#include "tree-cfg.h"
/* This implements the pass that does predicate aware warning on uses of
- possibly uninitialized variables. The pass first collects the set of
- possibly uninitialized SSA names. For each such name, it walks through
- all its immediate uses. For each immediate use, it rebuilds the condition
- expression (the predicate) that guards the use. The predicate is then
+ possibly uninitialized variables. The pass first collects the set of
+ possibly uninitialized SSA names. For each such name, it walks through
+ all its immediate uses. For each immediate use, it rebuilds the condition
+ expression (the predicate) that guards the use. The predicate is then
examined to see if the variable is always defined under that same condition.
This is done either by pruning the unrealizable paths that lead to the
default definitions or by checking if the predicate set that guards the
defining paths is a superset of the use predicate. */
-
/* Pointer set of potentially undefined ssa names, i.e.,
ssa names that are defined by phi with operands that
are not defined or potentially undefined. */
#define MASK_EMPTY(mask) (mask == 0)
/* Returns the first bit position (starting from LSB)
- in mask that is non zero. Returns -1 if the mask is empty. */
+ in mask that is non zero. Returns -1 if the mask is empty. */
static int
get_mask_first_set_bit (unsigned mask)
{
&& possibly_undefined_names->contains (t)));
}
-
-
/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
is set on SSA_NAME_VAR. */
static inline bool
-uninit_undefined_value_p (tree t) {
+uninit_undefined_value_p (tree t)
+{
if (!has_undefined_value_p (t))
return false;
if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
/* Emit a warning for EXPR based on variable VAR at the point in the
program T, an SSA_NAME, is used being uninitialized. The exact
warning text is in MSGID and DATA is the gimple stmt with info about
- the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
+ the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
gives which argument of the phi node to take the location from. WC
is the warning code. */
else
location = DECL_SOURCE_LOCATION (var);
location = linemap_resolve_location (line_table, location,
- LRK_SPELLING_LOCATION,
- NULL);
+ LRK_SPELLING_LOCATION, NULL);
cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
xloc = expand_location (location);
floc = expand_location (cfun_loc);
if (location == DECL_SOURCE_LOCATION (var))
return;
if (xloc.file != floc.file
- || linemap_location_before_p (line_table,
- location, cfun_loc)
- || linemap_location_before_p (line_table,
- cfun->function_end_locus,
+ || linemap_location_before_p (line_table, location, cfun_loc)
+ || linemap_location_before_p (line_table, cfun->function_end_locus,
location))
inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
}
FOR_EACH_BB_FN (bb, cfun)
{
- bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
- single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
+ basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
+ bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
{
use = USE_FROM_PTR (use_p);
if (always_executed)
- warn_uninit (OPT_Wuninitialized, use,
- SSA_NAME_VAR (use), SSA_NAME_VAR (use),
- "%qD is used uninitialized in this function",
- stmt, UNKNOWN_LOCATION);
+ warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
+ SSA_NAME_VAR (use),
+ "%qD is used uninitialized in this function", stmt,
+ UNKNOWN_LOCATION);
else if (warn_possibly_uninitialized)
- warn_uninit (OPT_Wmaybe_uninitialized, use,
- SSA_NAME_VAR (use), SSA_NAME_VAR (use),
+ warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
+ SSA_NAME_VAR (use),
"%qD may be used uninitialized in this function",
stmt, UNKNOWN_LOCATION);
}
continue;
if (always_executed)
- warn_uninit (OPT_Wuninitialized, use,
- gimple_assign_rhs1 (stmt), base,
- "%qE is used uninitialized in this function",
+ warn_uninit (OPT_Wuninitialized, use, gimple_assign_rhs1 (stmt),
+ base, "%qE is used uninitialized in this function",
