--- /dev/null
- device->info = brw_get_device_info(device->chipset_id, -1);
+/*
+ * Copyright © 2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <string.h>
+#include <unistd.h>
+#include <fcntl.h>
+
+#include "anv_private.h"
+#include "mesa/main/git_sha1.h"
+#include "util/strtod.h"
+
+struct anv_dispatch_table dtable;
+
+static void
+compiler_debug_log(void *data, const char *fmt, ...)
+{ }
+
+static void
+compiler_perf_log(void *data, const char *fmt, ...)
+{
+ va_list args;
+ va_start(args, fmt);
+
+ if (unlikely(INTEL_DEBUG & DEBUG_PERF))
+ vfprintf(stderr, fmt, args);
+
+ va_end(args);
+}
+
+static VkResult
+anv_physical_device_init(struct anv_physical_device *device,
+ struct anv_instance *instance,
+ const char *path)
+{
+ VkResult result;
+ int fd;
+
+ fd = open(path, O_RDWR | O_CLOEXEC);
+ if (fd < 0)
+ return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "failed to open %s: %m", path);
+
+ device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
+ device->instance = instance;
+ device->path = path;
+
+ device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
+ if (!device->chipset_id) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "failed to get chipset id: %m");
+ goto fail;
+ }
+
+ device->name = brw_get_device_name(device->chipset_id);
++ device->info = brw_get_device_info(device->chipset_id);
+ if (!device->info) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "failed to get device info");
+ goto fail;
+ }
+
+ if (device->info->gen == 7 &&
+ !device->info->is_haswell && !device->info->is_baytrail) {
+ fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete");
+ } else if (device->info->gen == 8 && !device->info->is_cherryview) {
+ /* Briadwell is as fully supported as anything */
+ } else {
+ result = vk_errorf(VK_UNSUPPORTED,
+ "Vulkan not yet supported on %s", device->name);
+ goto fail;
+ }
+
+ if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "failed to get aperture size: %m");
+ goto fail;
+ }
+
+ if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "kernel missing gem wait");
+ goto fail;
+ }
+
+ if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "kernel missing execbuf2");
+ goto fail;
+ }
+
+ if (!anv_gem_get_param(fd, I915_PARAM_HAS_LLC)) {
+ result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
+ "non-llc gpu");
+ goto fail;
+ }
+
+ close(fd);
+
+ brw_process_intel_debug_variable();
+
+ device->compiler = brw_compiler_create(NULL, device->info);
+ if (device->compiler == NULL) {
+ result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ goto fail;
+ }
+ device->compiler->shader_debug_log = compiler_debug_log;
+ device->compiler->shader_perf_log = compiler_perf_log;
+
+ return VK_SUCCESS;
+
+fail:
+ close(fd);
+ return result;
+}
+
+static void
+anv_physical_device_finish(struct anv_physical_device *device)
+{
+ ralloc_free(device->compiler);
+}
+
+static void *default_alloc(
+ void* pUserData,
+ size_t size,
+ size_t alignment,
+ VkSystemAllocType allocType)
+{
+ return malloc(size);
+}
+
+static void default_free(
+ void* pUserData,
+ void* pMem)
+{
+ free(pMem);
+}
+
+static const VkAllocCallbacks default_alloc_callbacks = {
+ .pUserData = NULL,
+ .pfnAlloc = default_alloc,
+ .pfnFree = default_free
+};
+
+static const VkExtensionProperties global_extensions[] = {
+ {
+ .extName = VK_EXT_KHR_SWAPCHAIN_EXTENSION_NAME,
+ .specVersion = 17,
+ },
+};
+
+static const VkExtensionProperties device_extensions[] = {
+ {
+ .extName = VK_EXT_KHR_DEVICE_SWAPCHAIN_EXTENSION_NAME,
+ .specVersion = 53,
+ },
+};
+
+VkResult anv_CreateInstance(
+ const VkInstanceCreateInfo* pCreateInfo,
+ VkInstance* pInstance)
+{
+ struct anv_instance *instance;
+ const VkAllocCallbacks *alloc_callbacks = &default_alloc_callbacks;
+ void *user_data = NULL;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
+
+ if (pCreateInfo->pAppInfo->apiVersion != VK_MAKE_VERSION(0, 170, 2))
+ return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
+
+ for (uint32_t i = 0; i < pCreateInfo->extensionCount; i++) {
+ bool found = false;
+ for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
+ if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
+ global_extensions[j].extName) == 0) {
+ found = true;
+ break;
+ }
+ }
+ if (!found)
+ return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
+ }
+
+ if (pCreateInfo->pAllocCb) {
+ alloc_callbacks = pCreateInfo->pAllocCb;
+ user_data = pCreateInfo->pAllocCb->pUserData;
+ }
+ instance = alloc_callbacks->pfnAlloc(user_data, sizeof(*instance), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (!instance)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
+ instance->pAllocUserData = alloc_callbacks->pUserData;
+ instance->pfnAlloc = alloc_callbacks->pfnAlloc;
+ instance->pfnFree = alloc_callbacks->pfnFree;
+ instance->apiVersion = pCreateInfo->pAppInfo->apiVersion;
+ instance->physicalDeviceCount = -1;
+
+ _mesa_locale_init();
+
+ VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
+
+ anv_init_wsi(instance);
+
+ *pInstance = anv_instance_to_handle(instance);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyInstance(
+ VkInstance _instance)
+{
+ ANV_FROM_HANDLE(anv_instance, instance, _instance);
+
+ if (instance->physicalDeviceCount > 0) {
+ /* We support at most one physical device. */
+ assert(instance->physicalDeviceCount == 1);
+ anv_physical_device_finish(&instance->physicalDevice);
+ }
+
+ anv_finish_wsi(instance);
+
+ VG(VALGRIND_DESTROY_MEMPOOL(instance));
+
+ _mesa_locale_fini();
+
+ instance->pfnFree(instance->pAllocUserData, instance);
+}
+
+void *
+anv_instance_alloc(struct anv_instance *instance, size_t size,
+ size_t alignment, VkSystemAllocType allocType)
+{
+ void *mem = instance->pfnAlloc(instance->pAllocUserData,
+ size, alignment, allocType);
+ if (mem) {
+ VG(VALGRIND_MEMPOOL_ALLOC(instance, mem, size));
+ VG(VALGRIND_MAKE_MEM_UNDEFINED(mem, size));
+ }
+ return mem;
+}
+
+void
+anv_instance_free(struct anv_instance *instance, void *mem)
+{
+ if (mem == NULL)
+ return;
+
+ VG(VALGRIND_MEMPOOL_FREE(instance, mem));
+
+ instance->pfnFree(instance->pAllocUserData, mem);
+}
+
+VkResult anv_EnumeratePhysicalDevices(
+ VkInstance _instance,
+ uint32_t* pPhysicalDeviceCount,
+ VkPhysicalDevice* pPhysicalDevices)
+{
+ ANV_FROM_HANDLE(anv_instance, instance, _instance);
+ VkResult result;
+
+ if (instance->physicalDeviceCount < 0) {
+ result = anv_physical_device_init(&instance->physicalDevice,
+ instance, "/dev/dri/renderD128");
+ if (result == VK_UNSUPPORTED) {
+ instance->physicalDeviceCount = 0;
+ } else if (result == VK_SUCCESS) {
+ instance->physicalDeviceCount = 1;
+ } else {
+ return result;
+ }
+ }
+
+ /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
+ * otherwise it's an inout parameter.
