}
}
- // Connect <cell>.$currQ (inserted by abc9_map.v) as an input to the flop box
+ // Connect <cell>.$abc9_currQ (inserted by abc9_map.v) as an input to the flop box
if (box_module->get_bool_attribute("\\abc9_flop")) {
- SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
+ SigSpec rhs = module->wire(stringf("%s.$abc9_currQ", cell->name.c_str()));
if (rhs.empty())
- log_error("'%s.$currQ' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
+ log_error("'%s.$abc9_currQ' is not a wire present in module '%s'.\n", log_id(cell), log_id(module));
int offset = 0;
for (auto b : rhs) {
else
alias_map[b] = I;
}
- co_bits.emplace_back(b, cell, "\\$currQ", offset++, 0);
+ co_bits.emplace_back(b, cell, "\\$abc9_currQ", offset++, 0);
unused_bits.erase(b);
}
}
}
// For flops only, create an extra 1-bit input that drives a new wire
- // called "<cell>.$currQ" that is used below
+ // called "<cell>.$abc9_currQ" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
log_assert(holes_cell);
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
- Wire *w = holes_module->addWire(stringf("%s.$currQ", cell->name.c_str()));
+ Wire *w = holes_module->addWire(stringf("%s.$abc9_currQ", cell->name.c_str()));
holes_module->connect(w, holes_wire);
}
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
- // used to implement clock-enable functionality) with the "<cell>.$currQ"
+ // used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an input port) we inserted above
- Wire *currQ = holes_module->wire(stringf("%s.$currQ", driver.c_str()));
+ Wire *currQ = holes_module->wire(stringf("%s.$abc9_currQ", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
continue;
// order to extract the combinatorial control logic left behind.
// Specifically, a simulation model similar to the one below:
//
-// ++===================================++
-// || Sim model ||
-// || /\/\/\/\ ||
-// D -->>-----< > +------+ ||
-// R -->>-----< Comb. > |$_DFF_| ||
-// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
-// || +--< > +------+ | ||
-// || | \/\/\/\/ | ||
-// || | | ||
-// || +----------------------------+ ||
-// || ||
-// ++===================================++
+// ++===================================++
+// || Sim model ||
+// || /\/\/\/\ ||
+// D -->>-----< > +------+ ||
+// R -->>-----< Comb. > |$_DFF_| ||
+// CE -->>-----< logic >-----| [NP]_|---+---->>-- Q
+// || +--< > +------+ | ||
+// || | \/\/\/\/ | ||
+// || | | ||
+// || +----------------------------+ ||
+// || ||
+// ++===================================++
//
// is transformed into:
//
-// ++==================++
-// || Comb box ||
-// || ||
-// || /\/\/\/\ ||
-// D -->>-----< > || +------+
-// R -->>-----< Comb. > || |$_ABC_|
-// CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q
-// $currQ +-->>-----< > || +------+ |
-// | || \/\/\/\/ || |
-// | || || |
-// | ++==================++ |
-// | |
-// +----------------------------------------------+
+// ++==================++
+// || Comb box ||
+// || ||
+// || /\/\/\/\ ||
+// D -->>-----< > || +------+
+// R -->>-----< Comb. > || |$_ABC_|
+// CE -->>-----< logic >--->>-- $nextQ --| FF_ |--+-->> Q
+// $abc9_currQ +-->>-----< > || +------+ |
+// | || \/\/\/\/ || |
+// | || || |
+// | ++==================++ |
+// | |
+// +----------------------------------------------+
//
// The purpose of the following FD* rules are to wrap the flop with:
// (a) a special $__ABC9_FF_ in front of the FD*'s output, indicating to abc9
// (c) a special _TECHMAP_REPLACE_.$abc9_control that captures the control
// domain (which, combined with this cell type, encodes to `abc9' which
// flops may be merged together)
-// (d) a special _TECHMAP_REPLACE_.$currQ wire that will be used for feedback
+// (d) a special _TECHMAP_REPLACE_.$abc9_currQ wire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
- wire $nextQ, $currQ;
+ wire $nextQ, $abc9_currQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
// here but captured by
// $__ABC9_ASYNC below
);
- \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
- \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
+ \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
- wire _TECHMAP_REPLACE_.$currQ = $currQ;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
- wire $nextQ, $currQ;
+ wire $nextQ, $abc9_currQ;
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
// here but captured by
// $__ABC9_ASYNC below
);
- \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC9_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+ \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(CLR), .Y(Q));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
- wire _TECHMAP_REPLACE_.$currQ = $currQ;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
- wire $nextQ, $currQ;
+ wire $nextQ, $abc9_currQ;
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
// here but captured by
// $__ABC9_ASYNC below
);
- \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+ \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
- wire _TECHMAP_REPLACE_.$currQ = $currQ;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
- wire $nextQ, $currQ;
+ wire $nextQ, $abc9_currQ;
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
// here but captured by
// $__ABC9_ASYNC below
);
- \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($currQ));
- \$__ABC9_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
+ \$__ABC9_FF_ abc_dff (.D($nextQ), .Q($abc9_currQ));
+ \$__ABC9_ASYNC abc_async (.A($abc9_currQ), .S(PRE), .Y(Q));
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
- wire _TECHMAP_REPLACE_.$currQ = $currQ;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = $abc9_currQ;
endmodule
module FDSE (output reg Q, input C, CE, D, S);
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, IS_C_INVERTED};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
// Special signals
wire [1:0] _TECHMAP_REPLACE_.$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [3:0] _TECHMAP_REPLACE_.$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
- wire _TECHMAP_REPLACE_.$currQ = Q;
+ wire _TECHMAP_REPLACE_.$abc9_currQ = Q;
endmodule
module RAM32X1D (