stmt, UNKNOWN_LOCATION);
else if (warn_possibly_uninitialized)
warn_uninit (OPT_Wmaybe_uninitialized, use,
/* Checks if the operand OPND of PHI is defined by
another phi with one operand defined by this PHI,
- but the rest operands are all defined. If yes,
+ but the rest operands are all defined. If yes,
returns true to skip this operand as being
- redundant. Can be enhanced to be more general. */
+ redundant. Can be enhanced to be more general. */
static bool
can_skip_redundant_opnd (tree opnd, gimple *phi)
static inline basic_block
find_pdom (basic_block block)
{
- if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
- return EXIT_BLOCK_PTR_FOR_FN (cfun);
- else
- {
- basic_block bb
- = get_immediate_dominator (CDI_POST_DOMINATORS, block);
- if (! bb)
- return EXIT_BLOCK_PTR_FOR_FN (cfun);
- return bb;
- }
+ if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return EXIT_BLOCK_PTR_FOR_FN (cfun);
+ else
+ {
+ basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
+ if (!bb)
+ return EXIT_BLOCK_PTR_FOR_FN (cfun);
+ return bb;
+ }
}
-/* Find the immediate DOM of the specified
- basic block BLOCK. */
+/* Find the immediate DOM of the specified basic block BLOCK. */
static inline basic_block
find_dom (basic_block block)
{
- if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
- return ENTRY_BLOCK_PTR_FOR_FN (cfun);
- else
- {
- basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
- if (! bb)
- return ENTRY_BLOCK_PTR_FOR_FN (cfun);
- return bb;
- }
+ if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ return ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ else
+ {
+ basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
+ if (!bb)
+ return ENTRY_BLOCK_PTR_FOR_FN (cfun);
+ return bb;
+ }
}
/* Returns true if BB1 is postdominating BB2 and BB1 is
- not a loop exit bb. The loop exit bb check is simple and does
+ not a loop exit bb. The loop exit bb check is simple and does
not cover all cases. */
static bool
/* Find the closest postdominator of a specified BB, which is control
equivalent to BB. */
-static inline basic_block
+static inline basic_block
find_control_equiv_block (basic_block bb)
{
basic_block pdom;
for (i = 0; i < cur_chain_len; i++)
{
edge e = (*cur_cd_chain)[i];
- /* Cycle detected. */
+ /* Cycle detected. */
if (e->src == bb)
return false;
}
}
/* Now check if DEP_BB is indirectly control dependent on BB. */
- if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
- num_chains, cur_cd_chain, num_calls))
+ if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
+ cur_cd_chain, num_calls))
{
found_cd_chain = true;
break;
cd_bb = find_pdom (cd_bb);
post_dom_check++;
- if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
- MAX_POSTDOM_CHECK)
+ if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
+ || post_dom_check > MAX_POSTDOM_CHECK)
break;
}
cur_cd_chain->pop ();
return found_cd_chain;
}
-/* The type to represent a simple predicate */
+/* The type to represent a simple predicate. */
struct pred_info
{
typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
/* Converts the chains of control dependence edges into a set of
- predicates. A control dependence chain is represented by a vector
- edges. DEP_CHAINS points to an array of dependence chains.
- NUM_CHAINS is the size of the chain array. One edge in a dependence
+ predicates. A control dependence chain is represented by a vector
+ edges. DEP_CHAINS points to an array of dependence chains.
+ NUM_CHAINS is the size of the chain array. One edge in a dependence
chain is mapped to predicate expression represented by pred_info
- type. One dependence chain is converted to a composite predicate that
+ type. One dependence chain is converted to a composite predicate that
is the result of AND operation of pred_info mapped to each edge.
- A composite predicate is presented by a vector of pred_info. On
+ A composite predicate is presented by a vector of pred_info. On
return, *PREDS points to the resulting array of composite predicates.
