+++ /dev/null
-/********************* */
-/*! \file theory_sets_rels.cpp
- ** \verbatim
- ** Original author: Paul Meng
- ** Major contributors: none
- ** Minor contributors (to current version): none
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2014 New York University and The University of Iowa
- ** See the file COPYING in the top-level source directory for licensing
- ** information.\endverbatim
- **
- ** \brief Sets theory implementation.
- **
- ** Extension to Sets theory.
- **/
-
-#include "theory/sets/theory_sets_rels.h"
-#include "expr/datatype.h"
-#include "theory/sets/expr_patterns.h"
-#include "theory/sets/theory_sets_private.h"
-#include "theory/sets/theory_sets.h"
-
-using namespace std;
-using namespace CVC4::expr::pattern;
-
-namespace CVC4 {
-namespace theory {
-namespace sets {
-
-typedef std::map< Node, std::vector< Node > >::iterator MEM_IT;
-typedef std::map< kind::Kind_t, std::vector< Node > >::iterator KIND_TERM_IT;
-typedef std::map< Node, std::hash_set< Node, NodeHashFunction > >::iterator TC_PAIR_IT;
-typedef std::map< Node, std::map< kind::Kind_t, std::vector< Node > > >::iterator TERM_IT;
-typedef std::map< Node, std::map< Node, std::hash_set< Node, NodeHashFunction > > >::iterator TC_IT;
-
-int TheorySetsRels::EqcInfo::counter = 0;
-
- void TheorySetsRels::check(Theory::Effort level) {
- Trace("rels") << "\n[sets-rels] ******************************* Start the relational solver *******************************\n" << std::endl;
- if(Theory::fullEffort(level)) {
- collectRelsInfo();
- check();
- doPendingLemmas();
- Assert(d_lemma_cache.empty());
- Assert(d_pending_facts.empty());
- } else {
- doPendingMerge();
- doPendingLemmas();
- }
- Trace("rels") << "\n[sets-rels] ******************************* Done with the relational solver *******************************\n" << std::endl;
- }
-
- void TheorySetsRels::check() {
- MEM_IT m_it = d_membership_constraints_cache.begin();
-
- while(m_it != d_membership_constraints_cache.end()) {
- Node rel_rep = m_it->first;
-
- for(unsigned int i = 0; i < m_it->second.size(); i++) {
- Node exp = d_membership_exp_cache[rel_rep][i];
- std::map<kind::Kind_t, std::vector<Node> > kind_terms = d_terms_cache[rel_rep];
-
- if( kind_terms.find(kind::TRANSPOSE) != kind_terms.end() ) {
- std::vector<Node> tp_terms = kind_terms[kind::TRANSPOSE];
- // exp is a membership term and tp_terms contains all
- // transposed terms that are equal to the right hand side of exp
- for(unsigned int j = 0; j < tp_terms.size(); j++) {
- applyTransposeRule( exp, tp_terms[j] );
- }
- }
- if( kind_terms.find(kind::JOIN) != kind_terms.end() ) {
- std::vector<Node> join_terms = kind_terms[kind::JOIN];
- // exp is a membership term and join_terms contains all
- // terms involving "join" operator that are in the same
- // equivalence class with the right hand side of exp
- for(unsigned int j = 0; j < join_terms.size(); j++) {
- applyJoinRule( exp, join_terms[j] );
- }
- }
- if( kind_terms.find(kind::PRODUCT) != kind_terms.end() ) {
- std::vector<Node> product_terms = kind_terms[kind::PRODUCT];
- for(unsigned int j = 0; j < product_terms.size(); j++) {
- applyProductRule( exp, product_terms[j] );
- }
- }
- if( kind_terms.find(kind::TCLOSURE) != kind_terms.end() ) {
- std::vector<Node> tc_terms = kind_terms[kind::TCLOSURE];
- for(unsigned int j = 0; j < tc_terms.size(); j++) {
- applyTCRule( exp, tc_terms[j] );
- }
- }
-
- MEM_IT tp_it = d_arg_rep_tp_terms.find( rel_rep );
-
- if( tp_it != d_arg_rep_tp_terms.end() ) {
- std::vector< Node >::iterator tp_ts_it = tp_it->second.begin();
-
- while( tp_ts_it != tp_it->second.end() ) {
- applyTransposeRule( exp, *tp_ts_it, (*tp_ts_it)[0] == rel_rep?Node::null():explain(EQUAL((*tp_ts_it)[0], rel_rep)), true );
- ++tp_ts_it;
- }
- ++tp_it;
- }
- }
- m_it++;
- }
-
- TERM_IT t_it = d_terms_cache.begin();
- while( t_it != d_terms_cache.end() ) {
- if(d_membership_constraints_cache.find(t_it->first) == d_membership_constraints_cache.end()) {
- Trace("rels-debug") << "[sets-rels-ee] A term that does not have membership constraints: " << t_it->first << std::endl;
- KIND_TERM_IT k_t_it = t_it->second.begin();
-
- while(k_t_it != t_it->second.end()) {
- if(k_t_it->first == kind::JOIN || k_t_it->first == kind::PRODUCT) {
- std::vector<Node>::iterator term_it = k_t_it->second.begin();
- while(term_it != k_t_it->second.end()) {
- computeMembersForRel(*term_it);
- term_it++;
- }
- } else if ( k_t_it->first == kind::TRANSPOSE ) {
- std::vector<Node>::iterator term_it = k_t_it->second.begin();
- while(term_it != k_t_it->second.end()) {
- computeMembersForTpRel(*term_it);
- term_it++;
- }
- }
- k_t_it++;
- }
- }
- t_it++;
- }
-
- finalizeTCInference();
- }
-
- /*
- * Populate relational terms data structure
- */
-
- void TheorySetsRels::collectRelsInfo() {
- Trace("rels") << "[sets-rels] Start collecting relational terms..." << std::endl;
- eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( d_eqEngine );
- while( !eqcs_i.isFinished() ){
- Node eqc_rep = (*eqcs_i);
- eq::EqClassIterator eqc_i = eq::EqClassIterator( eqc_rep, d_eqEngine );
-
- Trace("rels-ee") << "[sets-rels-ee] term representative: " << eqc_rep << std::endl;
-
- while( !eqc_i.isFinished() ){
- Node eqc_node = (*eqc_i);
-
- Trace("rels-ee") << " term : " << eqc_node << std::endl;
-
- if(getRepresentative(eqc_rep) == getRepresentative(d_trueNode) ||
- getRepresentative(eqc_rep) == getRepresentative(d_falseNode)) {
- // collect membership info
- if(eqc_node.getKind() == kind::MEMBER && eqc_node[1].getType().getSetElementType().isTuple()) {
- Node tup_rep = getRepresentative(eqc_node[0]);
- Node rel_rep = getRepresentative(eqc_node[1]);
-
- if(eqc_node[0].isVar()){
- reduceTupleVar(eqc_node);
- }
- if( safelyAddToMap(d_membership_constraints_cache, rel_rep, tup_rep) ) {
- bool is_true_eq = areEqual(eqc_rep, d_trueNode);
- Node reason = is_true_eq ? eqc_node : eqc_node.negate();
- addToMap(d_membership_exp_cache, rel_rep, reason);
- if( is_true_eq ) {
- // add tup_rep to membership database
- // and store mapping between tuple and tuple's elements representatives
- addToMembershipDB(rel_rep, tup_rep, reason);
- }
- }
- }
- // collect relational terms info
- } else if( eqc_rep.getType().isSet() && eqc_rep.getType().getSetElementType().isTuple() ) {
- if( eqc_node.getKind() == kind::TRANSPOSE || eqc_node.getKind() == kind::JOIN ||
- eqc_node.getKind() == kind::PRODUCT || eqc_node.getKind() == kind::TCLOSURE ) {
- std::vector<Node> terms;
- std::map<kind::Kind_t, std::vector<Node> > rel_terms;
- TERM_IT terms_it = d_terms_cache.find(eqc_rep);
-
- if( eqc_node.getKind() == kind::TRANSPOSE ) {
- Node eqc_node0_rep = getRepresentative( eqc_node[0] );
- MEM_IT mem_it = d_arg_rep_tp_terms.find( eqc_node0_rep );
-
- if( mem_it != d_arg_rep_tp_terms.end() ) {
- mem_it->second.push_back( eqc_node );
- } else {
- std::vector< Node > tp_terms;
- tp_terms.push_back( eqc_node );
- d_arg_rep_tp_terms[eqc_node0_rep] = tp_terms;
- }
- }
-
- if( terms_it == d_terms_cache.end() ) {
- terms.push_back(eqc_node);
- rel_terms[eqc_node.getKind()] = terms;
- d_terms_cache[eqc_rep] = rel_terms;
- } else {
- KIND_TERM_IT kind_term_it = terms_it->second.find(eqc_node.getKind());
-
- if( kind_term_it == terms_it->second.end() ) {
- terms.push_back(eqc_node);
- d_terms_cache[eqc_rep][eqc_node.getKind()] = terms;
- } else {
- kind_term_it->second.push_back(eqc_node);
- }
- }
- }
- // need to add all tuple elements as shared terms
- } else if(eqc_node.getType().isTuple() && !eqc_node.isConst() && !eqc_node.isVar()) {
- for(unsigned int i = 0; i < eqc_node.getType().getTupleLength(); i++) {
- Node element = RelsUtils::nthElementOfTuple(eqc_node, i);
- if(!element.isConst()) {
- makeSharedTerm(element);
- }
- }
- }
- ++eqc_i;
- }
- ++eqcs_i;
- }
- Trace("rels-debug") << "[sets-rels] Done with collecting relational terms!" << std::endl;
- }
-
- /*
- * Construct transitive closure graph for tc_rep based on the members of tc_r_rep
- */
-
- std::map< Node, std::hash_set< Node, NodeHashFunction > > TheorySetsRels::constructTCGraph(Node tc_r_rep, Node tc_rep, Node tc_term) {
- Trace("rels-tc") << "[sets-rels] Construct TC graph for transitive closure relation " << tc_rep << std::endl;
-
- std::map< Node, std::hash_set< Node, NodeHashFunction > > tc_graph;
- std::map< Node, std::hash_set< Node, NodeHashFunction > > tc_r_graph;
- MEM_IT mem_it = d_membership_db.find(tc_r_rep);
-
- if(mem_it != d_membership_db.end()) {
- for(std::vector<Node>::iterator pair_it = mem_it->second.begin();
- pair_it != mem_it->second.end(); pair_it++) {
- Node fst_rep = getRepresentative(RelsUtils::nthElementOfTuple(*pair_it, 0));
- Node snd_rep = getRepresentative(RelsUtils::nthElementOfTuple(*pair_it, 1));
- TC_PAIR_IT pair_set_it = tc_graph.find(fst_rep);
- TC_PAIR_IT r_pair_set_it = tc_r_graph.find(fst_rep);
-
- Trace("rels-tc") << "[sets-rels] **** Member of r = (" << fst_rep << ", " << snd_rep << ")" << std::endl;
-
- if( pair_set_it != tc_graph.end() ) {
- pair_set_it->second.insert(snd_rep);
- r_pair_set_it->second.insert(snd_rep);
- } else {
- std::hash_set< Node, NodeHashFunction > snd_set;
- snd_set.insert(snd_rep);
- tc_r_graph[fst_rep] = snd_set;
- tc_graph[fst_rep] = snd_set;
- }
- }
- }
-
- Node reason = getReason(tc_rep, tc_term, tc_r_rep, tc_term[0]);
-
- if(!reason.isNull()) {
- d_membership_tc_exp_cache[tc_rep] = reason;
- }
- d_tc_r_graph[tc_rep] = tc_r_graph;
-
- TC_PAIR_IT tc_mem_it = d_tc_membership_db.find(tc_term);
-
- if( tc_mem_it != d_tc_membership_db.end() ) {
- for(std::hash_set<Node, NodeHashFunction>::iterator pair_it = tc_mem_it->second.begin();
- pair_it != tc_mem_it->second.end(); pair_it++) {
- Node fst_rep = getRepresentative(RelsUtils::nthElementOfTuple(*pair_it, 0));
- Node snd_rep = getRepresentative(RelsUtils::nthElementOfTuple(*pair_it, 1));
- TC_PAIR_IT pair_set_it = tc_graph.find(fst_rep);
- Trace("rels-tc") << "[sets-rels] **** Member of TC(r) = (" << fst_rep << ", " << snd_rep << ")" << std::endl;
-
- if( pair_set_it != tc_graph.end() ) {
- pair_set_it->second.insert(snd_rep);
- } else {
- std::hash_set< Node, NodeHashFunction > snd_set;
- snd_set.insert(snd_rep);
- tc_graph[fst_rep] = snd_set;
- }
- }
- }
-
- return tc_graph;
- }
-
- /*
- *
- *
- * transitive closure rule 1: y = (TCLOSURE x)
- * ---------------------------------------------
- * y = x | x.x | x.x.x | ... (| is union)
- *
- *
- *
- * transitive closure rule 2: TCLOSURE(x)
- * -----------------------------------------------------------
- * x <= TCLOSURE(x) && (x JOIN x) <= TCLOSURE(x) ....
