--- /dev/null
+/* Warn on problematic uses of alloca and variable length arrays.
+ Copyright (C) 2016 Free Software Foundation, Inc.
+ Contributed by Aldy Hernandez <aldyh@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "tree.h"
+#include "gimple.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "gimple-pretty-print.h"
+#include "diagnostic-core.h"
+#include "fold-const.h"
+#include "gimple-iterator.h"
+#include "tree-ssa.h"
+#include "params.h"
+#include "tree-cfg.h"
+#include "calls.h"
+#include "cfgloop.h"
+#include "intl.h"
+
+const pass_data pass_data_walloca = {
+ GIMPLE_PASS,
+ "walloca",
+ OPTGROUP_NONE,
+ TV_NONE,
+ PROP_cfg, // properties_required
+ 0, // properties_provided
+ 0, // properties_destroyed
+ 0, // properties_start
+ 0, // properties_finish
+};
+
+class pass_walloca : public gimple_opt_pass
+{
+public:
+ pass_walloca (gcc::context *ctxt)
+ : gimple_opt_pass(pass_data_walloca, ctxt), first_time_p (false)
+ {}
+ opt_pass *clone () { return new pass_walloca (m_ctxt); }
+ void set_pass_param (unsigned int n, bool param)
+ {
+ gcc_assert (n == 0);
+ first_time_p = param;
+ }
+ virtual bool gate (function *);
+ virtual unsigned int execute (function *);
+
+ private:
+ // Set to TRUE the first time we run this pass on a function.
+ bool first_time_p;
+};
+
+bool
+pass_walloca::gate (function *fun ATTRIBUTE_UNUSED)
+{
+ // The first time this pass is called, it is called before
+ // optimizations have been run and range information is unavailable,
+ // so we can only perform strict alloca checking.
+ if (first_time_p)
+ return warn_alloca != 0;
+
+ return warn_alloca_limit > 0 || warn_vla_limit > 0;
+}
+
+// Possible problematic uses of alloca.
+enum alloca_type {
+ // Alloca argument is within known bounds that are appropriate.
+ ALLOCA_OK,
+
+ // Alloca argument is KNOWN to have a value that is too large.
+ ALLOCA_BOUND_DEFINITELY_LARGE,
+
+ // Alloca argument may be too large.
+ ALLOCA_BOUND_MAYBE_LARGE,
+
+ // Alloca argument is bounded but of an indeterminate size.
+ ALLOCA_BOUND_UNKNOWN,
+
+ // Alloca argument was casted from a signed integer.
+ ALLOCA_CAST_FROM_SIGNED,
+
+ // Alloca appears in a loop.
+ ALLOCA_IN_LOOP,
+
+ // Alloca argument is 0.
+ ALLOCA_ARG_IS_ZERO,
+
+ // Alloca call is unbounded. That is, there is no controlling
+ // predicate for its argument.
+ ALLOCA_UNBOUNDED
+};
+
+// Type of an alloca call with its corresponding limit, if applicable.
+struct alloca_type_and_limit {
+ enum alloca_type type;
+ // For ALLOCA_BOUND_MAYBE_LARGE and ALLOCA_BOUND_DEFINITELY_LARGE
+ // types, this field indicates the assumed limit if known or
+ // integer_zero_node if unknown. For any other alloca types, this
+ // field is undefined.
+ wide_int limit;
+ alloca_type_and_limit ();
+ alloca_type_and_limit (enum alloca_type type,
+ wide_int i) : type(type), limit(i) { }
+ alloca_type_and_limit (enum alloca_type type) : type(type) { }
+};
+
+// NOTE: When we get better range info, this entire function becomes
+// irrelevant, as it should be possible to get range info for an SSA
+// name at any point in the program.
+//
+// We have a few heuristics up our sleeve to determine if a call to
+// alloca() is within bounds. Try them out and return the type of
+// alloca call with its assumed limit (if applicable).
+//
+// Given a known argument (ARG) to alloca() and an EDGE (E)
+// calculating said argument, verify that the last statement in the BB
+// in E->SRC is a gate comparing ARG to an acceptable bound for
+// alloca(). See examples below.
+//
+// If set, ARG_CASTED is the possible unsigned argument to which ARG
+// was casted to. This is to handle cases where the controlling
+// predicate is looking at a casted value, not the argument itself.
+// arg_casted = (size_t) arg;
+// if (arg_casted < N)
+// goto bb3;
+// else
+// goto bb5;
+//
+// MAX_SIZE is WARN_ALLOCA= adjusted for VLAs. It is the maximum size
+// in bytes we allow for arg.