*NUM_PREDS is the number of composite predictes. */
break;
}
cond_stmt = gsi_stmt (gsi);
- if (is_gimple_call (cond_stmt)
- && EDGE_COUNT (e->src->succs) >= 2)
- {
- /* Ignore EH edge. Can add assertion
- on the other edge's flag. */
- continue;
- }
+ if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
+ /* Ignore EH edge. Can add assertion on the other edge's flag. */
+ continue;
/* Skip if there is essentially one succesor. */
if (EDGE_COUNT (e->src->succs) == 2)
{
t_chain.safe_push (one_pred);
has_valid_pred = true;
}
- else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
+ else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
{
/* Avoid quadratic behavior. */
if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
fail. */
if (!l
|| !CASE_LOW (l)
- || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
- CASE_HIGH (l), 0)))
+ || (CASE_HIGH (l)
+ && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
{
has_valid_pred = false;
break;
return has_valid_pred;
}
-/* Computes all control dependence chains for USE_BB. The control
+/* Computes all control dependence chains for USE_BB. The control
dependence chains are then converted to an array of composite
predicates pointed to by PREDS. PHI_BB is the basic block of
the phi whose result is used in USE_BB. */
/* Computes the set of incoming edges of PHI that have non empty
definitions of a phi chain. The collection will be done
- recursively on operands that are defined by phis. CD_ROOT
- is the control dependence root. *EDGES holds the result, and
+ recursively on operands that are defined by phis. CD_ROOT
+ is the control dependence root. *EDGES holds the result, and
VISITED_PHIS is a pointer set for detecting cycles. */
static void
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
- fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
+ fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
print_gimple_stmt (dump_file, phi, 0, 0);
}
edges->safe_push (opnd_edge);
gimple *def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (def) == GIMPLE_PHI
- && dominated_by_p (CDI_DOMINATORS,
- gimple_bb (def), cd_root))
- collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
+ && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
+ collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
visited_phis);
else if (!uninit_undefined_value_p (opnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
- fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
+ fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
+ (int) i);
print_gimple_stmt (dump_file, phi, 0, 0);
}
edges->safe_push (opnd_edge);
phi_bb = gimple_bb (phi);
/* First find the closest dominating bb to be
- the control dependence root */
+ the control dependence root. */
cd_root = find_dom (phi_bb);
if (!cd_root)
return false;
/* Dumps the predicates (PREDS) for USESTMT. */
static void
-dump_predicates (gimple *usestmt, pred_chain_union preds,
- const char* msg)
+dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
{
size_t i, j;
pred_chain one_pred_chain = vNULL;
preds->release ();
}
-
/* Computes the 'normalized' conditional code with operand
swapping and condition inversion. */
static enum tree_code
-get_cmp_code (enum tree_code orig_cmp_code,
- bool swap_cond, bool invert)
+get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
{
enum tree_code tc = orig_cmp_code;
bool result;
/* Only handle integer constant here. */
- if (TREE_CODE (val) != INTEGER_CST
- || TREE_CODE (boundary) != INTEGER_CST)
+ if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
return true;
is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
- if (cmpc == GE_EXPR || cmpc == GT_EXPR
- || cmpc == NE_EXPR)
+ if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
{
cmpc = invert_tree_comparison (cmpc, false);
inverted = true;
{
pred_info pred2 = one_chain[j];
/* Can relax the condition comparison to not
- use address comparison. However, the most common
+ use address comparison. However, the most common
case is that multiple control dependent paths share
a common path prefix, so address comparison should
be ok. */
}
/* Forward declaration. */
-static bool
-is_use_properly_guarded (gimple *use_stmt,
- basic_block use_bb,
- gphi *phi,
- unsigned uninit_opnds,
- pred_chain_union *def_preds,
- hash_set<gphi *> *visited_phis);
-
-/* Returns true if all uninitialized opnds are pruned. Returns false
- otherwise. PHI is the phi node with uninitialized operands,
+static bool is_use_properly_guarded (gimple *use_stmt,
+ basic_block use_bb,
+ gphi *phi,
+ unsigned uninit_opnds,
+ pred_chain_union *def_preds,
+ hash_set<gphi *> *visited_phis);
+
+/* Returns true if all uninitialized opnds are pruned. Returns false
+ otherwise. PHI is the phi node with uninitialized operands,
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
FLAG_DEF is the statement defining the flag guarding the use of the
PHI output, BOUNDARY_CST is the const value used in the predicate
Example scenario:
BB1:
- flag_1 = phi <0, 1> // (1)
+ flag_1 = phi <0, 1> // (1)
var_1 = phi <undef, some_val>
goto BB3;
BB3:
- use of var_2 // (3)
+ use of var_2 // (3)
Because some flag arg in (1) is not constant, if we do not look into the
flag phis recursively, it is conservatively treated as unknown and var_1
- is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
- a false warning will be emitted. Checking recursively into (1), the compiler can
- find out that only some_val (which is defined) can flow into (3) which is OK.