- *
- * TC(x) = TC(y) => x = y ?
- *
- */
-
- void TheorySetsRels::applyTCRule(Node exp, Node tc_term) {
- Trace("rels-debug") << "\n[sets-rels] *********** Applying TRANSITIVE CLOSURE rule on "
- << tc_term << " with explanation " << exp << std::endl;
-
- Node tc_rep = getRepresentative(tc_term);
- bool polarity = exp.getKind() != kind::NOT;
-
- if( d_rel_nodes.find(tc_rep) == d_rel_nodes.end() ) {
- d_tc_rep_term[tc_rep] = tc_term;
- d_rel_nodes.insert(tc_rep);
- }
- if(polarity) {
- TC_PAIR_IT mem_it = d_tc_membership_db.find(tc_term);
-
- if( mem_it == d_tc_membership_db.end() ) {
- std::hash_set<Node, NodeHashFunction> members;
- members.insert(exp[0]);
- d_tc_membership_db[tc_term] = members;
- } else {
- mem_it->second.insert(exp[0]);
- }
- } else {
- Trace("rels-tc") << "TC non-member = " << exp << std::endl;
- }
- //todo: need to construct a tc_graph if transitive closure is used in the context
-// // check if tup_rep already exists in TC graph for conflict
-// } else {
-// if( tc_graph_it != d_membership_tc_cache.end() ) {
-// checkTCGraphForConflict(atom, tc_rep, d_trueNode, RelsUtils::nthElementOfTuple(tup_rep, 0),
-// RelsUtils::nthElementOfTuple(tup_rep, 1), tc_graph_it->second);
-// }
-// }
- }
-
- void TheorySetsRels::checkTCGraphForConflict (Node atom, Node tc_rep, Node exp, Node a, Node b,
- std::map< Node, std::hash_set< Node, NodeHashFunction > >& pair_set) {
- TC_PAIR_IT pair_set_it = pair_set.find(a);
-
- if(pair_set_it != pair_set.end()) {
- if(pair_set_it->second.find(b) != pair_set_it->second.end()) {
- Node reason = AND(exp, findMemExp(tc_rep, constructPair(tc_rep, a, b)));
-
- if(atom[1] != tc_rep) {
- reason = AND(exp, explain(EQUAL(atom[1], tc_rep)));
- }
- Trace("rels-debug") << "[sets-rels] found a conflict and send out lemma : "
- << NodeManager::currentNM()->mkNode(kind::IMPLIES, Rewriter::rewrite(reason), atom) << std::endl;
- d_sets_theory.d_out->lemma(NodeManager::currentNM()->mkNode(kind::IMPLIES, Rewriter::rewrite(reason), atom));
-// Trace("rels-debug") << "[sets-rels] found a conflict and send out lemma : "
-// << AND(reason.negate(), atom) << std::endl;
-// d_sets_theory.d_out->conflict(AND(reason.negate(), atom));
- } else {
- std::hash_set< Node, NodeHashFunction >::iterator set_it = pair_set_it->second.begin();
-
- while(set_it != pair_set_it->second.end()) {
- // need to check if *set_it has been looked already
- if(!areEqual(*set_it, a)) {
- checkTCGraphForConflict(atom, tc_rep, AND(exp, findMemExp(tc_rep, constructPair(tc_rep, a, *set_it))),
- *set_it, b, pair_set);
- }
- set_it++;
- }
- }
- }
- }
-
-
- /* product-split rule: (a, b) IS_IN (X PRODUCT Y)
- * ----------------------------------
- * a IS_IN X && b IS_IN Y
- *
- * product-compose rule: (a, b) IS_IN X (c, d) IS_IN Y NOT (r, s, t, u) IS_IN (X PRODUCT Y)
- * ----------------------------------------------------------------------
- * (a, b, c, d) IS_IN (X PRODUCT Y)
- */
-
- void TheorySetsRels::applyProductRule(Node exp, Node product_term) {
- Trace("rels-debug") << "\n[sets-rels] *********** Applying PRODUCT rule " << std::endl;
-
- if(d_rel_nodes.find(product_term) == d_rel_nodes.end()) {
- computeMembersForRel(product_term);
- d_rel_nodes.insert(product_term);
- }
- bool polarity = exp.getKind() != kind::NOT;
- Node atom = polarity ? exp : exp[0];
- Node r1_rep = getRepresentative(product_term[0]);
- Node r2_rep = getRepresentative(product_term[1]);
-
- Trace("rels-debug") << "\n[sets-rels] Apply PRODUCT-SPLIT rule on term: " << product_term
- << " with explanation: " << exp << std::endl;
- std::vector<Node> r1_element;
- std::vector<Node> r2_element;
- NodeManager *nm = NodeManager::currentNM();
- Datatype dt = r1_rep.getType().getSetElementType().getDatatype();
- unsigned int i = 0;
- unsigned int s1_len = r1_rep.getType().getSetElementType().getTupleLength();
- unsigned int tup_len = product_term.getType().getSetElementType().getTupleLength();
-
- r1_element.push_back(Node::fromExpr(dt[0].getConstructor()));
- for(; i < s1_len; ++i) {
- r1_element.push_back(RelsUtils::nthElementOfTuple(atom[0], i));
- }
-
- dt = r2_rep.getType().getSetElementType().getDatatype();
- r2_element.push_back(Node::fromExpr(dt[0].getConstructor()));
- for(; i < tup_len; ++i) {
- r2_element.push_back(RelsUtils::nthElementOfTuple(atom[0], i));
- }
-
- Node fact_1;
- Node fact_2;
- Node reason_1 = exp;
- Node reason_2 = exp;
- Node t1 = nm->mkNode(kind::APPLY_CONSTRUCTOR, r1_element);
- Node t1_rep = getRepresentative(t1);
- Node t2 = nm->mkNode(kind::APPLY_CONSTRUCTOR, r2_element);
- Node t2_rep = getRepresentative(t2);
-
- fact_1 = MEMBER( t1, r1_rep );
- fact_2 = MEMBER( t2, r2_rep );
- if(r1_rep != product_term[0]) {
- reason_1 = AND(reason_1, explain(EQUAL(r1_rep, product_term[0])));
- }
- if(t1 != t1_rep) {
- reason_1 = Rewriter::rewrite(AND(reason_1, explain(EQUAL(t1, t1_rep))));
- }
- if(r2_rep != product_term[1]) {
- reason_2 = AND(reason_2, explain(EQUAL(r2_rep, product_term[1])));
- }
- if(t2 != t2_rep) {
- reason_2 = Rewriter::rewrite(AND(reason_2, explain(EQUAL(t2, t2_rep))));
- }
- if(polarity) {
- sendInfer(fact_1, reason_1, "product-split");
- sendInfer(fact_2, reason_2, "product-split");
- } else {
- sendInfer(fact_1.negate(), reason_1, "product-split");
- sendInfer(fact_2.negate(), reason_2, "product-split");
-
- // ONLY need to explicitly compute joins if there are negative literals involving PRODUCT
- Trace("rels-debug") << "\n[sets-rels] Apply PRODUCT-COMPOSE rule on term: " << product_term
- << " with explanation: " << exp << std::endl;
- }
- }
-
- /* join-split rule: (a, b) IS_IN (X JOIN Y)
- * --------------------------------------------
- * exists z | (a, z) IS_IN X && (z, b) IS_IN Y
- *
- *
- * join-compose rule: (a, b) IS_IN X (b, c) IS_IN Y NOT (t, u) IS_IN (X JOIN Y)
- * -------------------------------------------------------------
- * (a, c) IS_IN (X JOIN Y)
- */
- void TheorySetsRels::applyJoinRule(Node exp, Node join_term) {
- Trace("rels-debug") << "\n[sets-rels] *********** Applying JOIN rule " << std::endl;
-
- if(d_rel_nodes.find(join_term) == d_rel_nodes.end()) {
- Trace("rels-debug") << "\n[sets-rels] Apply JOIN-COMPOSE rule on term: " << join_term
- << " with explanation: " << exp << std::endl;
-
- computeMembersForRel(join_term);
- d_rel_nodes.insert(join_term);
- }
-
- bool polarity = exp.getKind() != kind::NOT;
- Node atom = polarity ? exp : exp[0];
- Node r1_rep = getRepresentative(join_term[0]);
- Node r2_rep = getRepresentative(join_term[1]);
-
- if(polarity) {
- Trace("rels-debug") << "\n[sets-rels] Apply JOIN-SPLIT rule on term: " << join_term
- << " with explanation: " << exp << std::endl;
-
- std::vector<Node> r1_element;
- std::vector<Node> r2_element;
- NodeManager *nm = NodeManager::currentNM();
- TypeNode shared_type = r2_rep.getType().getSetElementType().getTupleTypes()[0];
- Node shared_x = nm->mkSkolem("sde_", shared_type);
- Datatype dt = r1_rep.getType().getSetElementType().getDatatype();
- unsigned int i = 0;
- unsigned int s1_len = r1_rep.getType().getSetElementType().getTupleLength();
- unsigned int tup_len = join_term.getType().getSetElementType().getTupleLength();
-
- r1_element.push_back(Node::fromExpr(dt[0].getConstructor()));
- for(; i < s1_len-1; ++i) {
- r1_element.push_back(RelsUtils::nthElementOfTuple(atom[0], i));
- }
- r1_element.push_back(shared_x);
- dt = r2_rep.getType().getSetElementType().getDatatype();
- r2_element.push_back(Node::fromExpr(dt[0].getConstructor()));
- r2_element.push_back(shared_x);
- for(; i < tup_len; ++i) {
- r2_element.push_back(RelsUtils::nthElementOfTuple(atom[0], i));
- }
-
- Node t1 = nm->mkNode(kind::APPLY_CONSTRUCTOR, r1_element);
- Node t2 = nm->mkNode(kind::APPLY_CONSTRUCTOR, r2_element);
-
- computeTupleReps(t1);
- computeTupleReps(t2);
-
- std::vector<Node> elements = d_membership_trie[r1_rep].findTerms(d_tuple_reps[t1]);
-
- for(unsigned int j = 0; j < elements.size(); j++) {
- std::vector<Node> new_tup;
- new_tup.push_back(elements[j]);
- new_tup.insert(new_tup.end(), d_tuple_reps[t2].begin()+1, d_tuple_reps[t2].end());
- if(d_membership_trie[r2_rep].existsTerm(new_tup) != Node::null()) {
- return;
- }
- }
-
- Node fact;
- Node reason = atom[1] == join_term ? exp : AND(exp, explain(EQUAL(atom[1], join_term)));
- Node reasons = reason;
-
- fact = MEMBER(t1, r1_rep);
- if(r1_rep != join_term[0]) {
- reasons = Rewriter::rewrite(AND(reason, explain(EQUAL(r1_rep, join_term[0]))));
- }
- Trace("rels-debug") << "\n[sets-rels] After applying JOIN-split rule, generate a fact : " << fact
- << " with explanation: " << reasons << std::endl;
- sendInfer(fact, reasons, "join-split");
- reasons = reason;
- fact = MEMBER(t2, r2_rep);
- if(r2_rep != join_term[1]) {
- reasons = Rewriter::rewrite(AND(reason, explain(EQUAL(r2_rep, join_term[1]))));
- }
- Trace("rels-debug") << "[sets-rels] After applying JOIN-split rule, generate a fact : " << fact
- << " with explanation: " << reasons << std::endl;
- sendInfer(fact, reasons, "join-split");
- makeSharedTerm(shared_x);
- }
- }
-
- /*
- * transpose-occur rule: [NOT] (a, b) IS_IN X (TRANSPOSE X) occurs
- * -------------------------------------------------------
- * [NOT] (b, a) IS_IN (TRANSPOSE X)
- *
- * transpose-reverse rule: [NOT] (a, b) IS_IN (TRANSPOSE X)
- * ------------------------------------------------
- * [NOT] (b, a) IS_IN X
- *
- * Not implemented yet!
