for (auto type : std::vector<RTLIL::IdString>({"$mux", "$pmux"}))
setup_type(type, {"\\A", "\\B", "\\S"}, {"\\Y"}, true);
+ setup_type("$lcu", {"\\P", "\\G", "\\CI"}, {"\\CO"}, true);
setup_type("$alu", {"\\A", "\\B", "\\CI", "\\BI"}, {"\\X", "\\Y", "\\CO"}, true);
setup_type("$fa", {"\\A", "\\B", "\\C"}, {"\\X", "\\Y"}, true);
bool eval(RTLIL::Cell *cell, RTLIL::SigSpec &undef)
{
+ if (cell->type == "$lcu")
+ {
+ RTLIL::SigSpec sig_p = cell->getPort("\\P");
+ RTLIL::SigSpec sig_g = cell->getPort("\\G");
+ RTLIL::SigSpec sig_ci = cell->getPort("\\CI");
+ RTLIL::SigSpec sig_co = values_map(assign_map(cell->getPort("\\CO")));
+
+ if (sig_co.is_fully_const())
+ return true;
+
+ if (!eval(sig_p, undef, cell))
+ return false;
+
+ if (!eval(sig_g, undef, cell))
+ return false;
+
+ if (!eval(sig_ci, undef, cell))
+ return false;
+
+ if (sig_p.is_fully_def() && sig_g.is_fully_def() && sig_ci.is_fully_def())
+ {
+ RTLIL::Const coval(RTLIL::Sx, SIZE(sig_co));
+ bool carry = sig_ci.as_bool();
+
+ for (int i = 0; i < SIZE(coval); i++) {
+ carry = (sig_g[i] == RTLIL::S1) || (sig_p[i] == RTLIL::S1 && carry);
+ coval.bits[i] = carry ? RTLIL::S1 : RTLIL::S0;
+ }
+
+ set(sig_co, coval);
+ }
+ else
+ set(sig_co, RTLIL::Const(RTLIL::Sx, SIZE(sig_co)));
+
+ return true;
+ }
+
RTLIL::SigSpec sig_a, sig_b, sig_s, sig_y;
log_assert(cell->hasPort("\\Y"));
return;
}
+ if (cell->type == "$lcu") {
+ port("\\P", param("\\WIDTH"));
+ port("\\G", param("\\WIDTH"));
+ port("\\CI", 1);
+ port("\\CO", param("\\WIDTH"));
+ check_expected();
+ return;
+ }
+
if (cell->type == "$alu") {
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
return;
}
+ if (type == "$lcu") {
+ parameters["\\WIDTH"] = SIZE(connections_["\\CO"]);
+ return;
+ }
+
bool signedness_ab = !type.in("$slice", "$concat", "$macc");
if (connections_.count("\\A")) {
return true;
}
+ if (cell->type == "$lcu")
+ {
+ std::vector<int> p = importDefSigSpec(cell->getPort("\\P"), timestep);
+ std::vector<int> g = importDefSigSpec(cell->getPort("\\G"), timestep);
+ std::vector<int> ci = importDefSigSpec(cell->getPort("\\CI"), timestep);
+ std::vector<int> co = importDefSigSpec(cell->getPort("\\CO"), timestep);
+
+ std::vector<int> yy = model_undef ? ez->vec_var(co.size()) : co;
+
+ for (int i = 0; i < SIZE(co); i++)
+ ez->SET(yy[i], ez->OR(g[i], ez->AND(p[i], i ? yy[i-1] : ci[0])));
+
+ if (model_undef)
+ {
+ std::vector<int> undef_p = importUndefSigSpec(cell->getPort("\\P"), timestep);
+ std::vector<int> undef_g = importUndefSigSpec(cell->getPort("\\G"), timestep);
+ std::vector<int> undef_ci = importUndefSigSpec(cell->getPort("\\CI"), timestep);
+ std::vector<int> undef_co = importUndefSigSpec(cell->getPort("\\CO"), timestep);
+
+ int undef_any_p = ez->expression(ezSAT::OpOr, undef_p);
+ int undef_any_g = ez->expression(ezSAT::OpOr, undef_g);
+ int undef_any_ci = ez->expression(ezSAT::OpOr, undef_ci);
+ int undef_co_bit = ez->OR(undef_any_p, undef_any_g, undef_any_ci);
+
+ std::vector<int> undef_co_bits(undef_co.size(), undef_co_bit);
+ ez->assume(ez->vec_eq(undef_co_bits, undef_co));
+
+ undefGating(co, yy, undef_co);
+ }
+ return true;
+ }
+
if (cell->type == "$alu")
{
std::vector<int> a = importDefSigSpec(cell->getPort("\\A"), timestep);
\end{fixme}
\begin{fixme}
-Add information about {\tt \$alu} cells.
+Add information about {\tt \$alu}, {\tt \$macc}, {\tt \$fa}, and {\tt \$lcu} cells.
