--- /dev/null
+# SPDX-License-Identifier: LGPLv3+
+# Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
+# Funded by NLnet http://nlnet.nl
+
+"""SVP64 OpenPOWER v3.0B assembly translator
+
+This class takes raw svp64 assembly mnemonics (aliases excluded) and
+creates an EXT001-encoded "svp64 prefix" followed by a v3.0B opcode.
+
+It is very simple and straightforward, the only weirdness being the
+extraction of the register information and conversion to v3.0B numbering.
+
+Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
+Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
+"""
+
+import os, sys
+from collections import OrderedDict
+
+from soc.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
+ SV64P_PID_SIZE, SVP64RMFields,
+ SVP64RM_EXTRA2_SPEC_SIZE,
+ SVP64RM_EXTRA3_SPEC_SIZE,
+ SVP64RM_MODE_SIZE, SVP64RM_SMASK_SIZE,
+ SVP64RM_MMODE_SIZE, SVP64RM_MASK_SIZE,
+ SVP64RM_SUBVL_SIZE, SVP64RM_EWSRC_SIZE,
+ SVP64RM_ELWIDTH_SIZE)
+from soc.decoder.pseudo.pagereader import ISA
+from soc.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
+from soc.decoder.selectable_int import SelectableInt
+from soc.consts import SVP64MODE
+
+
+# decode GPR into sv extra
+def get_extra_gpr(etype, regmode, field):
+ if regmode == 'scalar':
+ # cut into 2-bits 5-bits SS FFFFF
+ sv_extra = field >> 5
+ field = field & 0b11111
+ else:
+ # cut into 5-bits 2-bits FFFFF SS
+ sv_extra = field & 0b11
+ field = field >> 2
+ return sv_extra, field
+
+
+# decode 3-bit CR into sv extra
+def get_extra_cr_3bit(etype, regmode, field):
+ if regmode == 'scalar':
+ # cut into 2-bits 3-bits SS FFF
+ sv_extra = field >> 3
+ field = field & 0b111
+ else:
+ # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
+ sv_extra = field & 0b1111
+ field = field >> 4
+ return sv_extra, field
+
+
+# decodes SUBVL
+def decode_subvl(encoding):
+ pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
+ assert encoding in pmap, \
+ "encoding %s for SUBVL not recognised" % encoding
+ return pmap[encoding]
+
+
+# decodes elwidth
+def decode_elwidth(encoding):
+ pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
+ assert encoding in pmap, \
+ "encoding %s for elwidth not recognised" % encoding
+ return pmap[encoding]
+
+
+# decodes predicate register encoding
+def decode_predicate(encoding):
+ pmap = { # integer
+ '1<<r3': (0, 0b001),
+ 'r3' : (0, 0b010),
+ '~r3' : (0, 0b011),
+ 'r10' : (0, 0b100),
+ '~r10' : (0, 0b101),
+ 'r30' : (0, 0b110),
+ '~r30' : (0, 0b111),
+ # CR
+ 'lt' : (1, 0b000),
+ 'nl' : (1, 0b001), 'ge' : (1, 0b001), # same value
+ 'gt' : (1, 0b010),
+ 'ng' : (1, 0b011), 'le' : (1, 0b011), # same value
+ 'eq' : (1, 0b100),
+ 'ne' : (1, 0b101),
+ 'so' : (1, 0b110), 'un' : (1, 0b110), # same value
+ 'ns' : (1, 0b111), 'nu' : (1, 0b111), # same value
+ }
+ assert encoding in pmap, \
+ "encoding %s for predicate not recognised" % encoding
+ return pmap[encoding]
+
+
+# decodes "Mode" in similar way to BO field (supposed to, anyway)
+def decode_bo(encoding):
+ pmap = { # TODO: double-check that these are the same as Branch BO
+ 'lt' : 0b000,
+ 'nl' : 0b001, 'ge' : 0b001, # same value
+ 'gt' : 0b010,
+ 'ng' : 0b011, 'le' : 0b011, # same value
+ 'eq' : 0b100,
+ 'ne' : 0b101,
+ 'so' : 0b110, 'un' : 0b110, # same value
+ 'ns' : 0b111, 'nu' : 0b111, # same value
+ }
+ assert encoding in pmap, \
+ "encoding %s for BO Mode not recognised" % encoding
+ return pmap[encoding]
+
+# partial-decode fail-first mode
+def decode_ffirst(encoding):
+ if encoding in ['RC1', '~RC1']:
+ return encoding
+ return decode_bo(encoding)
+
+
+def decode_reg(field):
+ # decode the field number. "5.v" or "3.s" or "9"
+ field = field.split(".")