+ *
+ * The Vulkan spec (git aaed022) says:
+ *
+ * pPhysicalDeviceCount is a pointer to an unsigned integer variable
+ * that is initialized with the number of devices the application is
+ * prepared to receive handles to. pname:pPhysicalDevices is pointer to
+ * an array of at least this many VkPhysicalDevice handles [...].
+ *
+ * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
+ * overwrites the contents of the variable pointed to by
+ * pPhysicalDeviceCount with the number of physical devices in in the
+ * instance; otherwise, vkEnumeratePhysicalDevices overwrites
+ * pPhysicalDeviceCount with the number of physical handles written to
+ * pPhysicalDevices.
+ */
+ if (!pPhysicalDevices) {
+ *pPhysicalDeviceCount = instance->physicalDeviceCount;
+ } else if (*pPhysicalDeviceCount >= 1) {
+ pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
+ *pPhysicalDeviceCount = 1;
+ } else {
+ *pPhysicalDeviceCount = 0;
+ }
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetPhysicalDeviceFeatures(
+ VkPhysicalDevice physicalDevice,
+ VkPhysicalDeviceFeatures* pFeatures)
+{
+ anv_finishme("Get correct values for PhysicalDeviceFeatures");
+
+ *pFeatures = (VkPhysicalDeviceFeatures) {
+ .robustBufferAccess = false,
+ .fullDrawIndexUint32 = false,
+ .imageCubeArray = false,
+ .independentBlend = false,
+ .geometryShader = true,
+ .tessellationShader = false,
+ .sampleRateShading = false,
+ .dualSourceBlend = true,
+ .logicOp = true,
+ .multiDrawIndirect = true,
+ .depthClip = false,
+ .depthBiasClamp = false,
+ .fillModeNonSolid = true,
+ .depthBounds = false,
+ .wideLines = true,
+ .largePoints = true,
+ .textureCompressionETC2 = true,
+ .textureCompressionASTC_LDR = true,
+ .textureCompressionBC = true,
+ .occlusionQueryNonConservative = false, /* FINISHME */
+ .pipelineStatisticsQuery = true,
+ .vertexSideEffects = false,
+ .tessellationSideEffects = false,
+ .geometrySideEffects = false,
+ .fragmentSideEffects = false,
+ .shaderTessellationPointSize = false,
+ .shaderGeometryPointSize = true,
+ .shaderImageGatherExtended = true,
+ .shaderStorageImageExtendedFormats = false,
+ .shaderStorageImageMultisample = false,
+ .shaderUniformBufferArrayDynamicIndexing = true,
+ .shaderSampledImageArrayDynamicIndexing = false,
+ .shaderStorageBufferArrayDynamicIndexing = false,
+ .shaderStorageImageArrayDynamicIndexing = false,
+ .shaderClipDistance = false,
+ .shaderCullDistance = false,
+ .shaderFloat64 = false,
+ .shaderInt64 = false,
+ .shaderInt16 = false,
+ .alphaToOne = true,
+ };
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetPhysicalDeviceProperties(
+ VkPhysicalDevice physicalDevice,
+ VkPhysicalDeviceProperties* pProperties)
+{
+ ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
+ const struct brw_device_info *devinfo = pdevice->info;
+
+ anv_finishme("Get correct values for VkPhysicalDeviceLimits");
+
+ VkPhysicalDeviceLimits limits = {
+ .maxImageDimension1D = (1 << 14),
+ .maxImageDimension2D = (1 << 14),
+ .maxImageDimension3D = (1 << 10),
+ .maxImageDimensionCube = (1 << 14),
+ .maxImageArrayLayers = (1 << 10),
+
+ /* Broadwell supports 1, 2, 4, and 8 samples. */
+ .sampleCounts = 4,
+
+ .maxTexelBufferSize = (1 << 14),
+ .maxUniformBufferSize = UINT32_MAX,
+ .maxStorageBufferSize = UINT32_MAX,
+ .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
+ .maxMemoryAllocationCount = UINT32_MAX,
+ .bufferImageGranularity = 64, /* A cache line */
+ .sparseAddressSpaceSize = 0,
+ .maxBoundDescriptorSets = MAX_SETS,
+ .maxDescriptorSets = UINT32_MAX,
+ .maxPerStageDescriptorSamplers = 64,
+ .maxPerStageDescriptorUniformBuffers = 64,
+ .maxPerStageDescriptorStorageBuffers = 64,
+ .maxPerStageDescriptorSampledImages = 64,
+ .maxPerStageDescriptorStorageImages = 64,
+ .maxDescriptorSetSamplers = 256,
+ .maxDescriptorSetUniformBuffers = 256,
+ .maxDescriptorSetUniformBuffersDynamic = 256,
+ .maxDescriptorSetStorageBuffers = 256,
+ .maxDescriptorSetStorageBuffersDynamic = 256,
+ .maxDescriptorSetSampledImages = 256,
+ .maxDescriptorSetStorageImages = 256,
+ .maxVertexInputAttributes = 32,
+ .maxVertexInputBindings = 32,
+ .maxVertexInputAttributeOffset = 256,
+ .maxVertexInputBindingStride = 256,
+ .maxVertexOutputComponents = 32,
+ .maxTessGenLevel = 0,
+ .maxTessPatchSize = 0,
+ .maxTessControlPerVertexInputComponents = 0,
+ .maxTessControlPerVertexOutputComponents = 0,
+ .maxTessControlPerPatchOutputComponents = 0,
+ .maxTessControlTotalOutputComponents = 0,
+ .maxTessEvaluationInputComponents = 0,
+ .maxTessEvaluationOutputComponents = 0,
+ .maxGeometryShaderInvocations = 6,
+ .maxGeometryInputComponents = 16,
+ .maxGeometryOutputComponents = 16,
+ .maxGeometryOutputVertices = 16,
+ .maxGeometryTotalOutputComponents = 16,
+ .maxFragmentInputComponents = 16,
+ .maxFragmentOutputBuffers = 8,
+ .maxFragmentDualSourceBuffers = 2,
+ .maxFragmentCombinedOutputResources = 8,
+ .maxComputeSharedMemorySize = 1024,
+ .maxComputeWorkGroupCount = {
+ 16 * devinfo->max_cs_threads,
+ 16 * devinfo->max_cs_threads,
+ 16 * devinfo->max_cs_threads,
+ },
+ .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
+ .maxComputeWorkGroupSize = {
+ 16 * devinfo->max_cs_threads,
+ 16 * devinfo->max_cs_threads,
+ 16 * devinfo->max_cs_threads,
+ },
+ .subPixelPrecisionBits = 4 /* FIXME */,
+ .subTexelPrecisionBits = 4 /* FIXME */,
+ .mipmapPrecisionBits = 4 /* FIXME */,
+ .maxDrawIndexedIndexValue = UINT32_MAX,
+ .maxDrawIndirectInstanceCount = UINT32_MAX,
+ .primitiveRestartForPatches = UINT32_MAX,
+ .maxSamplerLodBias = 16,
+ .maxSamplerAnisotropy = 16,
+ .maxViewports = MAX_VIEWPORTS,
+ .maxViewportDimensions = { (1 << 14), (1 << 14) },
+ .viewportBoundsRange = { -1.0, 1.0 }, /* FIXME */
+ .viewportSubPixelBits = 13, /* We take a float? */
+ .minMemoryMapAlignment = 64, /* A cache line */
+ .minTexelBufferOffsetAlignment = 1,
+ .minUniformBufferOffsetAlignment = 1,
+ .minStorageBufferOffsetAlignment = 1,
+ .minTexelOffset = 0, /* FIXME */
+ .maxTexelOffset = 0, /* FIXME */
+ .minTexelGatherOffset = 0, /* FIXME */
+ .maxTexelGatherOffset = 0, /* FIXME */
+ .minInterpolationOffset = 0, /* FIXME */
+ .maxInterpolationOffset = 0, /* FIXME */
+ .subPixelInterpolationOffsetBits = 0, /* FIXME */
+ .maxFramebufferWidth = (1 << 14),
+ .maxFramebufferHeight = (1 << 14),