-
-*/
+ is thought to be flowed into use at (3). Since var_1 is potentially
+ uninitialized a false warning will be emitted.
+ Checking recursively into (1), the compiler can find out that only some_val
+ (which is defined) can flow into (3) which is OK. */
static bool
-prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
- unsigned uninit_opnds,
- gphi *flag_def,
- tree boundary_cst,
- enum tree_code cmp_code,
- hash_set<gphi *> *visited_phis,
- bitmap *visited_flag_phis)
+prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
+ tree boundary_cst, enum tree_code cmp_code,
+ hash_set<gphi *> *visited_phis,
+ bitmap *visited_flag_phis)
{
unsigned i;
if (TREE_CODE (flag_arg) != SSA_NAME)
return false;
- flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
+ flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
if (!flag_arg_def)
return false;
if (TREE_CODE (phi_arg) != SSA_NAME)
return false;
- phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
+ phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
if (!phi_arg_def)
return false;
if (!*visited_flag_phis)
*visited_flag_phis = BITMAP_ALLOC (NULL);
- if (bitmap_bit_p (*visited_flag_phis,
- SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
+ tree phi_result = gimple_phi_result (flag_arg_def);
+ if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
return false;
bitmap_set_bit (*visited_flag_phis,
/* Now recursively prune the uninitialized phi args. */
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
- if (!prune_uninit_phi_opnds_in_unrealizable_paths
- (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
- boundary_cst, cmp_code, visited_phis, visited_flag_phis))
+ if (!prune_uninit_phi_opnds
+ (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
+ cmp_code, visited_phis, visited_flag_phis))
return false;
- bitmap_clear_bit (*visited_flag_phis,
- SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
+ phi_result = gimple_phi_result (flag_arg_def);
+ bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
continue;
}
gimple *opnd_def;
/* Now that we know that this undefined edge is not
- pruned. If the operand is defined by another phi,
+ pruned. If the operand is defined by another phi,
we can further prune the incoming edges of that
phi by checking the predicates of this operands. */
if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
{
edge opnd_edge;
- unsigned uninit_opnds2
- = compute_uninit_opnds_pos (opnd_def_phi);
+ unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
if (!MASK_EMPTY (uninit_opnds2))
{
pred_chain_union def_preds = vNULL;
return true;
}
- void foo(..)
+ void foo (..)
{
int x;
- if (!init_func(&x))
+ if (!init_func (&x))
return;
.. some_code ...
<==> false
This implementation provides framework that can handle
- scenarios. (Note that many simple cases are handled properly
+ scenarios. (Note that many simple cases are handled properly
without the predicate analysis -- this is due to jump threading
transformation which eliminates the merge point thus makes
path sensitive analysis unnecessary.)