- * transpose-equal rule: [NOT] (TRANSPOSE X) = (TRANSPOSE Y)
- * -----------------------------------------------
- * [NOT] (X = Y)
- */
- void TheorySetsRels::applyTransposeRule(Node exp, Node tp_term, Node more_reason, bool tp_occur) {
- Trace("rels-debug") << "\n[sets-rels] *********** Applying TRANSPOSE rule on term " << tp_term << std::endl;
-
- bool polarity = exp.getKind() != kind::NOT;
- Node atom = polarity ? exp : exp[0];
- Node reversedTuple = getRepresentative(RelsUtils::reverseTuple(atom[0]));
-
- if(tp_occur) {
- Trace("rels-debug") << "\n[sets-rels] Apply TRANSPOSE-OCCUR rule on term: " << tp_term
- << " with explanation: " << exp << std::endl;
-
- Node fact = polarity ? MEMBER(reversedTuple, tp_term) : MEMBER(reversedTuple, tp_term).negate();
- sendInfer(fact, more_reason == Node::null()?exp:AND(exp, more_reason), "transpose-occur");
- return;
- }
-
- Node tp_t0_rep = getRepresentative(tp_term[0]);
- Node reason = atom[1] == tp_term ? exp : Rewriter::rewrite(AND(exp, EQUAL(atom[1], tp_term)));
- Node fact = MEMBER(reversedTuple, tp_t0_rep);
-
- if(!polarity) {
- fact = fact.negate();
- }
- sendInfer(fact, reason, "transpose-rule");
- }
-
-
- void TheorySetsRels::finalizeTCInference() {
- Trace("rels-tc") << "[sets-rels] ****** Finalizing transitive closure inferences!" << std::endl;
- std::map<Node, Node>::iterator map_it = d_tc_rep_term.begin();
-
- while( map_it != d_tc_rep_term.end() ) {
- Trace("rels-tc") << "[sets-rels] Start building the TC graph for " << map_it->first << std::endl;
-
- std::map< Node, std::hash_set<Node, NodeHashFunction> > d_tc_graph = constructTCGraph(getRepresentative(map_it->second[0]), map_it->first, map_it->second);
- inferTC(map_it->first, d_tc_graph);
- map_it++;
- }
- }
-
- void TheorySetsRels::inferTC(Node tc_rep, std::map< Node, std::hash_set< Node, NodeHashFunction > >& tc_graph) {
- Trace("rels-tc") << "[sets-rels] Infer TC lemma from tc_graph of " << tc_rep << std::endl;
-
- for(TC_PAIR_IT pair_set_it = tc_graph.begin(); pair_set_it != tc_graph.end(); pair_set_it++) {
- for(std::hash_set< Node, NodeHashFunction >::iterator set_it = pair_set_it->second.begin();
- set_it != pair_set_it->second.end(); set_it++) {
- std::hash_set<Node, NodeHashFunction> elements;
- Node pair = constructPair(tc_rep, pair_set_it->first, *set_it);
- Node exp = findMemExp(tc_rep, pair);
-
- if(d_membership_tc_exp_cache.find(tc_rep) != d_membership_tc_exp_cache.end()) {
- exp = AND(d_membership_tc_exp_cache[tc_rep], exp);
- }
- Assert(!exp.isNull());
- elements.insert(pair_set_it->first);
- inferTC( exp, tc_rep, tc_graph, pair_set_it->first, *set_it, elements );
- }
- }
- }
-
- void TheorySetsRels::inferTC( Node exp, Node tc_rep, std::map< Node, std::hash_set< Node, NodeHashFunction > >& tc_graph,
- Node start_node, Node cur_node, std::hash_set< Node, NodeHashFunction >& traversed ) {
- Node pair = constructPair(tc_rep, start_node, cur_node);
- MEM_IT mem_it = d_membership_db.find(tc_rep);
-
- if(mem_it != d_membership_db.end()) {
- if(std::find(mem_it->second.begin(), mem_it->second.end(), pair) == mem_it->second.end()) {
- Trace("rels-tc") << "[sets-rels] Infered a TC lemma = " << MEMBER(pair, tc_rep) << " by Transitivity"
- << " with explanation = " << Rewriter::rewrite(exp) << std::endl;
- sendLemma( MEMBER(pair, tc_rep), Rewriter::rewrite(exp), "Transitivity" );
- }
- } else {
- Trace("rels-tc") << "[sets-rels] Infered a TC lemma = " << MEMBER(pair, tc_rep) << " by Transitivity"
- << " with explanation = " << Rewriter::rewrite(exp) << std::endl;
- sendLemma( MEMBER(pair, tc_rep), Rewriter::rewrite(exp), "Transitivity" );
- }
- // check if cur_node has been traversed or not
- if(traversed.find(cur_node) != traversed.end()) {
- return;
- }
- traversed.insert(cur_node);
-
- Node reason = exp;
- TC_PAIR_IT cur_set = tc_graph.find(cur_node);
-
- if(cur_set != tc_graph.end()) {
- for(std::hash_set< Node, NodeHashFunction >::iterator set_it = cur_set->second.begin();
- set_it != cur_set->second.end(); set_it++) {
- Node new_pair = constructPair( tc_rep, cur_node, *set_it );
- Assert(!reason.isNull());
- inferTC( AND( findMemExp(tc_rep, new_pair), reason ), tc_rep, tc_graph, start_node, *set_it, traversed );
- }
- }
- }
-
- // Bottom-up fashion to compute relations
- void TheorySetsRels::computeMembersForRel(Node n) {
- Trace("rels-debug") << "\n[sets-rels] computeJoinOrProductRelations for relation " << n << std::endl;
- switch(n[0].getKind()) {
- case kind::TRANSPOSE:
- computeMembersForTpRel(n[0]);
- break;
- case kind::JOIN:
- case kind::PRODUCT:
- computeMembersForRel(n[0]);
- break;
- default:
- break;
- }
-
- switch(n[1].getKind()) {
- case kind::TRANSPOSE:
- computeMembersForTpRel(n[1]);
- break;
- case kind::JOIN:
- case kind::PRODUCT:
- computeMembersForRel(n[1]);
- break;
- default:
- break;
- }
-
- if(d_membership_db.find(getRepresentative(n[0])) == d_membership_db.end() ||
- d_membership_db.find(getRepresentative(n[1])) == d_membership_db.end())
- return;
- composeTupleMemForRel(n);
- }
-
- void TheorySetsRels::computeMembersForTpRel(Node n) {
- switch(n[0].getKind()) {
- case kind::TRANSPOSE:
- computeMembersForTpRel(n[0]);
- break;
- case kind::JOIN:
- case kind::PRODUCT:
- computeMembersForRel(n[0]);
- break;
- default:
- break;
- }
-
- if(d_membership_db.find(getRepresentative(n[0])) == d_membership_db.end())
- return;
-
- Node n_rep = getRepresentative(n);
- Node n0_rep = getRepresentative(n[0]);
- std::vector<Node> tuples = d_membership_db[n0_rep];
- std::vector<Node> exps = d_membership_exp_db[n0_rep];
- Assert(tuples.size() == exps.size());
- for(unsigned int i = 0; i < tuples.size(); i++) {
- Node reason = exps[i][1] == n0_rep ? exps[i] : AND(exps[i], EQUAL(exps[i][1], n0_rep));
- Node rev_tup = getRepresentative(RelsUtils::reverseTuple(tuples[i]));
- Node fact = MEMBER(rev_tup, n_rep);
-
- if(holds(fact)) {
- Trace("rels-debug") << "[sets-rels] New fact: " << fact << " already holds! Skip..." << std::endl;
- } else {
- sendInfer(fact, Rewriter::rewrite(reason), "transpose-rule");
- }
- }
- }
-
- /*
- * Explicitly compose the join or product relations of r1 and r2
- * e.g. If (a, b) in X and (b, c) in Y, (a, c) in (X JOIN Y)
- *
- */
- void TheorySetsRels::composeTupleMemForRel( Node n ) {
- Node r1 = n[0];
- Node r2 = n[1];
- Node r1_rep = getRepresentative(r1);
- Node r2_rep = getRepresentative(r2);
- NodeManager* nm = NodeManager::currentNM();
-
- Trace("rels-debug") << "[sets-rels] start composing tuples in relations "
- << r1 << " and " << r2 << std::endl;
-
- if(d_membership_db.find(r1_rep) == d_membership_db.end() ||
- d_membership_db.find(r2_rep) == d_membership_db.end())
- return;
-
- std::vector<Node> new_tups;
- std::vector<Node> new_exps;
- std::vector<Node> r1_elements = d_membership_db[r1_rep];
- std::vector<Node> r2_elements = d_membership_db[r2_rep];
- std::vector<Node> r1_exps = d_membership_exp_db[r1_rep];
- std::vector<Node> r2_exps = d_membership_exp_db[r2_rep];
-
- Node new_rel = n.getKind() == kind::JOIN ? nm->mkNode(kind::JOIN, r1_rep, r2_rep)
- : nm->mkNode(kind::PRODUCT, r1_rep, r2_rep);
- Node new_rel_rep = getRepresentative(new_rel);
- unsigned int t1_len = r1_elements.front().getType().getTupleLength();
- unsigned int t2_len = r2_elements.front().getType().getTupleLength();
-
- for(unsigned int i = 0; i < r1_elements.size(); i++) {
- for(unsigned int j = 0; j < r2_elements.size(); j++) {
- std::vector<Node> composed_tuple;
- TypeNode tn = n.getType().getSetElementType();
- Node r1_rmost = RelsUtils::nthElementOfTuple(r1_elements[i], t1_len-1);