+ .maxFramebufferLayers = (1 << 10),
+ .maxFramebufferColorSamples = 8,
+ .maxFramebufferDepthSamples = 8,
+ .maxFramebufferStencilSamples = 8,
+ .maxColorAttachments = MAX_RTS,
+ .maxSampledImageColorSamples = 8,
+ .maxSampledImageDepthSamples = 8,
+ .maxSampledImageIntegerSamples = 1,
+ .maxStorageImageSamples = 1,
+ .maxSampleMaskWords = 1,
+ .timestampFrequency = 1000 * 1000 * 1000 / 80,
+ .maxClipDistances = 0 /* FIXME */,
+ .maxCullDistances = 0 /* FIXME */,
+ .maxCombinedClipAndCullDistances = 0 /* FIXME */,
+ .pointSizeRange = { 0.125, 255.875 },
+ .lineWidthRange = { 0.0, 7.9921875 },
+ .pointSizeGranularity = (1.0 / 8.0),
+ .lineWidthGranularity = (1.0 / 128.0),
+ };
+
+ *pProperties = (VkPhysicalDeviceProperties) {
+ .apiVersion = VK_MAKE_VERSION(0, 170, 2),
+ .driverVersion = 1,
+ .vendorId = 0x8086,
+ .deviceId = pdevice->chipset_id,
+ .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
+ .limits = limits,
+ .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
+ };
+
+ strcpy(pProperties->deviceName, pdevice->name);
+ snprintf((char *)pProperties->pipelineCacheUUID, VK_UUID_LENGTH,
+ "anv-%s", MESA_GIT_SHA1 + 4);
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetPhysicalDeviceQueueFamilyProperties(
+ VkPhysicalDevice physicalDevice,
+ uint32_t* pCount,
+ VkQueueFamilyProperties* pQueueFamilyProperties)
+{
+ if (pQueueFamilyProperties == NULL) {
+ *pCount = 1;
+ return VK_SUCCESS;
+ }
+
+ assert(*pCount >= 1);
+
+ *pQueueFamilyProperties = (VkQueueFamilyProperties) {
+ .queueFlags = VK_QUEUE_GRAPHICS_BIT |
+ VK_QUEUE_COMPUTE_BIT |
+ VK_QUEUE_DMA_BIT,
+ .queueCount = 1,
+ .supportsTimestamps = true,
+ };
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetPhysicalDeviceMemoryProperties(
+ VkPhysicalDevice physicalDevice,
+ VkPhysicalDeviceMemoryProperties* pMemoryProperties)
+{
+ ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
+ VkDeviceSize heap_size;
+
+ /* Reserve some wiggle room for the driver by exposing only 75% of the
+ * aperture to the heap.
+ */
+ heap_size = 3 * physical_device->aperture_size / 4;
+
+ /* The property flags below are valid only for llc platforms. */
+ pMemoryProperties->memoryTypeCount = 1;
+ pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
+ .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
+ .heapIndex = 1,
+ };
+
+ pMemoryProperties->memoryHeapCount = 1;
+ pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
+ .size = heap_size,
+ .flags = VK_MEMORY_HEAP_HOST_LOCAL_BIT,
+ };
+
+ return VK_SUCCESS;
+}
+
+PFN_vkVoidFunction anv_GetInstanceProcAddr(
+ VkInstance instance,
+ const char* pName)
+{
+ return anv_lookup_entrypoint(pName);
+}
+
+PFN_vkVoidFunction anv_GetDeviceProcAddr(
+ VkDevice device,
+ const char* pName)
+{
+ return anv_lookup_entrypoint(pName);
+}
+
+static VkResult
+anv_queue_init(struct anv_device *device, struct anv_queue *queue)
+{
+ queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
+ queue->device = device;
+ queue->pool = &device->surface_state_pool;
+
+ return VK_SUCCESS;
+}
+
+static void
+anv_queue_finish(struct anv_queue *queue)
+{
+}
+
+static void
+anv_device_init_border_colors(struct anv_device *device)
+{
+ static const VkClearColorValue border_colors[] = {
+ [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
+ [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
+ [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
+ [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
+ [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
+ [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
+ };
+
+ device->border_colors =
+ anv_state_pool_alloc(&device->dynamic_state_pool,
+ sizeof(border_colors), 32);
+ memcpy(device->border_colors.map, border_colors, sizeof(border_colors));
+}
+
+VkResult anv_CreateDevice(
+ VkPhysicalDevice physicalDevice,
+ const VkDeviceCreateInfo* pCreateInfo,
+ VkDevice* pDevice)
+{
+ ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
+ struct anv_instance *instance = physical_device->instance;
+ struct anv_device *device;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
+
+ for (uint32_t i = 0; i < pCreateInfo->extensionCount; i++) {
+ bool found = false;
+ for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
+ if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
+ device_extensions[j].extName) == 0) {
+ found = true;
+ break;
+ }
+ }
+ if (!found)
+ return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
+ }
+
+ anv_set_dispatch_gen(physical_device->info->gen);
+
+ device = anv_instance_alloc(instance, sizeof(*device), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (!device)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
+ device->instance = physical_device->instance;
+
+ /* XXX(chadv): Can we dup() physicalDevice->fd here? */
+ device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
+ if (device->fd == -1)
+ goto fail_device;
+
+ device->context_id = anv_gem_create_context(device);
+ if (device->context_id == -1)
+ goto fail_fd;
+
+ pthread_mutex_init(&device->mutex, NULL);
+
+ anv_bo_pool_init(&device->batch_bo_pool, device, ANV_CMD_BUFFER_BATCH_SIZE);
+
+ anv_block_pool_init(&device->dynamic_state_block_pool, device, 2048);
+
+ anv_state_pool_init(&device->dynamic_state_pool,
+ &device->dynamic_state_block_pool);
+
+ anv_block_pool_init(&device->instruction_block_pool, device, 2048);
+ anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
+
+ anv_state_pool_init(&device->surface_state_pool,
+ &device->surface_state_block_pool);
+
+ anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
+
+ device->info = *physical_device->info;
+
+ anv_queue_init(device, &device->queue);
+
+ anv_device_init_meta(device);
+
+ anv_device_init_border_colors(device);
+
+ *pDevice = anv_device_to_handle(device);
+
+ return VK_SUCCESS;
+
+ fail_fd:
+ close(device->fd);
+ fail_device:
+ anv_device_free(device, device);
+
+ return vk_error(VK_ERROR_INITIALIZATION_FAILED);
+}
+
+void anv_DestroyDevice(
+ VkDevice _device)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ anv_queue_finish(&device->queue);
+
+ anv_device_finish_meta(device);
+
+#ifdef HAVE_VALGRIND
+ /* We only need to free these to prevent valgrind errors. The backing
+ * BO will go away in a couple of lines so we don't actually leak.
