+function_info::create_ebbs (build_info &bi)
{
- auto temps = temp_watermark ();
- unsigned int num_bb_indices = last_basic_block_for_fn (m_fn);
-
// Compute the starting reverse postorder. We tweak this later to try
// to get better EBB assignments.
auto *postorder = new int[n_basic_blocks_for_fn (m_fn)];
= pre_and_rev_post_order_compute (nullptr, postorder, true);
gcc_assert (int (postorder_num) <= n_basic_blocks_for_fn (m_fn));
- // Construct the working state for this function and its subroutines.
- build_info bi;
- bi.last_access = XOBNEWVEC (&m_temp_obstack, access_info *, m_num_regs + 1);
- memset (bi.last_access, 0, (m_num_regs + 1) * sizeof (set_info *));
-
- // The bb_live_out array shouldn't need to be initialized, since we'll
- // always write to an entry before reading from it. But poison the
- // contents when checking, just to make sure we don't accidentally use
- // an uninitialized value.
- bi.bb_live_out = XOBNEWVEC (&m_temp_obstack, bb_live_out_info,
- num_bb_indices);
- if (flag_checking)
- memset (bi.bb_live_out, 0xaf,
- num_bb_indices * sizeof (bb_live_out_info));
-
- // Only pay the overhead of recording a separate live-in bitmap if
- // there are debug instructions that might need it.
- auto_bitmap ebb_live_in;
- if (MAY_HAVE_DEBUG_INSNS)
- {
- bi.ebb_live_in_for_debug = ebb_live_in;
- // The bitmap is tested using individual bit operations, so optimize
- // for that case.
- bitmap_tree_view (ebb_live_in);
- }
- else
- bi.ebb_live_in_for_debug = nullptr;
-
// Iterate over the blocks in reverse postorder. In cases where
// multiple possible orders exist, prefer orders that chain blocks
// together into EBBs. If multiple possible EBBs exist, try to pick
// the ones that are most likely to be profitable.
- auto_vec<bb_info *, 16> ebb;
- auto_bitmap ebb_use_tmp;
- auto_bitmap ebb_def_tmp;
+ auto_vec<bb_info *, 16> bbs;
+ unsigned int next_bb_index = 0;
for (unsigned int i = 0; i < postorder_num; ++i)
if (!m_bbs[postorder[i]])
{
- // Choose and create the blocks that should form the next EBB,
- // and calculate the set of registers that the EBB uses and defines
- // Only do actual bitmap operations if the EBB contains multiple
- // blocks.
+ // Choose and create the blocks that should form the next EBB.
basic_block cfg_bb = BASIC_BLOCK_FOR_FN (m_fn, postorder[i]);
- bi.ebb_use = &DF_LR_BB_INFO (cfg_bb)->use;
- bi.ebb_def = &DF_LR_BB_INFO (cfg_bb)->def;
- ebb.safe_push (create_bb_info (cfg_bb));
- cfg_bb = choose_next_block_in_ebb (cfg_bb);
- if (cfg_bb)
+ do
{
- // An EBB with two blocks.
- bitmap_ior (ebb_use_tmp, bi.ebb_use, &DF_LR_BB_INFO (cfg_bb)->use);
- bitmap_ior (ebb_def_tmp, bi.ebb_def, &DF_LR_BB_INFO (cfg_bb)->def);
- bi.ebb_use = ebb_use_tmp;
- bi.ebb_def = ebb_def_tmp;
- ebb.safe_push (create_bb_info (cfg_bb));
+ // Record the chosen block order in a new RPO.
+ bi.bb_to_rpo[cfg_bb->index] = next_bb_index++;
+ bbs.safe_push (create_bb_info (cfg_bb));
cfg_bb = choose_next_block_in_ebb (cfg_bb);
- while (cfg_bb)
- {
- // An EBB with three or more blocks.
- bitmap_ior_into (bi.ebb_use, &DF_LR_BB_INFO (cfg_bb)->use);
- bitmap_ior_into (bi.ebb_def, &DF_LR_BB_INFO (cfg_bb)->def);
- ebb.safe_push (create_bb_info (cfg_bb));
- cfg_bb = choose_next_block_in_ebb (cfg_bb);
- }
}
+ while (cfg_bb);
// Create the EBB itself.
- bi.current_ebb = allocate<ebb_info> (ebb[0], ebb.last ());
- for (bb_info *bb : ebb)
- {
- bb->set_ebb (bi.current_ebb);
- append_bb (bb);
- }
-
- // Populate the contents of the EBB.
- bi.current_ebb->set_phi_insn (append_artificial_insn (ebb[0]));
- if (ebb[0]->index () == ENTRY_BLOCK)
- {
- gcc_assert (ebb.length () == 1);
- bi.current_bb = ebb[0];
- add_entry_block_defs (bi);
- record_block_live_out (bi);
- }
- else if (EDGE_COUNT (ebb[0]->cfg_bb ()->preds) == 0)
- // Leave unreachable blocks empty, since there is no useful
- // liveness information for them, and anything they do will
- // be wasted work. In a cleaned-up cfg, the only unreachable
- // block we should see is the exit block of a noreturn function.
- for (bb_info *bb : ebb)
- {
- bb->set_head_insn (append_artificial_insn (bb));
- bb->set_end_insn (append_artificial_insn (bb));
- }
- else
- {
- add_phi_nodes (bi);
- for (bb_info *bb : ebb)
- {
- bi.current_bb = bb;
- add_artificial_accesses (bi, DF_REF_AT_TOP);
- if (bb->index () != EXIT_BLOCK)
- add_block_contents (bi);
- add_artificial_accesses (bi, df_ref_flags ());
- record_block_live_out (bi);
- populate_backedge_phis (bi);
- }
- }
- ebb.truncate (0);
+ auto *ebb = allocate<ebb_info> (bbs[0], bbs.last ());
+ for (bb_info *bb : bbs)
+ bb->set_ebb (ebb);
+ bbs.truncate (0);
}
delete[] postorder;
}
+// Partition the function's blocks into EBBs and build SSA form for all
+// EBBs in the function.
+void
+function_info::process_all_blocks ()
+{
+ auto temps = temp_watermark ();
+ unsigned int num_bb_indices = last_basic_block_for_fn (m_fn);
+
+ build_info bi (m_num_regs, num_bb_indices);
+
+ calculate_potential_phi_regs (bi);
+ create_ebbs (bi);
+ place_phis (bi);
+ bb_walker (this, bi).walk (ENTRY_BLOCK_PTR_FOR_FN (m_fn));
+ populate_phi_inputs (bi);
+
+ if (flag_checking)
+ {
+ // The definition stack should be empty and all register definitions
+ // should be back in their original undefined state.
+ gcc_assert (bi.def_stack.is_empty ()
+ && bi.old_def_stack_limit.is_empty ());
+ for (unsigned int regno = 0; regno < m_num_regs; ++regno)
+ gcc_assert (!bi.last_access[regno + 1]);
+ }
+}
+
// Print a description of CALL_CLOBBERS to PP.
void
rtl_ssa::pp_ebb_call_clobbers (pretty_printer *pp,