- Node r2_lmost = RelsUtils::nthElementOfTuple(r2_elements[j], 0);
- composed_tuple.push_back(Node::fromExpr(tn.getDatatype()[0].getConstructor()));
-
- if((areEqual(r1_rmost, r2_lmost) && n.getKind() == kind::JOIN) ||
- n.getKind() == kind::PRODUCT) {
- bool isProduct = n.getKind() == kind::PRODUCT;
- unsigned int k = 0;
- unsigned int l = 1;
-
- for(; k < t1_len - 1; ++k) {
- composed_tuple.push_back(RelsUtils::nthElementOfTuple(r1_elements[i], k));
- }
- if(isProduct) {
- composed_tuple.push_back(RelsUtils::nthElementOfTuple(r1_elements[i], k));
- composed_tuple.push_back(RelsUtils::nthElementOfTuple(r2_elements[j], 0));
- }
- for(; l < t2_len; ++l) {
- composed_tuple.push_back(RelsUtils::nthElementOfTuple(r2_elements[j], l));
- }
- Node composed_tuple_rep = getRepresentative(nm->mkNode(kind::APPLY_CONSTRUCTOR, composed_tuple));
- Node fact = MEMBER(composed_tuple_rep, new_rel_rep);
-
- if(holds(fact)) {
- Trace("rels-debug") << "[sets-rels] New fact: " << fact << " already holds! Skip..." << std::endl;
- } else {
- std::vector<Node> reasons;
- reasons.push_back(explain(r1_exps[i]));
- reasons.push_back(explain(r2_exps[j]));
- if(r1_exps[i].getKind() == kind::MEMBER && r1_exps[i][0] != r1_elements[i]) {
- reasons.push_back(explain(EQUAL(r1_elements[i], r1_exps[i][0])));
- }
- if(r2_exps[j].getKind() == kind::MEMBER && r2_exps[j][0] != r2_elements[j]) {
- reasons.push_back(explain(EQUAL(r2_elements[j], r2_exps[j][0])));
- }
- if(!isProduct) {
- if(r1_rmost != r2_lmost) {
- reasons.push_back(explain(EQUAL(r1_rmost, r2_lmost)));
- }
- }
- if(r1 != r1_rep) {
- reasons.push_back(explain(EQUAL(r1, r1_rep)));
- }
- if(r2 != r2_rep) {
- reasons.push_back(explain(EQUAL(r2, r2_rep)));
- }
-
- Node reason = Rewriter::rewrite(nm->mkNode(kind::AND, reasons));
- if(isProduct) {
- sendInfer( fact, reason, "product-compose" );
- } else {
- sendInfer( fact, reason, "join-compose" );
- }
-
- Trace("rels-debug") << "[sets-rels] Compose tuples: " << r1_elements[i]
- << " and " << r2_elements[j]
- << "\n Produce a new fact: " << fact
- << "\n Reason: " << reason<< std::endl;
- }
- }
- }
- }
- Trace("rels-debug") << "[sets-rels] Done with composing tuples !" << std::endl;
- }
-
- void TheorySetsRels::doPendingLemmas() {
- if( !(*d_conflict) ){
- if ( (!d_lemma_cache.empty() || !d_pending_facts.empty()) ) {
- for( unsigned i=0; i < d_lemma_cache.size(); i++ ){
- Assert(d_lemma_cache[i].getKind() == kind::IMPLIES);
- if(holds( d_lemma_cache[i][1] )) {
- Trace("rels-lemma") << "[sets-rels-lemma-skip] Skip an already held lemma: "
- << d_lemma_cache[i]<< std::endl;
- continue;
- }
- Trace("rels-lemma") << "[sets-rels-lemma] Send out a lemma : "
- << d_lemma_cache[i] << std::endl;
- d_sets_theory.d_out->lemma( d_lemma_cache[i] );
- }
- for( std::map<Node, Node>::iterator child_it = d_pending_facts.begin();
- child_it != d_pending_facts.end(); child_it++ ) {
- if(holds(child_it->first)) {
- Trace("rels-lemma") << "[sets-rels-fact-lemma-skip] Skip an already held fact,: "
- << child_it->first << std::endl;
- continue;
- }
- Trace("rels-lemma") << "[sets-rels-fact-lemma] Send out a fact as lemma : "
- << child_it->first << " with reason " << child_it->second << std::endl;
- d_sets_theory.d_out->lemma(NodeManager::currentNM()->mkNode(kind::IMPLIES, child_it->second, child_it->first));
- }
- }
- doTCLemmas();
- }
-
- d_arg_rep_tp_terms.clear();
- d_tc_membership_db.clear();
- d_rel_nodes.clear();
- d_pending_facts.clear();
- d_membership_constraints_cache.clear();
- d_tc_r_graph.clear();
- d_membership_tc_exp_cache.clear();
- d_membership_exp_cache.clear();
- d_membership_db.clear();
- d_membership_exp_db.clear();
- d_terms_cache.clear();
- d_lemma_cache.clear();
- d_membership_trie.clear();
- d_tuple_reps.clear();
- d_id_node.clear();
- d_node_id.clear();
- d_tc_rep_term.clear();
- }
-
- void TheorySetsRels::doTCLemmas() {
- Trace("rels-debug") << "[sets-rels] Start processing TC lemmas .......... " << std::endl;
- std::map< Node, std::hash_set< Node, NodeHashFunction > >::iterator mem_it = d_tc_membership_db.begin();
-
- while(mem_it != d_tc_membership_db.end()) {
- Node tc_rep = getRepresentative(mem_it->first);
- Node tc_r_rep = getRepresentative(mem_it->first[0]);
- std::hash_set< Node, NodeHashFunction >::iterator set_it = mem_it->second.begin();
-
- while(set_it != mem_it->second.end()) {
- std::hash_set<Node, NodeHashFunction> hasSeen;
- bool isReachable = false;
- Node fst = RelsUtils::nthElementOfTuple(*set_it, 0);
- Node snd = RelsUtils::nthElementOfTuple(*set_it, 1);
- Node fst_rep = getRepresentative(fst);
- Node snd_rep = getRepresentative(snd);
- TC_IT tc_graph_it = d_tc_r_graph.find(tc_rep);
-
- // the tc_graph of TC(r) is built based on the members of r and TC(r)????????
- isTCReachable(fst_rep, snd_rep, hasSeen, tc_graph_it->second, isReachable);
- Trace("rels-tc") << "tuple = " << *set_it << " with rep = (" << fst_rep << ", " << snd_rep << ") "
- << " isReachable? = " << isReachable << std::endl;
- if((tc_graph_it != d_tc_r_graph.end() && !isReachable) ||
- (tc_graph_it == d_tc_r_graph.end())) {
- Node reason = explain(MEMBER(*set_it, mem_it->first));
- Node sk_1 = NodeManager::currentNM()->mkSkolem("sde", fst_rep.getType());
- Node sk_2 = NodeManager::currentNM()->mkSkolem("sde", snd_rep.getType());
- Node mem_of_r = MEMBER(RelsUtils::constructPair(tc_r_rep, fst_rep, snd_rep), tc_r_rep);
- Node sk_eq = EQUAL(sk_1, sk_2);
-
- if(fst_rep != fst) {
- reason = AND(reason, explain(EQUAL(fst_rep, fst)));
- }
- if(snd_rep != snd) {
- reason = AND(reason, explain(EQUAL(snd_rep, snd)));
- }
- if(tc_r_rep != mem_it->first[0]) {
- reason = AND(reason, explain(EQUAL(tc_r_rep, mem_it->first[0])));
- }
- if(tc_rep != mem_it->first) {
- reason = AND(reason, explain(EQUAL(tc_rep, mem_it->first)));
- }
-
- Node tc_lemma = NodeManager::currentNM()->mkNode(kind::IMPLIES, reason,
- OR(mem_of_r,
- (AND(MEMBER(RelsUtils::constructPair(tc_r_rep, fst_rep, sk_1), tc_r_rep),
- (AND(MEMBER(RelsUtils::constructPair(tc_r_rep, sk_2, snd_rep), tc_r_rep),
- (OR(sk_eq, MEMBER(RelsUtils::constructPair(tc_rep, sk_1, sk_2), tc_rep)))))))));
- Trace("rels-lemma") << "[sets-rels-lemma] Send out a TC lemma : "
- << tc_lemma << std::endl;
- d_sets_theory.d_out->lemma(tc_lemma);
- d_sets_theory.d_out->requirePhase(Rewriter::rewrite(mem_of_r), true);
- d_sets_theory.d_out->requirePhase(Rewriter::rewrite(sk_eq), true);
- }
- set_it++;
- }
- mem_it++;
- }
- }
-
- void TheorySetsRels::isTCReachable(Node start, Node dest, std::hash_set<Node, NodeHashFunction>& hasSeen,
- std::map< Node, std::hash_set< Node, NodeHashFunction > >& tc_graph, bool& isReachable) {
- if(hasSeen.find(start) == hasSeen.end()) {
- hasSeen.insert(start);
- }
-
- TC_PAIR_IT pair_set_it = tc_graph.find(start);
-
- if(pair_set_it != tc_graph.end()) {
- if(pair_set_it->second.find(dest) != pair_set_it->second.end()) {
- isReachable = true;
- return;
- } else {
- std::hash_set< Node, NodeHashFunction >::iterator set_it = pair_set_it->second.begin();
-
- while(set_it != pair_set_it->second.end()) {
- // need to check if *set_it has been looked already
- if(hasSeen.find(*set_it) == hasSeen.end()) {
- isTCReachable(*set_it, dest, hasSeen, tc_graph, isReachable);
- }
- set_it++;
- }
- }
- }
- }
-
- void TheorySetsRels::sendLemma(Node conc, Node ant, const char * c) {
- Node lemma = NodeManager::currentNM()->mkNode(kind::IMPLIES, ant, conc);
- d_lemma_cache.push_back(lemma);
- d_lemma.insert(lemma);
- }
-
- void TheorySetsRels::sendInfer( Node fact, Node exp, const char * c ) {
- d_pending_facts[fact] = exp;
- d_infer.push_back( fact );
- d_infer_exp.push_back( exp );