+ */
+ anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
+#endif
+
+ anv_bo_pool_finish(&device->batch_bo_pool);
+ anv_state_pool_finish(&device->dynamic_state_pool);
+ anv_block_pool_finish(&device->dynamic_state_block_pool);
+ anv_block_pool_finish(&device->instruction_block_pool);
+ anv_state_pool_finish(&device->surface_state_pool);
+ anv_block_pool_finish(&device->surface_state_block_pool);
+ anv_block_pool_finish(&device->scratch_block_pool);
+
+ close(device->fd);
+
+ anv_instance_free(device->instance, device);
+}
+
+VkResult anv_EnumerateInstanceExtensionProperties(
+ const char* pLayerName,
+ uint32_t* pCount,
+ VkExtensionProperties* pProperties)
+{
+ if (pProperties == NULL) {
+ *pCount = ARRAY_SIZE(global_extensions);
+ return VK_SUCCESS;
+ }
+
+ assert(*pCount >= ARRAY_SIZE(global_extensions));
+
+ *pCount = ARRAY_SIZE(global_extensions);
+ memcpy(pProperties, global_extensions, sizeof(global_extensions));
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_EnumerateDeviceExtensionProperties(
+ VkPhysicalDevice physicalDevice,
+ const char* pLayerName,
+ uint32_t* pCount,
+ VkExtensionProperties* pProperties)
+{
+ if (pProperties == NULL) {
+ *pCount = ARRAY_SIZE(device_extensions);
+ return VK_SUCCESS;
+ }
+
+ assert(*pCount >= ARRAY_SIZE(device_extensions));
+
+ *pCount = ARRAY_SIZE(device_extensions);
+ memcpy(pProperties, device_extensions, sizeof(device_extensions));
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_EnumerateInstanceLayerProperties(
+ uint32_t* pCount,
+ VkLayerProperties* pProperties)
+{
+ if (pProperties == NULL) {
+ *pCount = 0;
+ return VK_SUCCESS;
+ }
+
+ /* None supported at this time */
+ return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
+}
+
+VkResult anv_EnumerateDeviceLayerProperties(
+ VkPhysicalDevice physicalDevice,
+ uint32_t* pCount,
+ VkLayerProperties* pProperties)
+{
+ if (pProperties == NULL) {
+ *pCount = 0;
+ return VK_SUCCESS;
+ }
+
+ /* None supported at this time */
+ return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
+}
+
+VkResult anv_GetDeviceQueue(
+ VkDevice _device,
+ uint32_t queueNodeIndex,
+ uint32_t queueIndex,
+ VkQueue* pQueue)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ assert(queueIndex == 0);
+
+ *pQueue = anv_queue_to_handle(&device->queue);
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_QueueSubmit(
+ VkQueue _queue,
+ uint32_t cmdBufferCount,
+ const VkCmdBuffer* pCmdBuffers,
+ VkFence _fence)
+{
+ ANV_FROM_HANDLE(anv_queue, queue, _queue);
+ ANV_FROM_HANDLE(anv_fence, fence, _fence);
+ struct anv_device *device = queue->device;
+ int ret;
+
+ for (uint32_t i = 0; i < cmdBufferCount; i++) {
+ ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCmdBuffers[i]);
+
+ assert(cmd_buffer->level == VK_CMD_BUFFER_LEVEL_PRIMARY);
+
+ ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
+ if (ret != 0) {
+ /* We don't know the real error. */
+ return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
+ "execbuf2 failed: %m");
+ }
+
+ if (fence) {
+ ret = anv_gem_execbuffer(device, &fence->execbuf);
+ if (ret != 0) {
+ /* We don't know the real error. */
+ return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
+ "execbuf2 failed: %m");
+ }
+ }
+
+ for (uint32_t i = 0; i < cmd_buffer->execbuf2.bo_count; i++)
+ cmd_buffer->execbuf2.bos[i]->offset = cmd_buffer->execbuf2.objects[i].offset;
+ }
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_QueueWaitIdle(
+ VkQueue _queue)
+{
+ ANV_FROM_HANDLE(anv_queue, queue, _queue);
+
+ return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
+}
+
+VkResult anv_DeviceWaitIdle(
+ VkDevice _device)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_state state;
+ struct anv_batch batch;
+ struct drm_i915_gem_execbuffer2 execbuf;
+ struct drm_i915_gem_exec_object2 exec2_objects[1];
+ struct anv_bo *bo = NULL;
+ VkResult result;
+ int64_t timeout;
+ int ret;
+
+ state = anv_state_pool_alloc(&device->dynamic_state_pool, 32, 32);
+ bo = &device->dynamic_state_pool.block_pool->bo;
+ batch.start = batch.next = state.map;
+ batch.end = state.map + 32;
+ anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
+ anv_batch_emit(&batch, GEN7_MI_NOOP);
+
+ exec2_objects[0].handle = bo->gem_handle;
+ exec2_objects[0].relocation_count = 0;
+ exec2_objects[0].relocs_ptr = 0;
+ exec2_objects[0].alignment = 0;
+ exec2_objects[0].offset = bo->offset;
+ exec2_objects[0].flags = 0;
+ exec2_objects[0].rsvd1 = 0;
+ exec2_objects[0].rsvd2 = 0;
+
+ execbuf.buffers_ptr = (uintptr_t) exec2_objects;
+ execbuf.buffer_count = 1;
+ execbuf.batch_start_offset = state.offset;
+ execbuf.batch_len = batch.next - state.map;
+ execbuf.cliprects_ptr = 0;
+ execbuf.num_cliprects = 0;
+ execbuf.DR1 = 0;
+ execbuf.DR4 = 0;
+
+ execbuf.flags =
+ I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
+ execbuf.rsvd1 = device->context_id;