+ regmode = 'scalar' # default
+ if len(field) == 2:
+ if field[1] == 's':
+ regmode = 'scalar'
+ elif field[1] == 'v':
+ regmode = 'vector'
+ field = int(field[0]) # actual register number
+ return field, regmode
+
+
+def decode_imm(field):
+ ldst_imm = "(" in field and field[-1] == ')'
+ if ldst_imm:
+ return field[:-1].split("(")
+ else:
+ return None, field
+
+# decodes svp64 assembly listings and creates EXT001 svp64 prefixes
+class SVP64Asm:
+ def __init__(self, lst, bigendian=False):
+ self.lst = lst
+ self.trans = self.translate(lst)
+ assert bigendian == False, "error, bigendian not supported yet"
+
+ def __iter__(self):
+ yield from self.trans
+
+ def translate(self, lst):
+ isa = ISA() # reads the v3.0B pseudo-code markdown files
+ svp64 = SVP64RM() # reads the svp64 Remap entries for registers
+ for insn in lst:
+ # find first space, to get opcode
+ ls = insn.split(' ')
+ opcode = ls[0]
+ # now find opcode fields
+ fields = ''.join(ls[1:]).split(',')
+ fields = list(map(str.strip, fields))
+ print ("opcode, fields", ls, opcode, fields)
+
+ # sigh have to do setvl here manually for now...
+ if opcode in ["setvl", "setvl."]:
+ insn = 22 << (31-5) # opcode 22, bits 0-5
+ fields = list(map(int, fields))
+ insn |= fields[0] << (31-10) # RT , bits 6-10
+ insn |= fields[1] << (31-15) # RA , bits 11-15
+ insn |= fields[2] << (31-23) # SVi , bits 16-23
+ insn |= fields[3] << (31-24) # vs , bit 24
+ insn |= fields[4] << (31-25) # ms , bit 25
+ insn |= 0b00000 << (31-30) # XO , bits 26..30
+ if opcode == 'setvl.':
+ insn |= 1 << (31-31) # Rc=1 , bit 31
+ print ("setvl", bin(insn))
+ yield ".long 0x%x" % insn
+ continue
+
+ # identify if is a svp64 mnemonic
+ if not opcode.startswith('sv.'):
+ yield insn # unaltered
+ continue
+ opcode = opcode[3:] # strip leading "sv"
+
+ # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
+ opmodes = opcode.split("/") # split at "/"
+ v30b_op = opmodes.pop(0) # first is the v3.0B
+ # check instruction ends with dot
+ rc_mode = v30b_op.endswith('.')
+ if rc_mode:
+ v30b_op = v30b_op[:-1]
+
+ if v30b_op not in isa.instr:
+ raise Exception("opcode %s of '%s' not supported" % \
+ (v30b_op, insn))
+ if v30b_op not in svp64.instrs:
+ raise Exception("opcode %s of '%s' not an svp64 instruction" % \
+ (v30b_op, insn))
+ v30b_regs = isa.instr[v30b_op].regs[0] # get regs info "RT, RA, RB"
+ rm = svp64.instrs[v30b_op] # one row of the svp64 RM CSV
+ print ("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
+ print ("v3.0B regs", opcode, v30b_regs)
+ print (rm)
+
+ # right. the first thing to do is identify the ordering of
+ # the registers, by name. the EXTRA2/3 ordering is in
+ # rm['0']..rm['3'] but those fields contain the names RA, BB
+ # etc. we have to read the pseudocode to understand which
+ # reg is which in our instruction. sigh.