- }
-
- void TheorySetsRels::assertMembership( Node fact, Node reason, bool polarity ) {
- d_eqEngine->assertPredicate( fact, polarity, reason );
- }
-
- Node TheorySetsRels::getRepresentative( Node t ) {
- if( d_eqEngine->hasTerm( t ) ){
- return d_eqEngine->getRepresentative( t );
- }else{
- return t;
- }
- }
-
- bool TheorySetsRels::hasTerm( Node a ){
- return d_eqEngine->hasTerm( a );
- }
-
- bool TheorySetsRels::areEqual( Node a, Node b ){
- Assert(a.getType() == b.getType());
- Trace("rels-eq") << "[sets-rels]**** checking equality between " << a << " and " << b << std::endl;
- if(a == b) {
- return true;
- } else if( hasTerm( a ) && hasTerm( b ) ){
- return d_eqEngine->areEqual( a, b );
- } else if(a.getType().isTuple()) {
- bool equal = true;
- for(unsigned int i = 0; i < a.getType().getTupleLength(); i++) {
- equal = equal && areEqual(RelsUtils::nthElementOfTuple(a, i), RelsUtils::nthElementOfTuple(b, i));
- }
- return equal;
- } else if(!a.getType().isBoolean()){
- makeSharedTerm(a);
- makeSharedTerm(b);
- }
- return false;
- }
-
- /*
- * Make sure duplicate members are not added in map
- */
- bool TheorySetsRels::safelyAddToMap(std::map< Node, std::vector<Node> >& map, Node rel_rep, Node member) {
- std::map< Node, std::vector< Node > >::iterator mem_it = map.find(rel_rep);
- if(mem_it == map.end()) {
- std::vector<Node> members;
- members.push_back(member);
- map[rel_rep] = members;
- return true;
- } else {
- std::vector<Node>::iterator mems = mem_it->second.begin();
- while(mems != mem_it->second.end()) {
- if(areEqual(*mems, member)) {
- return false;
- }
- mems++;
- }
- map[rel_rep].push_back(member);
- return true;
- }
- return false;
- }
-
- void TheorySetsRels::addToMap(std::map< Node, std::vector<Node> >& map, Node rel_rep, Node member) {
- if(map.find(rel_rep) == map.end()) {
- std::vector<Node> members;
- members.push_back(member);
- map[rel_rep] = members;
- } else {
- map[rel_rep].push_back(member);
- }
- }
-
- inline Node TheorySetsRels::getReason(Node tc_rep, Node tc_term, Node tc_r_rep, Node tc_r) {
- if(tc_term != tc_rep) {
- Node reason = explain(EQUAL(tc_term, tc_rep));
- if(tc_term[0] != tc_r_rep) {
- return AND(reason, explain(EQUAL(tc_term[0], tc_r_rep)));
- }
- }
- return Node::null();
- }
-
- // tuple might be a member of tc_rep; or it might be a member of rels or tc_terms such that
- // tc_terms are transitive closure of rels and are modulo equal to tc_rep
- Node TheorySetsRels::findMemExp(Node tc_rep, Node pair) {
- Trace("rels-exp") << "TheorySetsRels::findMemExp ( tc_rep = " << tc_rep << ", pair = " << pair << ")" << std::endl;
- Node fst = RelsUtils::nthElementOfTuple(pair, 0);
- Node snd = RelsUtils::nthElementOfTuple(pair, 1);
- std::vector<Node> tc_terms = d_terms_cache.find(tc_rep)->second[kind::TCLOSURE];
-
- Assert(tc_terms.size() > 0);
- for(unsigned int i = 0; i < tc_terms.size(); i++) {
- Node tc_term = tc_terms[i];
- Node tc_r_rep = getRepresentative(tc_term[0]);
-
- Trace("rels-exp") << "TheorySetsRels::findMemExp ( r_rep = " << tc_r_rep << ", pair = " << pair << ")" << std::endl;
- std::map< Node, std::vector< Node > >::iterator tc_r_mems = d_membership_db.find(tc_r_rep);
- if(tc_r_mems != d_membership_db.end()) {
- for(unsigned int i = 0; i < tc_r_mems->second.size(); i++) {
- Node fst_mem = RelsUtils::nthElementOfTuple(tc_r_mems->second[i], 0);
- Node snd_mem = RelsUtils::nthElementOfTuple(tc_r_mems->second[i], 1);
-
- if(areEqual(fst_mem, fst) && areEqual(snd_mem, snd)) {
- Node exp = MEMBER(tc_r_mems->second[i], tc_r_mems->first);
-
- if(tc_r_rep != tc_term[0]) {
- exp = explain(EQUAL(tc_r_rep, tc_term[0]));
- }
- if(tc_rep != tc_term) {
- exp = AND(exp, explain(EQUAL(tc_rep, tc_term)));
- }
- if(tc_r_mems->second[i] != pair) {
- if(fst_mem != fst) {
- exp = AND(exp, explain(EQUAL(fst_mem, fst)));
- }
- if(snd_mem != snd) {
- exp = AND(exp, explain(EQUAL(snd_mem, snd)));
- }
- exp = AND(exp, EQUAL(tc_r_mems->second[i], pair));
- }
- return Rewriter::rewrite(AND(exp, explain(d_membership_exp_db[tc_r_rep][i])));
- }
- }
- }
-
- Node tc_term_rep = getRepresentative(tc_terms[i]);
- std::map< Node, std::vector< Node > >::iterator tc_t_mems = d_membership_db.find(tc_term_rep);
-
- if(tc_t_mems != d_membership_db.end()) {
- for(unsigned int j = 0; j < tc_t_mems->second.size(); j++) {
- Node fst_mem = RelsUtils::nthElementOfTuple(tc_t_mems->second[j], 0);
- Node snd_mem = RelsUtils::nthElementOfTuple(tc_t_mems->second[j], 1);
-
- if(areEqual(fst_mem, fst) && areEqual(snd_mem, snd)) {
- Node exp = MEMBER(tc_t_mems->second[j], tc_t_mems->first);
- if(tc_rep != tc_terms[i]) {
- exp = AND(exp, explain(EQUAL(tc_rep, tc_terms[i])));
- }
- if(tc_term_rep != tc_terms[i]) {
- exp = AND(exp, explain(EQUAL(tc_term_rep, tc_terms[i])));
- }
- if(tc_t_mems->second[j] != pair) {
- if(fst_mem != fst) {
- exp = AND(exp, explain(EQUAL(fst_mem, fst)));
- }
- if(snd_mem != snd) {
- exp = AND(exp, explain(EQUAL(snd_mem, snd)));
- }
- exp = AND(exp, EQUAL(tc_t_mems->second[j], pair));
- }
- return Rewriter::rewrite(AND(exp, explain(d_membership_exp_db[tc_term_rep][j])));
- }
- }
- }
- }
- return Node::null();
- }
-
- void TheorySetsRels::addSharedTerm( TNode n ) {
- Trace("rels-debug") << "[sets-rels] Add a shared term: " << n << std::endl;
- d_sets_theory.addSharedTerm(n);
- d_eqEngine->addTriggerTerm(n, THEORY_SETS);
- }
-
- void TheorySetsRels::makeSharedTerm( Node n ) {
- Trace("rels-share") << " [sets-rels] making shared term " << n << std::endl;
- if(d_shared_terms.find(n) == d_shared_terms.end()) {
- Node skolem = NodeManager::currentNM()->mkSkolem( "sde", n.getType() );
- sendLemma(MEMBER(skolem, SINGLETON(n)), d_trueNode, "share-term");
- d_shared_terms.insert(n);
- }
- }
-
- bool TheorySetsRels::holds(Node node) {
- Trace("rels-check") << " [sets-rels] Check if node = " << node << " already holds " << std::endl;
- bool polarity = node.getKind() != kind::NOT;
- Node atom = polarity ? node : node[0];
- Node polarity_atom = polarity ? d_trueNode : d_falseNode;
-
- if(d_eqEngine->hasTerm(atom)) {
- Trace("rels-check") << " [sets-rels] node = " << node << " is in the EE " << std::endl;
- return areEqual(atom, polarity_atom);
- } else {
- Node atom_mod = NodeManager::currentNM()->mkNode(atom.getKind(),
- getRepresentative(atom[0]),
- getRepresentative(atom[1]));
- if(d_eqEngine->hasTerm(atom_mod)) {
- return areEqual(atom_mod, polarity_atom);
- }
- }
- return false;
- }
-
- /*
- * For each tuple n, we store a mapping between n and a list of its elements representatives
- * in d_tuple_reps. This would later be used for applying JOIN operator.
- */
- void TheorySetsRels::computeTupleReps( Node n ) {
- if( d_tuple_reps.find( n ) == d_tuple_reps.end() ){
- for( unsigned i = 0; i < n.getType().getTupleLength(); i++ ){
- d_tuple_reps[n].push_back( getRepresentative( RelsUtils::nthElementOfTuple(n, i) ) );
- }
- }
- }
-
- inline void TheorySetsRels::addToMembershipDB(Node rel, Node member, Node reasons) {
- addToMap(d_membership_db, rel, member);
- addToMap(d_membership_exp_db, rel, reasons);
- computeTupleReps(member);
- d_membership_trie[rel].addTerm(member, d_tuple_reps[member]);
- }
-
- inline Node TheorySetsRels::constructPair(Node tc_rep, Node a, Node b) {
- Datatype dt = tc_rep.getType().getSetElementType().getDatatype();
- return NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, Node::fromExpr(dt[0].getConstructor()), a, b);
- }
-
- /*
- * Node n[0] is a tuple variable, reduce n[0] to a concrete representation,
- * which is (e1, ..., en) where e1, ... ,en are concrete elements of tuple n[0].