+ execbuf.rsvd2 = 0;
+
+ ret = anv_gem_execbuffer(device, &execbuf);
+ if (ret != 0) {
+ /* We don't know the real error. */
+ result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
+ goto fail;
+ }
+
+ timeout = INT64_MAX;
+ ret = anv_gem_wait(device, bo->gem_handle, &timeout);
+ if (ret != 0) {
+ /* We don't know the real error. */
+ result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
+ goto fail;
+ }
+
+ anv_state_pool_free(&device->dynamic_state_pool, state);
+
+ return VK_SUCCESS;
+
+ fail:
+ anv_state_pool_free(&device->dynamic_state_pool, state);
+
+ return result;
+}
+
+void *
+anv_device_alloc(struct anv_device * device,
+ size_t size,
+ size_t alignment,
+ VkSystemAllocType allocType)
+{
+ return anv_instance_alloc(device->instance, size, alignment, allocType);
+}
+
+void
+anv_device_free(struct anv_device * device,
+ void * mem)
+{
+ anv_instance_free(device->instance, mem);
+}
+
+VkResult
+anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
+{
+ bo->gem_handle = anv_gem_create(device, size);
+ if (!bo->gem_handle)
+ return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
+
+ bo->map = NULL;
+ bo->index = 0;
+ bo->offset = 0;
+ bo->size = size;
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_AllocMemory(
+ VkDevice _device,
+ const VkMemoryAllocInfo* pAllocInfo,
+ VkDeviceMemory* pMem)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_device_memory *mem;
+ VkResult result;
+
+ assert(pAllocInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO);
+
+ /* We support exactly one memory heap. */
+ assert(pAllocInfo->memoryTypeIndex == 0);
+
+ /* FINISHME: Fail if allocation request exceeds heap size. */
+
+ mem = anv_device_alloc(device, sizeof(*mem), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (mem == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ result = anv_bo_init_new(&mem->bo, device, pAllocInfo->allocationSize);
+ if (result != VK_SUCCESS)
+ goto fail;
+
+ *pMem = anv_device_memory_to_handle(mem);
+
+ return VK_SUCCESS;
+
+ fail:
+ anv_device_free(device, mem);
+
+ return result;
+}
+
+void anv_FreeMemory(
+ VkDevice _device,
+ VkDeviceMemory _mem)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
+
+ if (mem->bo.map)
+ anv_gem_munmap(mem->bo.map, mem->bo.size);
+
+ if (mem->bo.gem_handle != 0)
+ anv_gem_close(device, mem->bo.gem_handle);
+
+ anv_device_free(device, mem);
+}
+
+VkResult anv_MapMemory(
+ VkDevice _device,
+ VkDeviceMemory _mem,
+ VkDeviceSize offset,
+ VkDeviceSize size,
+ VkMemoryMapFlags flags,
+ void** ppData)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
+
+ /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
+ * takes a VkDeviceMemory pointer, it seems like only one map of the memory
+ * at a time is valid. We could just mmap up front and return an offset
+ * pointer here, but that may exhaust virtual memory on 32 bit
+ * userspace. */
+
+ mem->map = anv_gem_mmap(device, mem->bo.gem_handle, offset, size);
+ mem->map_size = size;
+
+ *ppData = mem->map;
+
+ return VK_SUCCESS;
+}
+
+void anv_UnmapMemory(
+ VkDevice _device,
+ VkDeviceMemory _mem)
+{
+ ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
+
+ anv_gem_munmap(mem->map, mem->map_size);
+}
+
+VkResult anv_FlushMappedMemoryRanges(
+ VkDevice device,
+ uint32_t memRangeCount,
+ const VkMappedMemoryRange* pMemRanges)
+{
+ /* clflush here for !llc platforms */
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_InvalidateMappedMemoryRanges(
+ VkDevice device,
+ uint32_t memRangeCount,
+ const VkMappedMemoryRange* pMemRanges)
+{
+ return anv_FlushMappedMemoryRanges(device, memRangeCount, pMemRanges);
+}
+
+VkResult anv_GetBufferMemoryRequirements(
+ VkDevice device,
+ VkBuffer _buffer,
+ VkMemoryRequirements* pMemoryRequirements)
+{
+ ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
+
+ /* The Vulkan spec (git aaed022) says:
+ *
+ * memoryTypeBits is a bitfield and contains one bit set for every
+ * supported memory type for the resource. The bit `1<<i` is set if and
+ * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
+ * structure for the physical device is supported.
+ *
+ * We support exactly one memory type.
+ */
+ pMemoryRequirements->memoryTypeBits = 1;
+
+ pMemoryRequirements->size = buffer->size;
+ pMemoryRequirements->alignment = 16;
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetImageMemoryRequirements(
+ VkDevice device,
+ VkImage _image,
+ VkMemoryRequirements* pMemoryRequirements)
+{
+ ANV_FROM_HANDLE(anv_image, image, _image);
+
+ /* The Vulkan spec (git aaed022) says:
+ *
+ * memoryTypeBits is a bitfield and contains one bit set for every
+ * supported memory type for the resource. The bit `1<<i` is set if and
+ * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
+ * structure for the physical device is supported.
+ *
+ * We support exactly one memory type.