+
+static struct alloca_type_and_limit
+alloca_call_type_by_arg (tree arg, tree arg_casted, edge e, unsigned max_size)
+{
+ basic_block bb = e->src;
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+ gimple *last = gsi_stmt (gsi);
+ if (!last || gimple_code (last) != GIMPLE_COND)
+ return alloca_type_and_limit (ALLOCA_UNBOUNDED);
+
+ enum tree_code cond_code = gimple_cond_code (last);
+ if (e->flags & EDGE_TRUE_VALUE)
+ ;
+ else if (e->flags & EDGE_FALSE_VALUE)
+ cond_code = invert_tree_comparison (cond_code, false);
+ else
+ return alloca_type_and_limit (ALLOCA_UNBOUNDED);
+
+ // Check for:
+ // if (ARG .COND. N)
+ // goto <bb 3>;
+ // else
+ // goto <bb 4>;
+ // <bb 3>:
+ // alloca(ARG);
+ if ((cond_code == LE_EXPR
+ || cond_code == LT_EXPR
+ || cond_code == GT_EXPR
+ || cond_code == GE_EXPR)
+ && (gimple_cond_lhs (last) == arg
+ || gimple_cond_lhs (last) == arg_casted))
+ {
+ if (TREE_CODE (gimple_cond_rhs (last)) == INTEGER_CST)
+ {
+ tree rhs = gimple_cond_rhs (last);
+ int tst = wi::cmpu (wi::to_widest (rhs), max_size);
+ if ((cond_code == LT_EXPR && tst == -1)
+ || (cond_code == LE_EXPR && (tst == -1 || tst == 0)))
+ return alloca_type_and_limit (ALLOCA_OK);
+ else
+ {
+ // Let's not get too specific as to how large the limit
+ // may be. Someone's clearly an idiot when things
+ // degrade into "if (N > Y) alloca(N)".
+ if (cond_code == GT_EXPR || cond_code == GE_EXPR)
+ rhs = integer_zero_node;
+ return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, rhs);
+ }
+ }
+ else
+ return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
+ }
+
+ // Similarly, but check for a comparison with an unknown LIMIT.
+ // if (LIMIT .COND. ARG)
+ // alloca(arg);
+ //
+ // Where LIMIT has a bound of unknown range.
+ //
+ // Note: All conditions of the form (ARG .COND. XXXX) where covered
+ // by the previous check above, so we only need to look for (LIMIT
+ // .COND. ARG) here.
+ tree limit = gimple_cond_lhs (last);
+ if ((gimple_cond_rhs (last) == arg
+ || gimple_cond_rhs (last) == arg_casted)
+ && TREE_CODE (limit) == SSA_NAME)
+ {
+ wide_int min, max;
+ value_range_type range_type = get_range_info (limit, &min, &max);
+
+ if (range_type == VR_UNDEFINED || range_type == VR_VARYING)
+ return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
+
+ // ?? It looks like the above `if' is unnecessary, as we never
+ // get any VR_RANGE or VR_ANTI_RANGE here. If we had a range
+ // for LIMIT, I suppose we would have taken care of it in
+ // alloca_call_type(), or handled above where we handle (ARG .COND. N).
+ //
+ // If this ever triggers, we should probably figure out why and
+ // handle it, though it is likely to be just an ALLOCA_UNBOUNDED.
+ return alloca_type_and_limit (ALLOCA_UNBOUNDED);
+ }
+
+ return alloca_type_and_limit (ALLOCA_UNBOUNDED);
+}
+
+// Return TRUE if SSA's definition is a cast from a signed type.
+// If so, set *INVALID_CASTED_TYPE to the signed type.
+
+static bool
+cast_from_signed_p (tree ssa, tree *invalid_casted_type)
+{
+ gimple *def = SSA_NAME_DEF_STMT (ssa);
+ if (def
+ && !gimple_nop_p (def)
+ && gimple_assign_cast_p (def)
+ && !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))))
+ {
+ *invalid_casted_type = TREE_TYPE (gimple_assign_rhs1 (def));
+ return true;
+ }
+ return false;
+}
+
+// Return TRUE if X has a maximum range of MAX, basically covering the
+// entire domain, in which case it's no range at all.
+
+static bool
+is_max (tree x, wide_int max)
+{
+ return wi::max_value (TREE_TYPE (x)) == max;
+}
+
+// Analyze the alloca call in STMT and return the alloca type with its
+// corresponding limit (if applicable). IS_VLA is set if the alloca
+// call is really a BUILT_IN_ALLOCA_WITH_ALIGN, signifying a VLA.
+//
+// If the alloca call may be too large because of a cast from a signed
+// type to an unsigned type, set *INVALID_CASTED_TYPE to the
+// problematic signed type.