- */
- void TheorySetsRels::reduceTupleVar(Node n) {
- if(d_symbolic_tuples.find(n) == d_symbolic_tuples.end()) {
- Trace("rels-debug") << "Reduce tuple var: " << n[0] << " to concrete one " << " node = " << n << std::endl;
- std::vector<Node> tuple_elements;
- tuple_elements.push_back(Node::fromExpr((n[0].getType().getDatatype())[0].getConstructor()));
- for(unsigned int i = 0; i < n[0].getType().getTupleLength(); i++) {
- Node element = RelsUtils::nthElementOfTuple(n[0], i);
- makeSharedTerm(element);
- tuple_elements.push_back(element);
- }
- Node tuple_reduct = NodeManager::currentNM()->mkNode(kind::APPLY_CONSTRUCTOR, tuple_elements);
- tuple_reduct = MEMBER(tuple_reduct, n[1]);
- Node tuple_reduction_lemma = NodeManager::currentNM()->mkNode(kind::IFF, n, tuple_reduct);
- sendLemma(tuple_reduction_lemma, d_trueNode, "tuple-reduction");
- d_symbolic_tuples.insert(n);
- }
- }
-
- TheorySetsRels::TheorySetsRels( context::Context* c,
- context::UserContext* u,
- eq::EqualityEngine* eq,
- context::CDO<bool>* conflict,
- TheorySets& d_set ):
- d_vec_size(c),
- d_eqEngine(eq),
- d_conflict(conflict),
- d_sets_theory(d_set),
- d_trueNode(NodeManager::currentNM()->mkConst<bool>(true)),
- d_falseNode(NodeManager::currentNM()->mkConst<bool>(false)),
- d_pending_merge(c),
- d_infer(c),
- d_infer_exp(c),
- d_lemma(u),
- d_shared_terms(u)
- {
- d_eqEngine->addFunctionKind(kind::PRODUCT);
- d_eqEngine->addFunctionKind(kind::JOIN);
- d_eqEngine->addFunctionKind(kind::TRANSPOSE);
- d_eqEngine->addFunctionKind(kind::TCLOSURE);
- }
-
- TheorySetsRels::~TheorySetsRels() {}
-
- std::vector<Node> TupleTrie::findTerms( std::vector< Node >& reps, int argIndex ) {
- std::vector<Node> nodes;
- std::map< Node, TupleTrie >::iterator it;
-
- if( argIndex==(int)reps.size()-1 ){
- if(reps[argIndex].getKind() == kind::SKOLEM) {
- it = d_data.begin();
- while(it != d_data.end()) {
- nodes.push_back(it->first);
- it++;
- }
- }
- return nodes;
- }else{
- it = d_data.find( reps[argIndex] );
- if( it==d_data.end() ){
- return nodes;
- }else{
- return it->second.findTerms( reps, argIndex+1 );
- }
- }
- }
-
- Node TupleTrie::existsTerm( std::vector< Node >& reps, int argIndex ) {
- if( argIndex==(int)reps.size() ){
- if( d_data.empty() ){
- return Node::null();
- }else{
- return d_data.begin()->first;
- }
- }else{
- std::map< Node, TupleTrie >::iterator it = d_data.find( reps[argIndex] );
- if( it==d_data.end() ){
- return Node::null();
- }else{
- return it->second.existsTerm( reps, argIndex+1 );
- }
- }
- }
-
- bool TupleTrie::addTerm( Node n, std::vector< Node >& reps, int argIndex ){
- if( argIndex==(int)reps.size() ){
- if( d_data.empty() ){
- //store n in d_data (this should be interpretted as the "data" and not as a reference to a child)
- d_data[n].clear();
- return true;
- }else{
- return false;
- }
- }else{
- return d_data[reps[argIndex]].addTerm( n, reps, argIndex+1 );
- }
- }
-
- void TupleTrie::debugPrint( const char * c, Node n, unsigned depth ) {
- for( std::map< Node, TupleTrie >::iterator it = d_data.begin(); it != d_data.end(); ++it ){
- for( unsigned i=0; i<depth; i++ ){ Debug(c) << " "; }
- Debug(c) << it->first << std::endl;
- it->second.debugPrint( c, n, depth+1 );
- }
- }
-
- Node TheorySetsRels::explain( Node literal )
- {
- Trace("rels-exp") << "[sets-rels] TheorySetsRels::explain(" << literal << ")"<< std::endl;
- std::vector<TNode> assumptions;
- bool polarity = literal.getKind() != kind::NOT;
- TNode atom = polarity ? literal : literal[0];
-
- if(atom.getKind() == kind::EQUAL || atom.getKind() == kind::IFF) {
- d_eqEngine->explainEquality(atom[0], atom[1], polarity, assumptions);
- } else if(atom.getKind() == kind::MEMBER) {
- if( !d_eqEngine->hasTerm(atom)) {
- d_eqEngine->addTerm(atom);
- }
- d_eqEngine->explainPredicate(atom, polarity, assumptions);
- } else {
- Trace("rels-exp") << "unhandled: " << literal << "; (" << atom << ", "
- << polarity << "); kind" << atom.getKind() << std::endl;
- Unhandled();
- }
- Trace("rels-exp") << "[sets-rels] ****** done with TheorySetsRels::explain(" << literal << ")"<< std::endl;
- return mkAnd(assumptions);
- }
-
- TheorySetsRels::EqcInfo::EqcInfo( context::Context* c ) :
- d_mem(c), d_not_mem(c), d_mem_exp(c), d_in(c), d_out(c),
- d_tp(c), d_pt(c), d_join(c), d_tc(c) {}
-
- void TheorySetsRels::eqNotifyNewClass( Node n ) {
- Trace("rels-std") << "[sets-rels] eqNotifyNewClass:" << " t = " << n << std::endl;
- if(isRel(n) && (n.getKind() == kind::TRANSPOSE ||
- n.getKind() == kind::PRODUCT ||
- n.getKind() == kind::JOIN ||
- n.getKind() == kind::TCLOSURE)) {
- getOrMakeEqcInfo( n, true );
- }
- }
-
- // Create an integer id for tuple element
- int TheorySetsRels::getOrMakeElementRepId(EqcInfo* ei, Node e_rep) {
- Trace("rels-std") << "[sets-rels] getOrMakeElementRepId:" << " e_rep = " << e_rep << std::endl;
- std::map< Node, int >::iterator nid_it = d_node_id.find(e_rep);
-
- if( nid_it == d_node_id.end() ) {
- if( d_eqEngine->hasTerm(e_rep) ) {
- // it is possible that e's rep changes at this moment, thus we need to know the previous rep id of eqc of e
- eq::EqClassIterator rep_eqc_i = eq::EqClassIterator( e_rep, d_eqEngine );
- while( !rep_eqc_i.isFinished() ) {
- std::map< Node, int >::iterator id_it = d_node_id.find(*rep_eqc_i);
-
- if( id_it != d_node_id.end() ) {
- d_id_node[id_it->second] = e_rep;
- d_node_id[e_rep] = id_it->second;
- return id_it->second;
- }
- rep_eqc_i++;
- }
- }
- d_id_node[ei->counter] = e_rep;
- d_node_id[e_rep] = ei->counter;
- ei->counter++;
- return ei->counter-1;
- }
- Trace("rels-std") << "[sets-rels] finish getOrMakeElementRepId:" << " e_rep = " << e_rep << std::endl;
- return nid_it->second;
- }
-
- bool TheorySetsRels::insertIntoIdList(IdList& idList, int mem) {
- IdList::const_iterator idListIt = idList.begin();
- while(idListIt != idList.end()) {
- if(*idListIt == mem) {
- return false;
- }
- idListIt++;
- }
- idList.push_back(mem);
- return true;
- }
-
- void TheorySetsRels::addTCMemAndSendInfer( EqcInfo* tc_ei, Node membership, Node exp, bool fromRel ) {
- Trace("rels-std") << "[sets-rels] addTCMemAndSendInfer:" << " membership = " << membership << " from a relation? " << fromRel<< std::endl;
-
- Node fst = RelsUtils::nthElementOfTuple(membership[0], 0);
- Node snd = RelsUtils::nthElementOfTuple(membership[0], 1);
- Node fst_rep = getRepresentative(fst);
- Node snd_rep = getRepresentative(snd);
- Node mem_rep = RelsUtils::constructPair(membership[1], fst_rep, snd_rep);
-
- if(tc_ei->d_mem.find(mem_rep) != tc_ei->d_mem.end()) {
- return;
- }
-
- int fst_rep_id = getOrMakeElementRepId( tc_ei, fst_rep );
- int snd_rep_id = getOrMakeElementRepId( tc_ei, snd_rep );
-
- std::hash_set<int> in_reachable;
- std::hash_set<int> out_reachable;
- collectReachableNodes(tc_ei->d_id_inIds, fst_rep_id, in_reachable);
- collectReachableNodes(tc_ei->d_id_outIds, snd_rep_id, out_reachable);
-
- // If fst_rep is inserted into in_lst successfully,
- // save rep pair's exp and send out TC inference lemmas.
- // Otherwise, mem's rep is already in the TC and return.
- if( addId(tc_ei->d_id_inIds, snd_rep_id, fst_rep_id) ) {
- Node reason = exp == Node::null() ? explain(membership) : exp;
- if(!fromRel && tc_ei->d_tc.get() != membership[1]) {
- reason = AND(reason, explain(EQUAL(tc_ei->d_tc.get(), membership[1])));
- }
- if(fst != fst_rep) {
- reason = AND(reason, explain(EQUAL(fst, fst_rep)));
- }
- if(snd != snd_rep) {
- reason = AND(reason, explain(EQUAL(snd, snd_rep)));
- }
- tc_ei->d_mem_exp[mem_rep] = reason;
- Trace("rels-std") << "Added member " << mem_rep << " for " << tc_ei->d_tc.get()<< " with reason = " << reason << std::endl;
- tc_ei->d_mem.insert(mem_rep);
- Trace("rels-std") << "Added in membership arrow for " << snd_rep << " from: " << fst_rep << std::endl;
- } else {
- // Nothing inserted into the eqc
- return;
- }
- Trace("rels-std") << "Add out membership arrow for " << fst_rep << " to : " << snd_rep << std::endl;
- addId(tc_ei->d_id_inIds, fst_rep_id, snd_rep_id);
- sendTCInference(tc_ei, in_reachable, out_reachable, mem_rep, fst_rep, snd_rep, fst_rep_id, snd_rep_id);
- }
-
- Node TheorySetsRels::explainTCMem(EqcInfo* ei, Node pair, Node fst, Node snd) {
- Trace("rels-tc") << "explainTCMem ############ pair = " << pair << std::endl;
- if(ei->d_mem_exp.find(pair) != ei->d_mem_exp.end()) {
- return (*ei->d_mem_exp.find(pair)).second;
- }
- NodeMap::iterator mem_exp_it = ei->d_mem_exp.begin();
- while(mem_exp_it != ei->d_mem_exp.end()) {
- Node tuple = (*mem_exp_it).first;
- Node fst_e = RelsUtils::nthElementOfTuple(tuple, 0);
- Node snd_e = RelsUtils::nthElementOfTuple(tuple, 1);
- if(areEqual(fst, fst_e) && areEqual(snd, snd_e)) {
- return AND(explain(EQUAL(snd, snd_e)), AND(explain(EQUAL(fst, fst_e)), (*mem_exp_it).second));
- }
- ++mem_exp_it;
- }
- if(!ei->d_tc.get().isNull()) {
- Node rel_rep = getRepresentative(ei->d_tc.get()[0]);
- EqcInfo* rel_ei = getOrMakeEqcInfo(rel_rep);
- if(rel_ei != NULL) {
- NodeMap::iterator rel_mem_exp_it = rel_ei->d_mem_exp.begin();
- while(rel_mem_exp_it != rel_ei->d_mem_exp.end()) {
- Node exp = rel_rep == ei->d_tc.get()[0] ? d_trueNode : explain(EQUAL(rel_rep, ei->d_tc.get()[0]));
- Node tuple = (*rel_mem_exp_it).first;
- Node fst_e = RelsUtils::nthElementOfTuple(tuple, 0);