+ */
+ pMemoryRequirements->memoryTypeBits = 1;
+
+ pMemoryRequirements->size = image->size;
+ pMemoryRequirements->alignment = image->alignment;
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetImageSparseMemoryRequirements(
+ VkDevice device,
+ VkImage image,
+ uint32_t* pNumRequirements,
+ VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
+{
+ return vk_error(VK_UNSUPPORTED);
+}
+
+VkResult anv_GetDeviceMemoryCommitment(
+ VkDevice device,
+ VkDeviceMemory memory,
+ VkDeviceSize* pCommittedMemoryInBytes)
+{
+ *pCommittedMemoryInBytes = 0;
+ stub_return(VK_SUCCESS);
+}
+
+VkResult anv_BindBufferMemory(
+ VkDevice device,
+ VkBuffer _buffer,
+ VkDeviceMemory _mem,
+ VkDeviceSize memOffset)
+{
+ ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
+ ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
+
+ buffer->bo = &mem->bo;
+ buffer->offset = memOffset;
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_BindImageMemory(
+ VkDevice device,
+ VkImage _image,
+ VkDeviceMemory _mem,
+ VkDeviceSize memOffset)
+{
+ ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
+ ANV_FROM_HANDLE(anv_image, image, _image);
+
+ image->bo = &mem->bo;
+ image->offset = memOffset;
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_QueueBindSparseBufferMemory(
+ VkQueue queue,
+ VkBuffer buffer,
+ uint32_t numBindings,
+ const VkSparseMemoryBindInfo* pBindInfo)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_QueueBindSparseImageOpaqueMemory(
+ VkQueue queue,
+ VkImage image,
+ uint32_t numBindings,
+ const VkSparseMemoryBindInfo* pBindInfo)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_QueueBindSparseImageMemory(
+ VkQueue queue,
+ VkImage image,
+ uint32_t numBindings,
+ const VkSparseImageMemoryBindInfo* pBindInfo)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_CreateFence(
+ VkDevice _device,
+ const VkFenceCreateInfo* pCreateInfo,
+ VkFence* pFence)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_fence *fence;
+ struct anv_batch batch;
+ VkResult result;
+
+ const uint32_t fence_size = 128;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
+
+ fence = anv_device_alloc(device, sizeof(*fence), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (fence == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ result = anv_bo_init_new(&fence->bo, device, fence_size);
+ if (result != VK_SUCCESS)
+ goto fail;
+
+ fence->bo.map =
+ anv_gem_mmap(device, fence->bo.gem_handle, 0, fence->bo.size);
+ batch.next = batch.start = fence->bo.map;
+ batch.end = fence->bo.map + fence->bo.size;
+ anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
+ anv_batch_emit(&batch, GEN7_MI_NOOP);
+
+ fence->exec2_objects[0].handle = fence->bo.gem_handle;
+ fence->exec2_objects[0].relocation_count = 0;
+ fence->exec2_objects[0].relocs_ptr = 0;
+ fence->exec2_objects[0].alignment = 0;
+ fence->exec2_objects[0].offset = fence->bo.offset;
+ fence->exec2_objects[0].flags = 0;
+ fence->exec2_objects[0].rsvd1 = 0;
+ fence->exec2_objects[0].rsvd2 = 0;
+
+ fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
+ fence->execbuf.buffer_count = 1;
+ fence->execbuf.batch_start_offset = 0;
+ fence->execbuf.batch_len = batch.next - fence->bo.map;
+ fence->execbuf.cliprects_ptr = 0;
+ fence->execbuf.num_cliprects = 0;
+ fence->execbuf.DR1 = 0;
+ fence->execbuf.DR4 = 0;
+
+ fence->execbuf.flags =
+ I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
+ fence->execbuf.rsvd1 = device->context_id;
+ fence->execbuf.rsvd2 = 0;
+
+ *pFence = anv_fence_to_handle(fence);
+
+ return VK_SUCCESS;
+
+ fail:
+ anv_device_free(device, fence);
+
+ return result;
+}
+
+void anv_DestroyFence(
+ VkDevice _device,
+ VkFence _fence)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_fence, fence, _fence);
+
+ anv_gem_munmap(fence->bo.map, fence->bo.size);
+ anv_gem_close(device, fence->bo.gem_handle);
+ anv_device_free(device, fence);
+}
+
+VkResult anv_ResetFences(
+ VkDevice _device,
+ uint32_t fenceCount,
+ const VkFence* pFences)
+{
+ for (uint32_t i = 0; i < fenceCount; i++) {
+ ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
+ fence->ready = false;
+ }
+
+ return VK_SUCCESS;
+}
+
+VkResult anv_GetFenceStatus(
+ VkDevice _device,
+ VkFence _fence)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_fence, fence, _fence);
+ int64_t t = 0;
+ int ret;
+
+ if (fence->ready)
+ return VK_SUCCESS;
+
+ ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
+ if (ret == 0) {
+ fence->ready = true;
+ return VK_SUCCESS;
+ }
+
+ return VK_NOT_READY;
+}
+
+VkResult anv_WaitForFences(
+ VkDevice _device,
+ uint32_t fenceCount,
+ const VkFence* pFences,
+ VkBool32 waitAll,
+ uint64_t timeout)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ int64_t t = timeout;
+ int ret;
+
+ /* FIXME: handle !waitAll */
+
+ for (uint32_t i = 0; i < fenceCount; i++) {
+ ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
+ ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
+ if (ret == -1 && errno == ETIME) {
+ return VK_TIMEOUT;
+ } else if (ret == -1) {
+ /* We don't know the real error. */
+ return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
+ "gem wait failed: %m");
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+// Queue semaphore functions
+
+VkResult anv_CreateSemaphore(
+ VkDevice device,
+ const VkSemaphoreCreateInfo* pCreateInfo,
+ VkSemaphore* pSemaphore)
+{
+ pSemaphore->handle = 1;
+ stub_return(VK_SUCCESS);
+}
+
+void anv_DestroySemaphore(
+ VkDevice device,
+ VkSemaphore semaphore)
+{
+ stub();
+}
+
+VkResult anv_QueueSignalSemaphore(
+ VkQueue queue,
+ VkSemaphore semaphore)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_QueueWaitSemaphore(
+ VkQueue queue,
+ VkSemaphore semaphore)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+// Event functions
+
+VkResult anv_CreateEvent(
+ VkDevice device,
+ const VkEventCreateInfo* pCreateInfo,
+ VkEvent* pEvent)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+void anv_DestroyEvent(
+ VkDevice device,
+ VkEvent event)
+{
+ stub();
+}
+
+VkResult anv_GetEventStatus(
+ VkDevice device,
+ VkEvent event)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_SetEvent(
+ VkDevice device,
+ VkEvent event)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_ResetEvent(
+ VkDevice device,
+ VkEvent event)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+// Buffer functions
+
+VkResult anv_CreateBuffer(
+ VkDevice _device,
+ const VkBufferCreateInfo* pCreateInfo,
+ VkBuffer* pBuffer)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_buffer *buffer;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
+
+ buffer = anv_device_alloc(device, sizeof(*buffer), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (buffer == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ buffer->size = pCreateInfo->size;
+ buffer->bo = NULL;
+ buffer->offset = 0;
+
+ *pBuffer = anv_buffer_to_handle(buffer);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyBuffer(