NUM_PREDS is the number is the number predicate chains, PREDS is
the array of chains, PHI is the phi node whose incoming (undefined)
paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
- uninit operand positions. VISITED_PHIS is the pointer set of phi
+ uninit operand positions. VISITED_PHIS is the pointer set of phi
stmts being checked. */
-
static bool
use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
gphi *phi, unsigned uninit_opnds,
{
unsigned int i, n;
gimple *flag_def = 0;
- tree boundary_cst = 0;
+ tree boundary_cst = 0;
enum tree_code cmp_code;
bool swap_cond = false;
bool invert = false;
if (cmp_code == ERROR_MARK)
return false;
- all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
- uninit_opnds,
- as_a <gphi *> (flag_def),
- boundary_cst,
- cmp_code,
- visited_phis,
- &visited_flag_phis);
+ all_pruned = prune_uninit_phi_opnds
+ (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
+ visited_phis, &visited_flag_phis);
if (visited_flag_phis)
BITMAP_FREE (visited_flag_phis);
}
/* The helper function returns true if two predicates X1 and X2
- are equivalent. It assumes the expressions have already
+ are equivalent. It assumes the expressions have already
properly re-associated. */
static inline bool
is_neq_relop_p (pred_info pred)
{
- return (pred.cond_code == NE_EXPR && !pred.invert)
- || (pred.cond_code == EQ_EXPR && pred.invert);
+ return ((pred.cond_code == NE_EXPR && !pred.invert)
+ || (pred.cond_code == EQ_EXPR && pred.invert));
}
/* Returns true if pred is of the form X != 0. */
}
/* Returns true of the domain of single predicate expression
- EXPR1 is a subset of that of EXPR2. Returns false if it
+ EXPR1 is a subset of that of EXPR2. Returns false if it
can not be proved. */
static bool
if (expr2.invert)
code2 = invert_tree_comparison (code2, false);
- if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
- && code2 == BIT_AND_EXPR)
+ if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR)
return wi::eq_p (expr1.pred_rhs,
wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
}
/* Returns true if the domain of PRED1 is a subset
- of that of PRED2. Returns false if it can not be proved so. */
+ of that of PRED2. Returns false if it can not be proved so. */
static bool
-is_pred_chain_subset_of (pred_chain pred1,
- pred_chain pred2)
+is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
{
size_t np1, np2, i1, i2;
/* Returns true if the domain defined by
one pred chain ONE_PRED is a subset of the domain
- of *PREDS. It returns false if ONE_PRED's domain is
+ of *PREDS. It returns false if ONE_PRED's domain is
not a subset of any of the sub-domains of PREDS
(corresponding to each individual chains in it), even
though it may be still be a subset of whole domain
/* Compares two predicate sets PREDS1 and PREDS2 and returns
true if the domain defined by PREDS1 is a superset
- of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
- PREDS2 respectively. The implementation chooses not to build
+ of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
+ PREDS2 respectively. The implementation chooses not to build
generic trees (and relying on the folding capability of the
compiler), but instead performs brute force comparison of
individual predicate chains (won't be a compile time problem
- as the chains are pretty short). When the function returns
+ as the chains are pretty short). When the function returns
false, it does not necessarily mean *PREDS1 is not a superset
of *PREDS2, but mean it may not be so since the analysis can
- not prove it. In such cases, false warnings may still be
+ not prove it. In such cases, false warnings may still be
emitted. */
static bool
if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
|| pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
- {
- /* Mark a_pred for removal. */
- a_pred->pred_lhs = NULL;
- a_pred->pred_rhs = NULL;
- simplified = true;
- break;
- }
+ {
+ /* Mark a_pred for removal. */
+ a_pred->pred_lhs = NULL;
+ a_pred->pred_rhs = NULL;
+ simplified = true;
+ break;
+ }
}
}
}
if (!simplified)
- return;
+ return;
for (i = 0; i < n; i++)
{
s_chain.safe_push (*a_pred);
}
- one_chain->release ();
- *one_chain = s_chain;
+ one_chain->release ();
+ *one_chain = s_chain;
}
/* The helper function implements the rule 2 for the
x2 = (*b_chain)[0];
y2 = (*b_chain)[1];
- if (!is_neq_zero_form_p (x2)
- || !is_neq_zero_form_p (y2))
+ if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
continue;
if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
return simplified;
}
-
/* This function simplifies predicates in PREDS. */
static void
if (simplify_preds_4 (preds))
changed = true;
-
- } while (changed);
+ }
+ while (changed);
return;
}
/* This is a helper function which attempts to normalize predicate chains
- by following UD chains. It basically builds up a big tree of either IOR
+ by following UD chains. It basically builds up a big tree of either IOR
operations or AND operations, and convert the IOR tree into a
pred_chain_union or BIT_AND tree into a pred_chain.