- Node snd_e = RelsUtils::nthElementOfTuple(tuple, 1);
- if(areEqual(fst, fst_e) && areEqual(snd, snd_e)) {
- return AND(exp, AND(explain(EQUAL(snd, snd_e)), AND(explain(EQUAL(fst, fst_e)), (*rel_mem_exp_it).second)));
- }
- ++rel_mem_exp_it;
- }
- }
- }
- return Node::null();
- }
-
- void TheorySetsRels::sendTCInference(EqcInfo* tc_ei, std::hash_set<int> in_reachable, std::hash_set<int> out_reachable, Node mem_rep, Node fst_rep, Node snd_rep, int id1, int id2) {
- Trace("rels-std") << "Start making TC inference after adding a member " << mem_rep << " to " << tc_ei->d_tc.get() << std::endl;
-
- Node exp = explainTCMem(tc_ei, mem_rep, fst_rep, snd_rep);
- Assert(!exp.isNull());
- Node tc_lemma = NodeManager::currentNM()->mkNode(kind::IMPLIES, exp, MEMBER(mem_rep, tc_ei->d_tc.get()));
- d_pending_merge.push_back(tc_lemma);
- d_lemma.insert(tc_lemma);
- std::hash_set<int>::iterator in_reachable_it = in_reachable.begin();
- while(in_reachable_it != in_reachable.end()) {
- Node in_node = d_id_node[*in_reachable_it];
- Node in_pair = RelsUtils::constructPair(tc_ei->d_tc.get(), in_node, fst_rep);
- Node new_pair = RelsUtils::constructPair(tc_ei->d_tc.get(), in_node, snd_rep);
- Node tc_exp = explainTCMem(tc_ei, in_pair, in_node, fst_rep);
- Node reason = tc_exp.isNull() ? exp : AND(tc_exp, exp);
-
- tc_ei->d_mem_exp[new_pair] = reason;
- tc_ei->d_mem.insert(new_pair);
- Node tc_lemma = NodeManager::currentNM()->mkNode(kind::IMPLIES, reason, MEMBER(new_pair, tc_ei->d_tc.get()));
-
- d_pending_merge.push_back(tc_lemma);
- d_lemma.insert(tc_lemma);
- in_reachable_it++;
- }
-
- std::hash_set<int>::iterator out_reachable_it = out_reachable.begin();
- while(out_reachable_it != out_reachable.end()) {
- Node out_node = d_id_node[*out_reachable_it];
- Node out_pair = RelsUtils::constructPair(tc_ei->d_tc.get(), snd_rep, out_node);
- Node reason = explainTCMem(tc_ei, out_pair, snd_rep, out_node);
- Assert(reason != Node::null());
-
- std::hash_set<int>::iterator in_reachable_it = in_reachable.begin();
-
- while(in_reachable_it != in_reachable.end()) {
- Node in_node = d_id_node[*in_reachable_it];
- Node in_pair = RelsUtils::constructPair(tc_ei->d_tc.get(), in_node, snd_rep);
- Node new_pair = RelsUtils::constructPair(tc_ei->d_tc.get(), in_node, out_node);
- Node in_pair_exp = explainTCMem(tc_ei, in_pair, in_node, snd_rep);
-
- Assert(in_pair_exp != Node::null());
- reason = AND(reason, in_pair_exp);
- tc_ei->d_mem_exp[new_pair] = reason;
- tc_ei->d_mem.insert(new_pair);
- Node tc_lemma = NodeManager::currentNM()->mkNode(kind::IMPLIES, reason, MEMBER(new_pair, tc_ei->d_tc.get()));
- d_pending_merge.push_back(tc_lemma);
- d_lemma.insert(tc_lemma);
- in_reachable_it++;
- }
- out_reachable_it++;
- }
- }
-
- void TheorySetsRels::collectReachableNodes(std::map< int, std::vector< int > >& id_map, int start_id, std::hash_set< int >& reachable_set, bool firstRound) {
- Trace("rels-std") << "**** Collecting reachable nodes for node with id " << start_id << std::endl;
- if(reachable_set.find(start_id) != reachable_set.end()) {
- return;
- }
- if(!firstRound) {
- reachable_set.insert(start_id);
- }
-
- std::vector< int > id_list = getIdList(id_map, start_id);
- std::vector< int >::iterator id_list_it = id_list.begin();
-
- while( id_list_it != id_list.end() ) {
- collectReachableNodes( id_map, *id_list_it, reachable_set, false );
- id_list_it++;
- }
- }
-
- // Merge t2 into t1, t1 will be the rep of the new eqc
- void TheorySetsRels::eqNotifyPostMerge( Node t1, Node t2 ) {
- Trace("rels-std") << "[sets-rels] eqNotifyPostMerge:" << " t1 = " << t1 << " t2 = " << t2 << std::endl;
-
- // Merge membership constraint with "true" or "false" eqc
- if( (t1 == d_trueNode || t1 == d_falseNode) && t2.getKind() == kind::MEMBER && t2[0].getType().isTuple() ) {
-
- Assert(t1 == d_trueNode || t1 == d_falseNode);
- bool polarity = t1 == d_trueNode;
- Node t2_1rep = getRepresentative(t2[1]);
- EqcInfo* ei = getOrMakeEqcInfo( t2_1rep, true );
-
- if( polarity ) {
- ei->d_mem.insert(t2[0]);
- ei->d_mem_exp[t2[0]] = explain(t2);
- } else {
- ei->d_not_mem.insert(t2[0]);
- }
- // Process a membership constraint that a tuple is a member of transpose of rel
- if( !ei->d_tp.get().isNull() ) {
- Node exp = polarity ? explain(t2) : explain(t2.negate());
- if(ei->d_tp.get() != t2[1]) {
- exp = AND( explain(EQUAL( ei->d_tp.get(), t2[1]) ), exp );
- }
- sendInferTranspose( polarity, t2[0], ei->d_tp.get(), exp, true );
- }
- // Process a membership constraint that a tuple is a member of product of rel
- if( !ei->d_pt.get().isNull() ) {
- Node exp = polarity ? explain(t2) : explain(t2.negate());
- if(ei->d_pt.get() != t2[1]) {
- exp = AND( explain(EQUAL( ei->d_pt.get(), t2[1]) ), exp );
- }
- sendInferProduct( polarity, t2[0], ei->d_pt.get(), exp );
- }
- // Process a membership constraint that a tuple is a member of transitive closure of rel
- if( polarity && !ei->d_tc.get().isNull() ) {
- addTCMemAndSendInfer( ei, t2, Node::null() );
- }
-
- // Merge two relation eqcs
- } else if( t1.getType().isSet() && t2.getType().isSet() && t1.getType().getSetElementType().isTuple() ) {
- mergeTransposeEqcs(t1, t2);
- mergeProductEqcs(t1, t2);
- mergeTCEqcs(t1, t2);
- }
-
- Trace("rels-std") << "[sets-rels] done with eqNotifyPostMerge:" << " t1 = " << t1 << " t2 = " << t2 << std::endl;
- }
-
- void TheorySetsRels::mergeTCEqcs(Node t1, Node t2) {
- Trace("rels-std") << "[sets-rels] Merge TC eqcs t1 = " << t1 << " and t2 = " << t2 << std::endl;
-
- EqcInfo* t1_ei = getOrMakeEqcInfo(t1);
- EqcInfo* t2_ei = getOrMakeEqcInfo(t2);
-
- if(t1_ei != NULL && t2_ei != NULL) {
- NodeSet::const_iterator non_mem_it = t2_ei->d_not_mem.begin();
-
- while(non_mem_it != t2_ei->d_not_mem.end()) {
- t1_ei->d_not_mem.insert(*non_mem_it);
- non_mem_it++;
- }
- if(!t1_ei->d_tc.get().isNull()) {
- NodeSet::const_iterator mem_it = t2_ei->d_mem.begin();
-
- while(mem_it != t2_ei->d_mem.end()) {
- addTCMemAndSendInfer(t1_ei, MEMBER(*mem_it, t2_ei->d_tc.get()), (*t2_ei->d_mem_exp.find(*mem_it)).second);
- mem_it++;
- }
- } else if(!t2_ei->d_tc.get().isNull()) {
- t1_ei->d_tc.set(t2_ei->d_tc);
- NodeSet::const_iterator t1_mem_it = t1_ei->d_mem.begin();
-
- while(t1_mem_it != t1_ei->d_mem.end()) {
- NodeMap::const_iterator reason_it = t1_ei->d_mem_exp.find(*t1_mem_it);
- Assert(reason_it != t1_ei->d_mem_exp.end());
- addTCMemAndSendInfer(t1_ei, MEMBER(*t1_mem_it, t1_ei->d_tc.get()), (*reason_it).second);
- t1_mem_it++;
- }
-
- NodeSet::const_iterator t2_mem_it = t2_ei->d_mem.begin();
-
- while(t2_mem_it != t2_ei->d_mem.end()) {
- addTCMemAndSendInfer(t1_ei, MEMBER(*t2_mem_it, t2_ei->d_tc.get()), (*t2_ei->d_mem_exp.find(*t2_mem_it)).second);
- t2_mem_it++;
- }
- }
- }
- Trace("rels-std") << "[sets-rels] Done with merging TC eqcs t1 = " << t1 << " and t2 = " << t2 << std::endl;
- }
-
-
-
-
- void TheorySetsRels::mergeProductEqcs(Node t1, Node t2) {
- Trace("rels-std") << "[sets-rels] Merge PRODUCT eqcs t1 = " << t1 << " and t2 = " << t2 << std::endl;
- EqcInfo* t1_ei = getOrMakeEqcInfo(t1);
- EqcInfo* t2_ei = getOrMakeEqcInfo(t2);
-
- if(t1_ei != NULL && t2_ei != NULL) {
- // PT(t1) = PT(t2) -> t1 = t2;
- if(!t1_ei->d_pt.get().isNull() && !t2_ei->d_pt.get().isNull()) {
- sendInferProduct( true, t1_ei->d_pt.get(), t2_ei->d_pt.get(), explain(EQUAL(t1, t2)) );
- }
- // Apply Product rule on (non)members of t2 and t1->pt
- if(!t1_ei->d_pt.get().isNull()) {
- for(NodeSet::key_iterator itr = t2_ei->d_mem.key_begin(); itr != t2_ei->d_mem.key_end(); itr++) {
- if(!t1_ei->d_mem.contains(*itr)) {
- sendInferProduct( true, *itr, t1_ei->d_pt.get(), AND(explain(EQUAL(t1_ei->d_pt.get(), t2)), explain(MEMBER(*itr, t2))) );
- }
- }
- for(NodeSet::key_iterator itr = t2_ei->d_not_mem.key_begin(); itr != t2_ei->d_not_mem.key_end(); itr++) {
- if(!t1_ei->d_not_mem.contains(*itr)) {
- sendInferProduct( false, *itr, t1_ei->d_pt.get(), AND(explain(EQUAL(t1_ei->d_pt.get(), t2)), explain(MEMBER(*itr, t2).negate())) );
- }
- }
- } else if(!t2_ei->d_pt.get().isNull()) {
- t1_ei->d_pt.set(t2_ei->d_pt);
- for(NodeSet::key_iterator itr = t1_ei->d_mem.key_begin(); itr != t1_ei->d_mem.key_end(); itr++) {
- if(!t2_ei->d_mem.contains(*itr)) {
- sendInferProduct( true, *itr, t2_ei->d_pt.get(), AND(explain(EQUAL(t1, t2_ei->d_pt.get())), explain(MEMBER(*itr, t1))) );
- }
- }
- for(NodeSet::key_iterator itr = t1_ei->d_not_mem.key_begin(); itr != t1_ei->d_not_mem.key_end(); itr++) {
- if(!t2_ei->d_not_mem.contains(*itr)) {
- sendInferProduct( false, *itr, t2_ei->d_pt.get(), AND(explain(EQUAL(t1, t2_ei->d_pt.get())), explain(MEMBER(*itr, t1).negate())) );
- }
- }
- }
- // t1 was created already and t2 was not
- } else if(t1_ei != NULL) {
- if(t1_ei->d_pt.get().isNull() && t2.getKind() == kind::PRODUCT) {
- t1_ei->d_pt.set( t2 );
- }
- } else if(t2_ei != NULL){
- t1_ei = getOrMakeEqcInfo(t1, true);
- if(t1_ei->d_pt.get().isNull() && !t2_ei->d_pt.get().isNull()) {
- t1_ei->d_pt.set(t2_ei->d_pt);
- for(NodeSet::key_iterator itr = t2_ei->d_mem.key_begin(); itr != t2_ei->d_mem.key_end(); itr++) {
- t1_ei->d_mem.insert(*itr);
- t1_ei->d_mem_exp.insert(*itr, t2_ei->d_mem_exp[*itr]);
- }
- for(NodeSet::key_iterator itr = t2_ei->d_not_mem.key_begin(); itr != t2_ei->d_not_mem.key_end(); itr++) {
- t1_ei->d_not_mem.insert(*itr);
- }
- }
- }