+
+ # first turn the svp64 rm into a "by name" dict, recording
+ # which position in the RM EXTRA it goes into
+ # also: record if the src or dest was a CR, for sanity-checking
+ # (elwidth overrides on CRs are banned)
+ decode = decode_extra(rm)
+ dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
+ svp64_reg_byname = {}
+ svp64_reg_byname.update(svp64_src)
+ svp64_reg_byname.update(svp64_dest)
+
+ print ("EXTRA field index, by regname", svp64_reg_byname)
+
+ # okaaay now we identify the field value (opcode N,N,N) with
+ # the pseudo-code info (opcode RT, RA, RB)
+ assert len(fields) == len(v30b_regs), \
+ "length of fields %s must match insn `%s`" % \
+ (str(v30b_regs), insn)
+ opregfields = zip(fields, v30b_regs) # err that was easy
+
+ # now for each of those find its place in the EXTRA encoding
+ extras = OrderedDict()
+ for idx, (field, regname) in enumerate(opregfields):
+ imm, regname = decode_imm(regname)
+ extra = svp64_reg_byname.get(regname, None)
+ rtype = get_regtype(regname)
+ extras[extra] = (idx, field, regname, rtype, imm)
+ print (" ", extra, extras[extra])
+
+ # great! got the extra fields in their associated positions:
+ # also we know the register type. now to create the EXTRA encodings
+ etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
+ ptype = rm['Ptype'] # Predication type: Twin / Single
+ extra_bits = 0
+ v30b_newfields = []
+ for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
+ # is it a field we don't alter/examine? if so just put it
+ # into newfields
+ if rtype is None:
+ v30b_newfields.append(field)
+
+ # identify if this is a ld/st immediate(reg) thing
+ ldst_imm = "(" in field and field[-1] == ')'
+ if ldst_imm:
+ immed, field = field[:-1].split("(")
+
+ field, regmode = decode_reg(field)
+ print (" ", extra_idx, rname, rtype,
+ regmode, iname, field, end=" ")
+
+ # see Mode field https://libre-soc.org/openpower/sv/svp64/
+ # XXX TODO: the following is a bit of a laborious repeated
+ # mess, which could (and should) easily be parameterised.
+ # XXX also TODO: the LD/ST modes which are different
+ # https://libre-soc.org/openpower/sv/ldst/
+
+ # encode SV-GPR field into extra, v3.0field
+ if rtype == 'GPR':
+ sv_extra, field = get_extra_gpr(etype, regmode, field)
+ # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
+ # (and shrink to a single bit if ok)
+ if etype == 'EXTRA2':
+ if regmode == 'scalar':
+ # range is r0-r63 in increments of 1
+ assert (sv_extra >> 1) == 0, \
+ "scalar GPR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as scalar
+ sv_extra = sv_extra & 0b01
+ else:
+ # range is r0-r127 in increments of 4
+ assert sv_extra & 0b01 == 0, \
+ "vector field %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as vector (bit 2 set)
+ sv_extra = 0b10 | (sv_extra >> 1)
+ elif regmode == 'vector':
+ # EXTRA3 vector bit needs marking
+ sv_extra |= 0b100
+
+ # encode SV-CR 3-bit field into extra, v3.0field
+ elif rtype == 'CR_3bit':
+ sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
+ # now sanity-check (and shrink afterwards)
+ if etype == 'EXTRA2':
+ if regmode == 'scalar':
+ # range is CR0-CR15 in increments of 1
+ assert (sv_extra >> 1) == 0, \
+ "scalar CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as scalar
+ sv_extra = sv_extra & 0b01
+ else:
+ # range is CR0-CR127 in increments of 16
+ assert sv_extra & 0b111 == 0, \
+ "vector CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as vector (bit 2 set)