\end{fixme}
\begin{fixme}
cell->setPort("\\Y", wire);
}
+ if (cell_type == "$lcu")
+ {
+ int width = 1 + xorshift32(8);
+
+ wire = module->addWire("\\P");
+ wire->width = width;
+ wire->port_input = true;
+ cell->setPort("\\P", wire);
+
+ wire = module->addWire("\\G");
+ wire->width = width;
+ wire->port_input = true;
+ cell->setPort("\\G", wire);
+
+ wire = module->addWire("\\CI");
+ wire->port_input = true;
+ cell->setPort("\\CI", wire);
+
+ wire = module->addWire("\\CO");
+ wire->width = width;
+ wire->port_output = true;
+ cell->setPort("\\CO", wire);
+ }
+
if (cell_type == "$macc")
{
Macc macc;
log("\n");
log(" test_cell [options] {cell-types}\n");
log("\n");
- log("Tests the internal implementation of the given cell type (for example '$mux')\n");
+ log("Tests the internal implementation of the given cell type (for example '$add')\n");
log("by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..\n");
log("\n");
log("Run with 'all' instead of a cell type to run the test on all supported\n");
cell_types["$lut"] = "*";
cell_types["$alu"] = "ABSY";
+ cell_types["$lcu"] = "*";
cell_types["$macc"] = "*";
cell_types["$fa"] = "*";
// --------------------------------------------------------
+module \$lcu (P, G, CI, CO);
+
+parameter WIDTH = 1;
+
+input [WIDTH-1:0] P, G;
+input CI;
+
+output reg [WIDTH-1:0] CO;
+
+integer i;
+always @* begin
+ CO = 'bx;
+ if (^{P, G, CI} !== 1'bx) begin
+ CO[0] = G[0] || (P[0] && CI);
+ for (i = 1; i < WIDTH; i = i+1)
+ CO[i] = G[i] || (P[i] && CO[i-1]);
+ end
+end
+
+endmodule
+
+// --------------------------------------------------------
+
module \$alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
assign Y = t1 ^ C, X = t2 | t3;
endmodule
-module \$__alu_ripple (A, B, CI, X, Y, CO);
- parameter WIDTH = 1;
-
- input [WIDTH-1:0] A, B;
- output [WIDTH-1:0] X, Y;
-
- input CI;
- output [WIDTH-1:0] CO;
-
- wire [WIDTH:0] carry;
- assign carry[0] = CI;
- assign CO = carry[WIDTH:1];
-
- genvar i;
- generate
- for (i = 0; i < WIDTH; i = i+1)
- begin:V
- // {x, y} = a + b + c
- wire a, b, c, x, y;
- wire t1, t2, t3;
-
- \$_AND_ gate1 ( .A(a), .B(b), .Y(t1) );
- \$_XOR_ gate2 ( .A(a), .B(b), .Y(t2) );
- \$_AND_ gate3 ( .A(t2), .B(c), .Y(t3) );
- \$_XOR_ gate4 ( .A(t2), .B(c), .Y(y) );
- \$_OR_ gate5 ( .A(t1), .B(t3), .Y(x) );
-
- assign a = A[i], b = B[i], c = carry[i];
- assign carry[i+1] = x, X[i] = t2, Y[i] = y;
- end
- endgenerate
-endmodule
-
-module \$__lcu (P, G, CI, CO);
+module \$lcu (P, G, CI, CO);
parameter WIDTH = 2;
input [WIDTH-1:0] P, G;
assign CO = g;
endmodule
-module \$__alu_lookahead (A, B, CI, X, Y, CO);
- parameter WIDTH = 1;
-
- input [WIDTH-1:0] A, B;
- output [WIDTH-1:0] X, Y;
-
- input CI;
- output [WIDTH-1:0] CO;
-
- wire [WIDTH-1:0] P, G;
- wire [WIDTH:0] carry;
-
- genvar i;
- generate
- for (i = 0; i < WIDTH; i = i+1)
- begin:V
- wire a, b, c, p, g, y;
-
- \$_AND_ gate1 ( .A(a), .B(b), .Y(g) );
- \$_XOR_ gate2 ( .A(a), .B(b), .Y(p) );
- \$_XOR_ gate3 ( .A(p), .B(c), .Y(y) );
-
- assign a = A[i], b = B[i], c = carry[i];
- assign P[i] = p, G[i] = g, X[i] = p, Y[i] = y;
- end
- endgenerate
-
- \$__lcu #(.WIDTH(WIDTH)) lcu (.P(P), .G(G), .CI(CI), .CO(CO));
- assign carry = {CO, CI};
-endmodule
-
module \$alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-`ifdef ALU_RIPPLE
- \$__alu_ripple #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
-`else
- if (Y_WIDTH <= 4) begin
- \$__alu_ripple #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
- end else begin
- \$__alu_lookahead #(.WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_buf), .B(BI ? ~B_buf : B_buf), .CI(CI), .X(X), .Y(Y), .CO(CO));
- end
-`endif
+ wire [Y_WIDTH-1:0] AA = A_buf;
+ wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
+
+ \$lcu #(.WIDTH(Y_WIDTH)) lcu (.P(X), .G(AA & BB), .CI(CI), .CO(CO));
+
+ assign X = AA ^ BB;
+ assign Y = X ^ {CO, CI};
endmodule