+ VkDevice _device,
+ VkBuffer _buffer)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
+
+ anv_device_free(device, buffer);
+}
+
+void
+anv_fill_buffer_surface_state(struct anv_device *device, void *state,
+ const struct anv_format *format,
+ uint32_t offset, uint32_t range)
+{
+ switch (device->info.gen) {
+ case 7:
+ gen7_fill_buffer_surface_state(state, format, offset, range);
+ break;
+ case 8:
+ gen8_fill_buffer_surface_state(state, format, offset, range);
+ break;
+ default:
+ unreachable("unsupported gen\n");
+ }
+}
+
+VkResult
+anv_buffer_view_create(
+ struct anv_device * device,
+ const VkBufferViewCreateInfo* pCreateInfo,
+ struct anv_buffer_view ** bview_out)
+{
+ ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
+ struct anv_buffer_view *bview;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO);
+
+ bview = anv_device_alloc(device, sizeof(*bview), 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (bview == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ *bview = (struct anv_buffer_view) {
+ .bo = buffer->bo,
+ .offset = buffer->offset + pCreateInfo->offset,
+ .surface_state = anv_state_pool_alloc(&device->surface_state_pool, 64, 64),
+ .format = anv_format_for_vk_format(pCreateInfo->format),
+ .range = pCreateInfo->range,
+ };
+
+ *bview_out = bview;
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyBufferView(
+ VkDevice _device,
+ VkBufferView _bview)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_buffer_view, bview, _bview);
+
+ anv_state_pool_free(&device->surface_state_pool, bview->surface_state);
+ anv_device_free(device, bview);
+}
+
+void anv_DestroySampler(
+ VkDevice _device,
+ VkSampler _sampler)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
+
+ anv_device_free(device, sampler);
+}
+
+// Descriptor set functions
+
+VkResult anv_CreateDescriptorSetLayout(
+ VkDevice _device,
+ const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
+ VkDescriptorSetLayout* pSetLayout)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_descriptor_set_layout *set_layout;
+ uint32_t s;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
+
+ uint32_t immutable_sampler_count = 0;
+ for (uint32_t b = 0; b < pCreateInfo->count; b++) {
+ if (pCreateInfo->pBinding[b].pImmutableSamplers)
+ immutable_sampler_count += pCreateInfo->pBinding[b].arraySize;
+ }
+
+ size_t size = sizeof(struct anv_descriptor_set_layout) +
+ pCreateInfo->count * sizeof(set_layout->binding[0]) +
+ immutable_sampler_count * sizeof(struct anv_sampler *);
+
+ set_layout = anv_device_alloc(device, size, 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (!set_layout)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ /* We just allocate all the samplers at the end of the struct */
+ struct anv_sampler **samplers =
+ (struct anv_sampler **)&set_layout->binding[pCreateInfo->count];
+
+ set_layout->binding_count = pCreateInfo->count;
+ set_layout->shader_stages = 0;
+ set_layout->size = 0;
+
+ /* Initialize all binding_layout entries to -1 */
+ memset(set_layout->binding, -1,
+ pCreateInfo->count * sizeof(set_layout->binding[0]));
+
+ /* Initialize all samplers to 0 */
+ memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
+
+ uint32_t sampler_count[VK_SHADER_STAGE_NUM] = { 0, };
+ uint32_t surface_count[VK_SHADER_STAGE_NUM] = { 0, };
+ uint32_t dynamic_offset_count = 0;
+
+ for (uint32_t b = 0; b < pCreateInfo->count; b++) {
+ uint32_t array_size = MAX2(1, pCreateInfo->pBinding[b].arraySize);
+ set_layout->binding[b].array_size = array_size;
+ set_layout->size += array_size;
+
+ switch (pCreateInfo->pBinding[b].descriptorType) {
+ case VK_DESCRIPTOR_TYPE_SAMPLER:
+ case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
+ for_each_bit(s, pCreateInfo->pBinding[b].stageFlags) {
+ set_layout->binding[b].stage[s].sampler_index = sampler_count[s];
+ sampler_count[s] += array_size;
+ }
+ break;
+ default:
+ break;
+ }
+
+ switch (pCreateInfo->pBinding[b].descriptorType) {
+ case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
+ case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
+ case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
+ case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
+ case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
+ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
+ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
+ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
+ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
+ case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
+ for_each_bit(s, pCreateInfo->pBinding[b].stageFlags) {
+ set_layout->binding[b].stage[s].surface_index = surface_count[s];
+ surface_count[s] += array_size;
+ }
+ break;
+ default:
+ break;
+ }
+
+ switch (pCreateInfo->pBinding[b].descriptorType) {
+ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
+ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
+ set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
+ dynamic_offset_count += array_size;
+ break;
+ default:
+ break;
+ }
+
+ if (pCreateInfo->pBinding[b].pImmutableSamplers) {
+ set_layout->binding[b].immutable_samplers = samplers;
+ samplers += array_size;
+
+ for (uint32_t i = 0; i < array_size; i++)
+ set_layout->binding[b].immutable_samplers[i] =
+ anv_sampler_from_handle(pCreateInfo->pBinding[b].pImmutableSamplers[i]);
+ } else {
+ set_layout->binding[b].immutable_samplers = NULL;
+ }
+
+ set_layout->shader_stages |= pCreateInfo->pBinding[b].stageFlags;
+ }
+
+ set_layout->dynamic_offset_count = dynamic_offset_count;
+
+ *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyDescriptorSetLayout(
+ VkDevice _device,
+ VkDescriptorSetLayout _set_layout)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
+
+ anv_device_free(device, set_layout);
+}
+
+VkResult anv_CreateDescriptorPool(
+ VkDevice device,
+ const VkDescriptorPoolCreateInfo* pCreateInfo,
+ VkDescriptorPool* pDescriptorPool)
+{
+ anv_finishme("VkDescriptorPool is a stub");
+ pDescriptorPool->handle = 1;
+ return VK_SUCCESS;
+}
+
+void anv_DestroyDescriptorPool(
+ VkDevice _device,
+ VkDescriptorPool _pool)
+{
+ anv_finishme("VkDescriptorPool is a stub: free the pool's descriptor sets");
+}
+
+VkResult anv_ResetDescriptorPool(
+ VkDevice device,
+ VkDescriptorPool descriptorPool)
+{
+ anv_finishme("VkDescriptorPool is a stub: free the pool's descriptor sets");
+ return VK_SUCCESS;
+}
+
+VkResult
+anv_descriptor_set_create(struct anv_device *device,
+ const struct anv_descriptor_set_layout *layout,
+ struct anv_descriptor_set **out_set)
+{
+ struct anv_descriptor_set *set;
+ size_t size = sizeof(*set) + layout->size * sizeof(set->descriptors[0]);
+
+ set = anv_device_alloc(device, size, 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (!set)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ /* A descriptor set may not be 100% filled. Clear the set so we can can
+ * later detect holes in it.