+ sv_extra = 0b10 | (sv_extra >> 3)
+ else:
+ if regmode == 'scalar':
+ # range is CR0-CR31 in increments of 1
+ assert (sv_extra >> 2) == 0, \
+ "scalar CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as scalar
+ sv_extra = sv_extra & 0b11
+ else:
+ # range is CR0-CR127 in increments of 8
+ assert sv_extra & 0b11 == 0, \
+ "vector CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as vector (bit 3 set)
+ sv_extra = 0b100 | (sv_extra >> 2)
+
+ # encode SV-CR 5-bit field into extra, v3.0field
+ # *sigh* this is the same as 3-bit except the 2 LSBs are
+ # passed through
+ elif rtype == 'CR_5bit':
+ cr_subfield = field & 0b11
+ field = field >> 2 # strip bottom 2 bits
+ sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
+ # now sanity-check (and shrink afterwards)
+ if etype == 'EXTRA2':
+ if regmode == 'scalar':
+ # range is CR0-CR15 in increments of 1
+ assert (sv_extra >> 1) == 0, \
+ "scalar CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as scalar
+ sv_extra = sv_extra & 0b01
+ else:
+ # range is CR0-CR127 in increments of 16
+ assert sv_extra & 0b111 == 0, \
+ "vector CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as vector (bit 2 set)
+ sv_extra = 0b10 | (sv_extra >> 3)
+ else:
+ if regmode == 'scalar':
+ # range is CR0-CR31 in increments of 1
+ assert (sv_extra >> 2) == 0, \
+ "scalar CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as scalar
+ sv_extra = sv_extra & 0b11
+ else:
+ # range is CR0-CR127 in increments of 8
+ assert sv_extra & 0b11 == 0, \
+ "vector CR %s cannot fit into EXTRA2 %s" % \
+ (rname, str(extras[extra_idx]))
+ # all good: encode as vector (bit 3 set)
+ sv_extra = 0b100 | (sv_extra >> 2)
+
+ # reconstruct the actual 5-bit CR field
+ field = (field << 2) | cr_subfield
+
+ # capture the extra field info
+ print ("=>", "%5s" % bin(sv_extra), field)
+ extras[extra_idx] = sv_extra
+
+ # append altered field value to v3.0b, differs for LDST
+ if ldst_imm:
+ v30b_newfields.append(("%s(%s)" % (immed, str(field))))
+ else:
+ v30b_newfields.append(str(field))
+
+ print ("new v3.0B fields", v30b_op, v30b_newfields)
+ print ("extras", extras)
+
+ # rright. now we have all the info. start creating SVP64 RM
+ svp64_rm = SVP64RMFields()
+
+ # begin with EXTRA fields
+ for idx, sv_extra in extras.items():
+ if idx is None: continue
+ if etype == 'EXTRA2':
+ svp64_rm.extra2[idx].eq(
+ SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
+ else:
+ svp64_rm.extra3[idx].eq(
+ SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
+
+ # parts of svp64_rm
+ mmode = 0 # bit 0
+ pmask = 0 # bits 1-3
+ destwid = 0 # bits 4-5
+ srcwid = 0 # bits 6-7
+ subvl = 0 # bits 8-9
+ smask = 0 # bits 16-18 but only for twin-predication
+ mode = 0 # bits 19-23
+
+ mask_m_specified = False
+ has_pmask = False
+ has_smask = False
+
+ saturation = None
+ src_zero = 0
+ dst_zero = 0
+ sv_mode = None
+
+ mapreduce = False
+ mapreduce_crm = False
+ mapreduce_svm = False
+
+ predresult = False
+ failfirst = False
+
+ # ok let's start identifying opcode augmentation fields
+ for encmode in opmodes:
+ # predicate mask (src and dest)
+ if encmode.startswith("m="):
+ pme = encmode
+ pmmode, pmask = decode_predicate(encmode[2:])
+ smmode, smask = pmmode, pmask
+ mmode = pmmode
+ mask_m_specified = True
+ # predicate mask (dest)
+ elif encmode.startswith("dm="):
+ pme = encmode