+
+static struct alloca_type_and_limit
+alloca_call_type (gimple *stmt, bool is_vla, tree *invalid_casted_type)
+{
+ gcc_assert (gimple_alloca_call_p (stmt));
+ tree len = gimple_call_arg (stmt, 0);
+ tree len_casted = NULL;
+ wide_int min, max;
+ struct alloca_type_and_limit ret = alloca_type_and_limit (ALLOCA_UNBOUNDED);
+
+ gcc_assert (!is_vla || warn_vla_limit > 0);
+ gcc_assert (is_vla || warn_alloca_limit > 0);
+
+ // Adjust warn_alloca_max_size for VLAs, by taking the underlying
+ // type into account.
+ unsigned HOST_WIDE_INT max_size;
+ if (is_vla)
+ max_size = (unsigned HOST_WIDE_INT) warn_vla_limit;
+ else
+ max_size = (unsigned HOST_WIDE_INT) warn_alloca_limit;
+
+ // Check for the obviously bounded case.
+ if (TREE_CODE (len) == INTEGER_CST)
+ {
+ if (tree_to_uhwi (len) > max_size)
+ return alloca_type_and_limit (ALLOCA_BOUND_DEFINITELY_LARGE, len);
+ if (integer_zerop (len))
+ return alloca_type_and_limit (ALLOCA_ARG_IS_ZERO);
+ ret = alloca_type_and_limit (ALLOCA_OK);
+ }
+ // Check the range info if available.
+ else if (value_range_type range_type = get_range_info (len, &min, &max))
+ {
+ if (range_type == VR_RANGE)
+ {
+ if (wi::leu_p (max, max_size))
+ ret = alloca_type_and_limit (ALLOCA_OK);
+ else
+ {
+ // A cast may have created a range we don't care
+ // about. For instance, a cast from 16-bit to
+ // 32-bit creates a range of 0..65535, even if there
+ // is not really a determinable range in the
+ // underlying code. In this case, look through the
+ // cast at the original argument, and fall through
+ // to look at other alternatives.
+ //
+ // We only look at through the cast when its from
+ // unsigned to unsigned, otherwise we may risk
+ // looking at SIGNED_INT < N, which is clearly not
+ // what we want. In this case, we'd be interested
+ // in a VR_RANGE of [0..N].
+ //
+ // Note: None of this is perfect, and should all go
+ // away with better range information. But it gets
+ // most of the cases.
+ gimple *def = SSA_NAME_DEF_STMT (len);
+ if (gimple_assign_cast_p (def)
+ && TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))))
+
+ {
+ len_casted = gimple_assign_rhs1 (def);
+ range_type = get_range_info (len_casted, &min, &max);
+ }
+ // An unknown range or a range of the entire domain is
+ // really no range at all.
+ if (range_type == VR_VARYING
+ || (!len_casted && is_max (len, max))
+ || (len_casted && is_max (len_casted, max)))
+ {
+ // Fall through.
+ }
+ else if (range_type != VR_VARYING)
+ return
+ alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, max);
+ }
+ }
+ else if (range_type == VR_ANTI_RANGE)
+ {
+ // There may be some wrapping around going on. Catch it
+ // with this heuristic. Hopefully, this VR_ANTI_RANGE
+ // nonsense will go away, and we won't have to catch the
+ // sign conversion problems with this crap.
+ if (cast_from_signed_p (len, invalid_casted_type))
+ return alloca_type_and_limit (ALLOCA_CAST_FROM_SIGNED);
+ }
+ // No easily determined range and try other things.
+ }
+
+ // If we couldn't find anything, try a few heuristics for things we
+ // can easily determine. Check these misc cases but only accept
+ // them if all predecessors have a known bound.
+ basic_block bb = gimple_bb (stmt);
+ if (ret.type == ALLOCA_UNBOUNDED)
+ {
+ ret.type = ALLOCA_OK;
+ for (unsigned ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
+ {
+ gcc_assert (!len_casted || TYPE_UNSIGNED (TREE_TYPE (len_casted)));
+ ret = alloca_call_type_by_arg (len, len_casted,
+ EDGE_PRED (bb, ix), max_size);
+ if (ret.type != ALLOCA_OK)
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+// Return TRUE if the alloca call in STMT is in a loop, otherwise
+// return FALSE. As an exception, ignore alloca calls for VLAs that
+// occur in a loop since those will be cleaned up when they go out of
+// scope.
+
+static bool
+in_loop_p (bool is_vla, gimple *stmt)
+{
+ basic_block bb = gimple_bb (stmt);
+ if (bb->loop_father
+ && bb->loop_father->header != ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ {
+ // Do not warn on VLAs occurring in a loop, since VLAs are
+ // guaranteed to be cleaned up when they go out of scope.
+ // That is, there is a corresponding __builtin_stack_restore
+ // at the end of the scope in which the VLA occurs.