Example:
}
/* Returns true if the PHI is a degenerated phi with
- all args with the same value (relop). In that case, *PRED
+ all args with the same value (relop). In that case, *PRED
will be updated to that value. */
static bool
def0 = SSA_NAME_DEF_STMT (op0);
if (gimple_code (def0) != GIMPLE_ASSIGN)
return false;
- if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
- != tcc_comparison)
+ if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
return false;
pred0 = get_pred_info_from_cmp (def0);
def = SSA_NAME_DEF_STMT (op);
if (gimple_code (def) != GIMPLE_ASSIGN)
return false;
- if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
- != tcc_comparison)
+ if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
return false;
pred = get_pred_info_from_cmp (def);
if (!pred_equal_p (pred, pred0))
if (gimple_code (def_stmt) == GIMPLE_PHI
&& is_degenerated_phi (def_stmt, &pred))
work_list->safe_push (pred);
- else if (gimple_code (def_stmt) == GIMPLE_PHI
- && and_or_code == BIT_IOR_EXPR)
+ else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
{
int i, n;
n = gimple_phi_num_args (def_stmt);
- /* If we see non zero constant, we should punt. The predicate
+ /* If we see non zero constant, we should punt. The predicate
* should be one guarding the phi edge. */
for (i = 0; i < n; ++i)
{
/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
static void
-normalize_one_pred (pred_chain_union *norm_preds,
- pred_info pred)
+normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
enum tree_code and_or_code = ERROR_MARK;
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
and_or_code = gimple_assign_rhs_code (def_stmt);
- if (and_or_code != BIT_IOR_EXPR
- && and_or_code != BIT_AND_EXPR)
+ if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
{
- if (TREE_CODE_CLASS (and_or_code)
- == tcc_comparison)
+ if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
{
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
push_pred (norm_preds, n_pred);
}
- else
- push_pred (norm_preds, pred);
+ else
+ push_pred (norm_preds, pred);
return;
}
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
- normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
- and_or_code, &work_list, &mark_set);
+ normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
+ &work_list, &mark_set);
}
if (and_or_code == BIT_AND_EXPR)
norm_preds->safe_push (norm_chain);
}
static void
-normalize_one_pred_chain (pred_chain_union *norm_preds,
- pred_chain one_chain)
+normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
hash_set<tree> mark_set;
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
- normalize_one_pred_1 (0, &norm_chain, a_pred,
- BIT_AND_EXPR, &work_list, &mark_set);
+ normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
+ &mark_set);
}
norm_preds->safe_push (norm_chain);
if (dump_file)
{
fprintf (dump_file, "[AFTER NORMALIZATION -- ");
- dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
+ dump_predicates (use_or_def, norm_preds,
+ is_use ? "[USE]:\n" : "[DEF]:\n");
}
destroy_predicate_vecs (&preds);
return norm_preds;
}
-
/* Computes the predicates that guard the use and checks
if the incoming paths that have empty (or possibly
- empty) definition can be pruned/filtered. The function returns
+ empty) definition can be pruned/filtered. The function returns
true if it can be determined that the use of PHI's def in
USE_STMT is guarded with a predicate set not overlapping with
predicate sets of all runtime paths that do not have a definition.