- }
-
- void TheorySetsRels::mergeTransposeEqcs( Node t1, Node t2 ) {
- Trace("rels-std") << "[sets-rels] Merge TRANSPOSE eqcs t1 = " << t1 << " and t2 = " << t2 << std::endl;
- EqcInfo* t1_ei = getOrMakeEqcInfo( t1 );
- EqcInfo* t2_ei = getOrMakeEqcInfo( t2 );
-
- if( t1_ei != NULL && t2_ei != NULL ) {
- Trace("rels-std") << "[sets-rels] 0 Merge TRANSPOSE eqcs t1 = " << t1 << " and t2 = " << t2 << std::endl;
- // TP(t1) = TP(t2) -> t1 = t2;
- if( !t1_ei->d_tp.get().isNull() && !t2_ei->d_tp.get().isNull() ) {
- sendInferTranspose( true, t1_ei->d_tp.get(), t2_ei->d_tp.get(), explain(EQUAL(t1, t2)) );
- }
- // Apply transpose rule on (non)members of t2 and t1->tp
- if( !t1_ei->d_tp.get().isNull() ) {
- for( NodeSet::key_iterator itr = t2_ei->d_mem.key_begin(); itr != t2_ei->d_mem.key_end(); itr++ ) {
- if( !t1_ei->d_mem.contains( *itr ) ) {
- sendInferTranspose( true, *itr, t1_ei->d_tp.get(), AND(explain(EQUAL(t1_ei->d_tp.get(), t2)), explain(MEMBER(*itr, t2))) );
- }
- }
- for( NodeSet::key_iterator itr = t2_ei->d_not_mem.key_begin(); itr != t2_ei->d_not_mem.key_end(); itr++ ) {
- if(!t1_ei->d_not_mem.contains(*itr)) {
- sendInferTranspose( false, *itr, t1_ei->d_tp.get(), AND(explain(EQUAL(t1_ei->d_tp.get(), t2)), explain(MEMBER(*itr, t2).negate())) );
- }
- }
- // Apply transpose rule on (non)members of t1 and t2->tp
- } else if( !t2_ei->d_tp.get().isNull() ) {
- t1_ei->d_tp.set( t2_ei->d_tp );
- for( NodeSet::key_iterator itr = t1_ei->d_mem.key_begin(); itr != t1_ei->d_mem.key_end(); itr++ ) {
- if( !t2_ei->d_mem.contains(*itr) ) {
- sendInferTranspose( true, *itr, t2_ei->d_tp.get(), AND(explain(EQUAL(t1, t2_ei->d_tp.get())), explain(MEMBER(*itr, t1))) );
- }
- }
- for( NodeSet::key_iterator itr = t1_ei->d_not_mem.key_begin(); itr != t1_ei->d_not_mem.key_end(); itr++ ) {
- if( !t2_ei->d_not_mem.contains(*itr) ) {
- sendInferTranspose( false, *itr, t2_ei->d_tp.get(), AND( explain(EQUAL(t1, t2_ei->d_tp.get())), explain(MEMBER(*itr, t1).negate()) ) );
- }
- }
- }
- // t1 was created already and t2 was not
- } else if(t1_ei != NULL) {
- if( t1_ei->d_tp.get().isNull() && t2.getKind() == kind::TRANSPOSE ) {
- t1_ei->d_tp.set( t2 );
- }
- } else if( t2_ei != NULL ){
- t1_ei = getOrMakeEqcInfo( t1, true );
- if( t1_ei->d_tp.get().isNull() && !t2_ei->d_tp.get().isNull() ) {
- t1_ei->d_tp.set( t2_ei->d_tp );
- for( NodeSet::key_iterator itr = t2_ei->d_mem.key_begin(); itr != t2_ei->d_mem.key_end(); itr++ ) {
- t1_ei->d_mem.insert( *itr );
- t1_ei->d_mem_exp.insert( *itr, t2_ei->d_mem_exp[*itr] );
- }
- for( NodeSet::key_iterator itr = t2_ei->d_not_mem.key_begin(); itr != t2_ei->d_not_mem.key_end(); itr++ ) {
- t1_ei->d_not_mem.insert( *itr );
- }
- }
- }
- }
-
- void TheorySetsRels::doPendingMerge() {
- for( NodeList::const_iterator itr = d_pending_merge.begin(); itr != d_pending_merge.end(); itr++ ) {
- Trace("rels-std") << "[sets-rels-lemma] Process pending merge fact : "
- << *itr << std::endl;
- d_sets_theory.d_out->lemma( *itr );
- }
- }
-
- void TheorySetsRels::sendInferTranspose( bool polarity, Node t1, Node t2, Node exp, bool reverseOnly ) {
- Assert( t2.getKind() == kind::TRANSPOSE );
- if( polarity && isRel(t1) && isRel(t2) ) {
- Assert(t1.getKind() == kind::TRANSPOSE);
- Node n = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, EQUAL(t1[0], t2[0]) );
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying transpose rule: "
- << n << std::endl;
- d_pending_merge.push_back( n );
- d_lemma.insert( n );
- return;
- }
-
- Node n1;
- if( reverseOnly ) {
- if( polarity ) {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(RelsUtils::reverseTuple(t1), t2[0]) );
- } else {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(RelsUtils::reverseTuple(t1), t2[0]).negate() );
- }
- } else {
- Node n2;
- if(polarity) {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(t1, t2) );
- n2 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(RelsUtils::reverseTuple(t1), t2[0]) );
- } else {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(t1, t2).negate() );
- n2 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER(RelsUtils::reverseTuple(t1), t2[0]).negate() );
- }
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying transpose rule: "
- << n2 << std::endl;
- d_pending_merge.push_back(n2);
- d_lemma.insert(n2);
- }
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying transpose rule: "
- << n1 << std::endl;
- d_pending_merge.push_back(n1);
- d_lemma.insert(n1);
-
- }
-
- void TheorySetsRels::sendInferProduct( bool polarity, Node t1, Node t2, Node exp ) {
- Assert( t2.getKind() == kind::PRODUCT );
- if( polarity && isRel(t1) && isRel(t2) ) {
- //PRODUCT(x) = PRODUCT(y) => x = y;
- Assert( t1.getKind() == kind::PRODUCT );
- Node n = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, EQUAL(t1[0], t2[0]) );
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying product rule: "
- << n << std::endl;
- d_pending_merge.push_back( n );
- d_lemma.insert( n );
- return;
- }
-
- std::vector<Node> r1_element;
- std::vector<Node> r2_element;
- Node r1 = t2[0];
- Node r2 = t2[1];
- NodeManager *nm = NodeManager::currentNM();
- Datatype dt = r1.getType().getSetElementType().getDatatype();
- unsigned int i = 0;
- unsigned int s1_len = r1.getType().getSetElementType().getTupleLength();
- unsigned int tup_len = t2.getType().getSetElementType().getTupleLength();
-
- r1_element.push_back(Node::fromExpr(dt[0].getConstructor()));
- for( ; i < s1_len; ++i ) {
- r1_element.push_back( RelsUtils::nthElementOfTuple( t1, i ) );
- }
-
- dt = r2.getType().getSetElementType().getDatatype();
- r2_element.push_back( Node::fromExpr( dt[0].getConstructor() ) );
- for( ; i < tup_len; ++i ) {
- r2_element.push_back( RelsUtils::nthElementOfTuple(t1, i) );
- }
-
- Node n1;
- Node n2;
- Node tuple_1 = getRepresentative( nm->mkNode( kind::APPLY_CONSTRUCTOR, r1_element ) );
- Node tuple_2 = getRepresentative( nm->mkNode( kind::APPLY_CONSTRUCTOR, r2_element ) );
-
- if( polarity ) {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER( tuple_1, r1 ) );
- n2 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER( tuple_2, r2 ) );
- } else {
- n1 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER( tuple_1, r1 ).negate() );
- n2 = NodeManager::currentNM()->mkNode( kind::IMPLIES, exp, MEMBER( tuple_2, r2 ).negate() );
- }
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying product-split rule: "
- << n1 << std::endl;
- d_pending_merge.push_back( n1 );
- d_lemma.insert( n1 );
- Trace("rels-std") << "[sets-rels-lemma] Generate a lemma by applying product-split rule: "
- << n2 << std::endl;
- d_pending_merge.push_back( n2 );
- d_lemma.insert( n2 );
-
- }
-
- TheorySetsRels::EqcInfo* TheorySetsRels::getOrMakeEqcInfo( Node n, bool doMake ){
- std::map< Node, EqcInfo* >::iterator eqc_i = d_eqc_info.find( n );
- if( eqc_i == d_eqc_info.end() ){
- if( doMake ){
- EqcInfo* ei;
- if( eqc_i!=d_eqc_info.end() ){
- ei = eqc_i->second;
- }else{
- ei = new EqcInfo(d_sets_theory.getSatContext());
- d_eqc_info[n] = ei;
- }
- if( n.getKind() == kind::TRANSPOSE ){
- ei->d_tp = n;
- } else if( n.getKind() == kind::PRODUCT ) {
- ei->d_pt = n;
- } else if( n.getKind() == kind::TCLOSURE ) {
- ei->d_tc = n;
- } else if( n.getKind() == kind::JOIN ) {
- ei->d_join = n;
- }
- return ei;
- }else{
- return NULL;
- }
- }else{
- return (*eqc_i).second;
- }
- }
-
-
- Node TheorySetsRels::mkAnd( std::vector<TNode>& conjunctions ) {
- Assert(conjunctions.size() > 0);
- std::set<TNode> all;
-
- for (unsigned i = 0; i < conjunctions.size(); ++i) {
- TNode t = conjunctions[i];
- if (t.getKind() == kind::AND) {
- for(TNode::iterator child_it = t.begin();
- child_it != t.end(); ++child_it) {
- Assert((*child_it).getKind() != kind::AND);
- all.insert(*child_it);
- }
- }
- else {
- all.insert(t);
- }
- }
- Assert(all.size() > 0);
- if (all.size() == 1) {
- // All the same, or just one
- return conjunctions[0];
- }
-
- NodeBuilder<> conjunction(kind::AND);
- std::set<TNode>::const_iterator it = all.begin();
- std::set<TNode>::const_iterator it_end = all.end();
- while (it != it_end) {
- conjunction << *it;
- ++ it;
- }
-
- return conjunction;
- }/* mkAnd() */
-
- void TheorySetsRels::printNodeMap(char* fst, char* snd, NodeMap map) {
- NodeMap::iterator map_it = map.begin();
- while(map_it != map.end()) {
- Trace("rels-debug") << fst << " "<< (*map_it).first << " " << snd << " " << (*map_it).second<< std::endl;
- map_it++;
- }
- }
-
- bool TheorySetsRels::addId( std::map< int, std::vector< int > >& id_map, int key, int id ) {
- int n_data = d_vec_size[key];
- int len = n_data < id_map[key].size() ? n_data : id_map[key].size();
-
- for( int i = 0; i < len; i++ ) {
- if( id_map[key][i] == id) {
- return false;
- }
- }
- if( n_data < id_map[key].size() ) {
- id_map[key][n_data] = id;
- } else {
- id_map[key].push_back( id );
- }
- d_vec_size[key] = n_data+1;
- return true;
- }
-
- std::vector< int > TheorySetsRels::getIdList( std::map< int, std::vector< int > >& id_map, int key ) {
- std::vector< int > id_list;
- int n_data = d_vec_size[key];
- int len = n_data < id_map[key].size() ? n_data : id_map[key].size();
-
- for( int i = 0; i < len; i++ ) {
- id_list.push_back(id_map[key][i]);
- }
- return id_list;
- }
-
-}
-}
-}
-
-
-
-
-
-
-
-
-
-
-
-
-