+ */
+ memset(set, 0, size);
+
+ /* Go through and fill out immutable samplers if we have any */
+ struct anv_descriptor *desc = set->descriptors;
+ for (uint32_t b = 0; b < layout->binding_count; b++) {
+ if (layout->binding[b].immutable_samplers) {
+ for (uint32_t i = 0; i < layout->binding[b].array_size; i++)
+ desc[i].sampler = layout->binding[b].immutable_samplers[i];
+ }
+ desc += layout->binding[b].array_size;
+ }
+
+ *out_set = set;
+
+ return VK_SUCCESS;
+}
+
+void
+anv_descriptor_set_destroy(struct anv_device *device,
+ struct anv_descriptor_set *set)
+{
+ anv_device_free(device, set);
+}
+
+VkResult anv_AllocDescriptorSets(
+ VkDevice _device,
+ VkDescriptorPool descriptorPool,
+ VkDescriptorSetUsage setUsage,
+ uint32_t count,
+ const VkDescriptorSetLayout* pSetLayouts,
+ VkDescriptorSet* pDescriptorSets)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ VkResult result = VK_SUCCESS;
+ struct anv_descriptor_set *set;
+ uint32_t i;
+
+ for (i = 0; i < count; i++) {
+ ANV_FROM_HANDLE(anv_descriptor_set_layout, layout, pSetLayouts[i]);
+
+ result = anv_descriptor_set_create(device, layout, &set);
+ if (result != VK_SUCCESS)
+ break;
+
+ pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
+ }
+
+ if (result != VK_SUCCESS)
+ anv_FreeDescriptorSets(_device, descriptorPool, i, pDescriptorSets);
+
+ return result;
+}
+
+VkResult anv_FreeDescriptorSets(
+ VkDevice _device,
+ VkDescriptorPool descriptorPool,
+ uint32_t count,
+ const VkDescriptorSet* pDescriptorSets)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ for (uint32_t i = 0; i < count; i++) {
+ ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
+
+ anv_descriptor_set_destroy(device, set);
+ }
+
+ return VK_SUCCESS;
+}
+
+void anv_UpdateDescriptorSets(
+ VkDevice device,
+ uint32_t writeCount,
+ const VkWriteDescriptorSet* pDescriptorWrites,
+ uint32_t copyCount,
+ const VkCopyDescriptorSet* pDescriptorCopies)
+{
+ for (uint32_t i = 0; i < writeCount; i++) {
+ const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
+ ANV_FROM_HANDLE(anv_descriptor_set, set, write->destSet);
+
+ switch (write->descriptorType) {
+ case VK_DESCRIPTOR_TYPE_SAMPLER:
+ for (uint32_t j = 0; j < write->count; j++) {
+ ANV_FROM_HANDLE(anv_sampler, sampler,
+ write->pDescriptors[j].sampler);
+
+ set->descriptors[write->destBinding + j] = (struct anv_descriptor) {
+ .type = ANV_DESCRIPTOR_TYPE_SAMPLER,
+ .sampler = sampler,
+ };
+ }
+ break;
+
+ case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
+ for (uint32_t j = 0; j < write->count; j++) {
+ struct anv_descriptor *desc =
+ &set->descriptors[write->destBinding + j];
+ ANV_FROM_HANDLE(anv_image_view, iview,
+ write->pDescriptors[j].imageView);
+ ANV_FROM_HANDLE(anv_sampler, sampler,
+ write->pDescriptors[j].sampler);
+
+ desc->type = ANV_DESCRIPTOR_TYPE_IMAGE_VIEW_AND_SAMPLER;
+ desc->image_view = iview;
+
+ /* If this descriptor has an immutable sampler, we don't want
+ * to stomp on it.
+ */
+ if (sampler)
+ desc->sampler = sampler;
+ }
+ break;
+
+ case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
+ case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
+ for (uint32_t j = 0; j < write->count; j++) {
+ ANV_FROM_HANDLE(anv_image_view, iview,
+ write->pDescriptors[j].imageView);
+
+ set->descriptors[write->destBinding + j] = (struct anv_descriptor) {
+ .type = ANV_DESCRIPTOR_TYPE_IMAGE_VIEW,
+ .image_view = iview,
+ };
+ }
+ break;
+
+ case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
+ case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
+ anv_finishme("texel buffers not implemented");
+ break;
+
+ case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
+ anv_finishme("input attachments not implemented");
+ break;
+
+ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
+ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
+ case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
+ case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
+ for (uint32_t j = 0; j < write->count; j++) {
+ if (write->pDescriptors[j].bufferView.handle) {
+ ANV_FROM_HANDLE(anv_buffer_view, bview,
+ write->pDescriptors[j].bufferView);
+
+ set->descriptors[write->destBinding + j] =
+ (struct anv_descriptor) {
+ .type = ANV_DESCRIPTOR_TYPE_BUFFER_VIEW,
+ .buffer_view = bview,
+ };
+ } else {
+ ANV_FROM_HANDLE(anv_buffer, buffer,
+ write->pDescriptors[j].bufferInfo.buffer);
+ assert(buffer);
+
+ set->descriptors[write->destBinding + j] =
+ (struct anv_descriptor) {
+ .type = ANV_DESCRIPTOR_TYPE_BUFFER_AND_OFFSET,
+ .buffer = buffer,
+ .offset = write->pDescriptors[j].bufferInfo.offset,
+ .range = write->pDescriptors[j].bufferInfo.range,
+ };
+ }
+ }
+
+ default:
+ break;
+ }
+ }
+
+ for (uint32_t i = 0; i < copyCount; i++) {
+ const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
+ ANV_FROM_HANDLE(anv_descriptor_set, src, copy->destSet);
+ ANV_FROM_HANDLE(anv_descriptor_set, dest, copy->destSet);
+ for (uint32_t j = 0; j < copy->count; j++) {
+ dest->descriptors[copy->destBinding + j] =
+ src->descriptors[copy->srcBinding + j];
+ }
+ }
+}
+
+VkResult anv_CreateFramebuffer(
+ VkDevice _device,
+ const VkFramebufferCreateInfo* pCreateInfo,
+ VkFramebuffer* pFramebuffer)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_framebuffer *framebuffer;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
+
+ size_t size = sizeof(*framebuffer) +
+ sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
+ framebuffer = anv_device_alloc(device, size, 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (framebuffer == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ framebuffer->attachment_count = pCreateInfo->attachmentCount;
+ for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
+ VkImageView _iview = pCreateInfo->pAttachments[i];
+ framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
+ }
+
+ framebuffer->width = pCreateInfo->width;
+ framebuffer->height = pCreateInfo->height;
+ framebuffer->layers = pCreateInfo->layers;
+
+ *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyFramebuffer(
+ VkDevice _device,
+ VkFramebuffer _fb)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
+
+ anv_device_free(device, fb);
+}
+
+void vkCmdDbgMarkerBegin(
+ VkCmdBuffer cmdBuffer,
+ const char* pMarker)
+ __attribute__ ((visibility ("default")));
+
+void vkCmdDbgMarkerEnd(
+ VkCmdBuffer cmdBuffer)
+ __attribute__ ((visibility ("default")));
+
+void vkCmdDbgMarkerBegin(
+ VkCmdBuffer cmdBuffer,
+ const char* pMarker)
+{
+}
+
+void vkCmdDbgMarkerEnd(
+ VkCmdBuffer cmdBuffer)
+{
+}