+ tree fndecl = gimple_call_fn (stmt);
+ while (TREE_CODE (fndecl) == ADDR_EXPR)
+ fndecl = TREE_OPERAND (fndecl, 0);
+ if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
+ && is_vla
+ && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN)
+ return false;
+
+ return true;
+ }
+ return false;
+}
+
+unsigned int
+pass_walloca::execute (function *fun)
+{
+ basic_block bb;
+ FOR_EACH_BB_FN (bb, fun)
+ {
+ for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
+ gsi_next (&si))
+ {
+ gimple *stmt = gsi_stmt (si);
+ location_t loc = gimple_location (stmt);
+
+ if (!gimple_alloca_call_p (stmt))
+ continue;
+ gcc_assert (gimple_call_num_args (stmt) >= 1);
+
+ bool is_vla = gimple_alloca_call_p (stmt)
+ && gimple_call_alloca_for_var_p (as_a <gcall *> (stmt));
+
+ // Strict mode whining for VLAs is handled by the front-end,
+ // so we can safely ignore this case. Also, ignore VLAs if
+ // the user doesn't care about them.
+ if (is_vla
+ && (warn_vla > 0 || !warn_vla_limit))
+ continue;
+
+ if (!is_vla && (warn_alloca || !warn_alloca_limit))
+ {
+ if (warn_alloca)
+ warning_at (loc, OPT_Walloca, G_("use of %<alloca%>"));
+ continue;
+ }
+
+ tree invalid_casted_type = NULL;
+ struct alloca_type_and_limit t
+ = alloca_call_type (stmt, is_vla, &invalid_casted_type);
+
+ // Even if we think the alloca call is OK, make sure it's
+ // not in a loop.
+ if (t.type == ALLOCA_OK && in_loop_p (is_vla, stmt))
+ t = alloca_type_and_limit (ALLOCA_IN_LOOP);
+
+ enum opt_code wcode
+ = is_vla ? OPT_Wvla_larger_than_ : OPT_Walloca_larger_than_;
+ char buff[WIDE_INT_MAX_PRECISION / 4 + 4];
+ switch (t.type)
+ {
+ case ALLOCA_OK:
+ break;
+ case ALLOCA_BOUND_MAYBE_LARGE:
+ if (warning_at (loc, wcode,
+ is_vla ? G_("argument to variable-length array "
+ "may be too large")
+ : G_("argument to %<alloca%> may be too large"))
+ && t.limit != integer_zero_node)
+ {
+ print_decu (t.limit, buff);
+ inform (loc, G_("limit is %u bytes, but argument "
+ "may be as large as %s"),
+ is_vla ? warn_vla_limit : warn_alloca_limit, buff);
+ }
+ break;
+ case ALLOCA_BOUND_DEFINITELY_LARGE:
+ if (warning_at (loc, wcode,
+ is_vla ? G_("argument to variable-length array "
+ "is too large")
+ : G_("argument to %<alloca%> is too large"))
+ && t.limit != integer_zero_node)
+ {
+ print_decu (t.limit, buff);
+ inform (loc, G_("limit is %u bytes, but argument is %s"),
+ is_vla ? warn_vla_limit : warn_alloca_limit, buff);
+ }
+ break;
+ case ALLOCA_BOUND_UNKNOWN:
+ warning_at (loc, wcode,
+ is_vla ? G_("variable-length array bound is unknown")
+ : G_("%<alloca%> bound is unknown"));
+ break;
+ case ALLOCA_UNBOUNDED:
+ warning_at (loc, wcode,
+ is_vla ? G_("unbounded use of variable-length array")
+ : G_("unbounded use of %<alloca%>"));
+ break;
+ case ALLOCA_IN_LOOP:
+ gcc_assert (!is_vla);
+ warning_at (loc, wcode, G_("use of %<alloca%> within a loop"));
+ break;
+ case ALLOCA_CAST_FROM_SIGNED:
+ gcc_assert (invalid_casted_type != NULL_TREE);
+ warning_at (loc, wcode,
+ is_vla ? G_("argument to variable-length array "
+ "may be too large due to "
+ "conversion from %qT to %qT")
+ : G_("argument to %<alloca%> may be too large "
+ "due to conversion from %qT to %qT"),
+ invalid_casted_type, size_type_node);
+ break;
+ case ALLOCA_ARG_IS_ZERO:
+ warning_at (loc, wcode,
+ is_vla ? G_("argument to variable-length array "
+ "is zero")
+ : G_("argument to %<alloca%> is zero"));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+ return 0;
+}
+
+gimple_opt_pass *
+make_pass_walloca (gcc::context *ctxt)
+{
+ return new pass_walloca (ctxt);
+}