+ pmmode, pmask = decode_predicate(encmode[3:])
+ mmode = pmmode
+ has_pmask = True
+ # predicate mask (src, twin-pred)
+ elif encmode.startswith("sm="):
+ sme = encmode
+ smmode, smask = decode_predicate(encmode[3:])
+ mmode = smmode
+ has_smask = True
+ # vec2/3/4
+ elif encmode.startswith("vec"):
+ subvl = decode_subvl(encmode[3:])
+ # elwidth
+ elif encmode.startswith("ew="):
+ destwid = decode_elwidth(encmode[3:])
+ elif encmode.startswith("sw="):
+ srcwid = decode_elwidth(encmode[3:])
+ # saturation
+ elif encmode == 'sats':
+ assert sv_mode is None
+ saturation = 1
+ sv_mode = 0b10
+ elif encmode == 'satu':
+ assert sv_mode is None
+ sv_mode = 0b10
+ saturation = 0
+ # predicate zeroing
+ elif encmode == 'sz':
+ src_zero = 1
+ elif encmode == 'dz':
+ dst_zero = 1
+ # failfirst
+ elif encmode.startswith("ff="):
+ assert sv_mode is None
+ sv_mode = 0b01
+ failfirst = decode_ffirst(encmode[3:])
+ # predicate-result, interestingly same as fail-first
+ elif encmode.startswith("pr="):
+ assert sv_mode is None
+ sv_mode = 0b11
+ predresult = decode_ffirst(encmode[3:])
+ # map-reduce mode
+ elif encmode == 'mr':
+ assert sv_mode is None
+ sv_mode = 0b00
+ mapreduce = True
+ elif encmode == 'crm': # CR on map-reduce
+ assert sv_mode is None
+ sv_mode = 0b00
+ mapreduce_crm = True
+ elif encmode == 'svm': # sub-vector mode
+ mapreduce_svm = True
+ else:
+ raise AssertionError("unknown encmode %s" % encmode)
+
+ if ptype == '2P':
+ # since m=xx takes precedence (overrides) sm=xx and dm=xx,
+ # treat them as mutually exclusive
+ if mask_m_specified:
+ assert not has_smask,\
+ "cannot have both source-mask and predicate mask"
+ assert not has_pmask,\
+ "cannot have both dest-mask and predicate mask"
+ # since the default is INT predication (ALWAYS), if you
+ # specify one CR mask, you must specify both, to avoid
+ # mixing INT and CR reg types
+ if has_pmask and pmmode == 1:
+ assert has_smask, \
+ "need explicit source-mask in CR twin predication"
+ if has_smask and smmode == 1:
+ assert has_pmask, \
+ "need explicit dest-mask in CR twin predication"
+ # sanity-check that 2Pred mask is same mode
+ if has_pmask and has_smask:
+ assert smmode == pmmode, \
+ "predicate masks %s and %s must be same reg type" % \
+ (pme, sme)
+
+ # sanity-check that twin-predication mask only specified in 2P mode
+ if ptype == '1P':
+ assert not has_smask, \
+ "source-mask can only be specified on Twin-predicate ops"
+ assert not has_pmask, \
+ "dest-mask can only be specified on Twin-predicate ops"
+
+ # construct the mode field, doing sanity-checking along the way
+
+ if mapreduce_svm:
+ assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
+ assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
+
+ if src_zero:
+ assert has_smask or mask_m_specified, \
+ "src zeroing requires a source predicate"
+ if dst_zero:
+ assert has_pmask or mask_m_specified, \
+ "dest zeroing requires a dest predicate"
+
+ # "normal" mode
+ if sv_mode is None:
+ mode |= src_zero << SVP64MODE.SZ # predicate zeroing
+ mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
+ sv_mode = 0b00
+
+ # "mapreduce" modes
+ elif sv_mode == 0b00:
+ mode |= (0b1<<SVP64MODE.REDUCE) # sets mapreduce
+ assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
+ if mapreduce_crm:
+ mode |= (0b1<<SVP64MODE.CRM) # sets CRM mode
+ assert rc_mode, "CRM only allowed when Rc=1"
+ # bit of weird encoding to jam zero-pred or SVM mode in.
+ # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
+ if subvl == 0:
+ mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
+ elif mapreduce_svm:
+ mode |= (0b1<<SVP64MODE.SVM) # sets SVM mode
+
+ # "failfirst" modes
+ elif sv_mode == 0b01:
+ assert src_zero == 0, "dest-zero not allowed in failfirst mode"
+ if failfirst == 'RC1':
+ mode |= (0b1<<SVP64MODE.RC1) # sets RC1 mode
+ mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
+ assert rc_mode==False, "ffirst RC1 only possible when Rc=0"
+ elif failfirst == '~RC1':
+ mode |= (0b1<<SVP64MODE.RC1) # sets RC1 mode
+ mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
+ mode |= (0b1<<SVP64MODE.INV) # ... with inversion
+ assert rc_mode==False, "ffirst RC1 only possible when Rc=0"
+ else:
+ assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
+ assert rc_mode, "ffirst BO only possible when Rc=1"
+ mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
+
+ # "saturation" modes
+ elif sv_mode == 0b10:
+ mode |= src_zero << SVP64MODE.SZ # predicate zeroing
+ mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
+ mode |= (saturation << SVP64MODE.N) # signed/unsigned saturation
+
+ # "predicate-result" modes. err... code-duplication from ffirst
+ elif sv_mode == 0b11:
+ assert src_zero == 0, "dest-zero not allowed in predresult mode"
+ if predresult == 'RC1':
+ mode |= (0b1<<SVP64MODE.RC1) # sets RC1 mode
+ mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
+ assert rc_mode==False, "pr-mode RC1 only possible when Rc=0"
+ elif predresult == '~RC1':
+ mode |= (0b1<<SVP64MODE.RC1) # sets RC1 mode
+ mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
+ mode |= (0b1<<SVP64MODE.INV) # ... with inversion
+ assert rc_mode==False, "pr-mode RC1 only possible when Rc=0"
+ else:
+ assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
+ assert rc_mode, "pr-mode BO only possible when Rc=1"
+ mode |= (predresult << SVP64MODE.BO_LSB) # set BO
+
+ # whewww.... modes all done :)
+ # now put into svp64_rm
+ mode |= sv_mode
+ # mode: bits 19-23
+ svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
+
+ # put in predicate masks into svp64_rm
+ if ptype == '2P':
+ # source pred: bits 16-18
+ svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
+ # mask mode: bit 0
+ svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
+ # 1-pred: bits 1-3
+ svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
+
+ # and subvl: bits 8-9
+ svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
+
+ # put in elwidths
+ # srcwid: bits 6-7
+ svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
+ # destwid: bits 4-5
+ svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
+
+ # nice debug printout. (and now for something completely different)
+ # https://youtu.be/u0WOIwlXE9g?t=146
+ svp64_rm_value = svp64_rm.spr.value
+ print ("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
+ print (" mmode 0 :", bin(mmode))
+ print (" pmask 1-3 :", bin(pmask))
+ print (" dstwid 4-5 :", bin(destwid))
+ print (" srcwid 6-7 :", bin(srcwid))
+ print (" subvl 8-9 :", bin(subvl))
+ print (" mode 19-23:", bin(mode))
+ offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
+ for idx, sv_extra in extras.items():
+ if idx is None: continue
+ start = (10+idx*offs)
+ end = start + offs-1
+ print (" extra%d %2d-%2d:" % (idx, start, end),
+ bin(sv_extra))
+ if ptype == '2P':
+ print (" smask 16-17:", bin(smask))
+ print ()
+
+ # first, construct the prefix from its subfields
+ svp64_prefix = SVP64PrefixFields()
+ svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
+ svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
+ svp64_prefix.rm.eq(svp64_rm.spr)
+
+ # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
+ rc = '.' if rc_mode else ''
+ yield ".long 0x%x" % svp64_prefix.insn.value
+ yield "%s %s" % (v30b_op+rc, ", ".join(v30b_newfields))
+ print ("new v3.0B fields", v30b_op, v30b_newfields)
+
+if __name__ == '__main__':
+ lst = ['slw 3, 1, 4',
+ 'extsw 5, 3',
+ 'sv.extsw 5, 3',
+ 'sv.cmpi 5, 1, 3, 2',
+ 'sv.setb 5, 31',
+ 'sv.isel 64.v, 3, 2, 65.v',
+ 'sv.setb/dm=r3/sm=1<<r3 5, 31',
+ 'sv.setb/m=r3 5, 31',
+ 'sv.setb/vec2 5, 31',
+ 'sv.setb/sw=8/ew=16 5, 31',
+ 'sv.extsw./ff=eq 5, 31',
+ 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
+ 'sv.extsw./pr=eq 5.v, 31',
+ 'sv.add. 5.v, 2.v, 1.v',
+ 'sv.add./m=r3 5.v, 2.v, 1.v',
+ ]
+ lst += [
+ 'sv.stw 5.v, 4(1.v)',
+ 'sv.ld 5.v, 4(1.v)',
+ 'setvl. 2, 3, 4, 1, 1',
+ ]
+ isa = SVP64Asm(lst)
+ print ("list", list(isa))
+ csvs = SVP64RM()