- Returns false if it is not or it can not be determined. USE_BB is
+ Returns false if it is not or it can not be determined. USE_BB is
the bb of the use (for phi operand use, the bb is not the bb of
the phi stmt, but the src bb of the operand edge).
- UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
+ UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
corresponding bit in the vector is 1. VISITED_PHIS is a pointer
set of phis being visited.
return false;
}
- /* Try to prune the dead incoming phi edges. */
+ /* Try to prune the dead incoming phi edges. */
is_properly_guarded
= use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
visited_phis);
/* Searches through all uses of a potentially
uninitialized variable defined by PHI and returns a use
- statement if the use is not properly guarded. It returns
- NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
- holding the position(s) of uninit PHI operands. WORKLIST
+ statement if the use is not properly guarded. It returns
+ NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
+ holding the position(s) of uninit PHI operands. WORKLIST
is the vector of candidate phis that may be updated by this
- function. ADDED_TO_WORKLIST is the pointer set tracking
+ function. ADDED_TO_WORKLIST is the pointer set tracking
if the new phi is already in the worklist. */
static gimple *
if (is_gimple_debug (use_stmt))
continue;
- if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
+ if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
use_bb = gimple_phi_arg_edge (use_phi,
PHI_ARG_INDEX_FROM_USE (use_p))->src;
else
/* Found a phi use that is not guarded,
add the phi to the worklist. */
- if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
+ if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
print_gimple_stmt (dump_file, use_stmt, 0, 0);
}
- worklist->safe_push (as_a <gphi *> (use_stmt));
+ worklist->safe_push (as_a<gphi *> (use_stmt));
possibly_undefined_names->add (phi_result);
}
}
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
and gives warning if there exists a runtime path from the entry to a
- use of the PHI def that does not contain a definition. In other words,
- the warning is on the real use. The more dead paths that can be pruned
- by the compiler, the fewer false positives the warning is. WORKLIST
- is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
+ use of the PHI def that does not contain a definition. In other words,
+ the warning is on the real use. The more dead paths that can be pruned
+ by the compiler, the fewer false positives the warning is. WORKLIST
+ is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
a pointer set tracking if the new phi is added to the worklist or not. */
static void
uninit_opnds = compute_uninit_opnds_pos (phi);
- if (MASK_EMPTY (uninit_opnds))
+ if (MASK_EMPTY (uninit_opnds))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
SSA_NAME_VAR (uninit_op),
"%qD may be used uninitialized in this function",
uninit_use_stmt, loc);
-
}
static bool
{}
/* opt_pass methods: */
- opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
+ opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
virtual bool gate (function *) { return gate_warn_uninitialized (); }
virtual unsigned int execute (function *);
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
- if (TREE_CODE (op) == SSA_NAME
- && uninit_undefined_value_p (op))
+ if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
{
worklist.safe_push (phi);
added_to_worklist.add (phi);
return new pass_late_warn_uninitialized (ctxt);
}
-
static unsigned int
execute_early_warn_uninitialized (void)
{
/* Currently, this pass runs always but
- execute_late_warn_uninitialized only runs with optimization. With
+ execute_late_warn_uninitialized only runs with optimization. With
optimization we want to warn about possible uninitialized as late
as possible, thus don't do it here. However, without
optimization we need to warn here about "may be uninitialized". */
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
- /* Post-dominator information can not be reliably updated. Free it
+ /* Post-dominator information can not be reliably updated. Free it
after the use. */
free_dominance_info (CDI_POST_DOMINATORS);
return 0;
}
-
namespace {
const pass_data pass_data_early_warn_uninitialized =
/* opt_pass methods: */
virtual bool gate (function *) { return gate_warn_uninitialized (); }
virtual unsigned int execute (function *)
- {
- return execute_early_warn_uninitialized ();
- }
+ {
+ return execute_early_warn_uninitialized ();
+ }
}; // class pass_early_warn_uninitialized