r300: Add radeon_program and trivial refactoring of r300_fragprog to use it
authorNicolai Haehnle <nhaehnle@gmail.com>
Fri, 13 Jun 2008 21:46:04 +0000 (23:46 +0200)
committerNicolai Haehnle <nhaehnle@gmail.com>
Sat, 14 Jun 2008 02:14:05 +0000 (04:14 +0200)
The idea/hope is that radeon_program will serve as an intermediate
representation for r3xx up to r6xx fragment and vertex programs.
Right now, it is nothing more than a simplistic wrapper around Mesa's
prog_instruction, together with the notion of clauses, taken from r6xx docs.

The clauses will eventually be used to represent the nodes that are used in
r300 family fragment programs.

src/mesa/drivers/dri/r300/Makefile
src/mesa/drivers/dri/r300/r300_fragprog.c
src/mesa/drivers/dri/r300/r300_fragprog.h
src/mesa/drivers/dri/r300/r300_fragprog_emit.c [new file with mode: 0644]
src/mesa/drivers/dri/r300/radeon_program.c [new file with mode: 0644]
src/mesa/drivers/dri/r300/radeon_program.h [new file with mode: 0644]

index 5b2bd0bc2b005432252c78622eb00420d419222d..7cd564706411b6e6aa540be8dc5b39911b0d37fc 100644 (file)
@@ -37,8 +37,10 @@ DRIVER_SOURCES = \
                 r300_texmem.c \
                 r300_tex.c \
                 r300_texstate.c \
+                radeon_program.c \
                 r300_vertprog.c \
                 r300_fragprog.c \
+                r300_fragprog_emit.c \
                 r500_fragprog.c \
                 r300_shader.c \
                 r300_emit.c \
index 9d7a8c65700605ff3040ceaee1b8cb557ad96f29..94cb11afecb3aef2cb1a7bc298f740461de818b4 100644 (file)
 /**
  * \file
  *
- * \author Ben Skeggs <darktama@iinet.net.au>
+ * Fragment program compiler. Perform transformations on the intermediate
+ * \ref radeon_program representation (which is essentially the Mesa
+ * program representation plus the notion of clauses) until the program
+ * is in a form where we can translate it more or less directly into
+ * machine-readable form.
  *
+ * \author Ben Skeggs <darktama@iinet.net.au>
  * \author Jerome Glisse <j.glisse@gmail.com>
- *
- * \todo Depth write, WPOS/FOGC inputs
- *
- * \todo FogOption
- *
- * \todo Verify results of opcodes for accuracy, I've only checked them in
- * specific cases.
  */
 
 #include "glheader.h"
 
 #include "r300_context.h"
 #include "r300_fragprog.h"
-#include "r300_reg.h"
 #include "r300_state.h"
 
-/* Mapping Mesa registers to R300 temporaries */
-struct reg_acc {
-       int reg;                /* Assigned hw temp */
-       unsigned int refcount;  /* Number of uses by mesa program */
-};
-
-/**
- * Describe the current lifetime information for an R300 temporary
- */
-struct reg_lifetime {
-       /* Index of the first slot where this register is free in the sense
-          that it can be used as a new destination register.
-          This is -1 if the register has been assigned to a Mesa register
-          and the last access to the register has not yet been emitted */
-       int free;
-
-       /* Index of the first slot where this register is currently reserved.
-          This is used to stop e.g. a scalar operation from being moved
-          before the allocation time of a register that was first allocated
-          for a vector operation. */
-       int reserved;
-
-       /* Index of the first slot in which the register can be used as a
-          source without losing the value that is written by the last
-          emitted instruction that writes to the register */
-       int vector_valid;
-       int scalar_valid;
-
-       /* Index to the slot where the register was last read.
-          This is also the first slot in which the register may be written again */
-       int vector_lastread;
-       int scalar_lastread;
-};
-
-/**
- * Store usage information about an ALU instruction slot during the
- * compilation of a fragment program.
- */
-#define SLOT_SRC_VECTOR  (1<<0)
-#define SLOT_SRC_SCALAR  (1<<3)
-#define SLOT_SRC_BOTH    (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
-#define SLOT_OP_VECTOR   (1<<16)
-#define SLOT_OP_SCALAR   (1<<17)
-#define SLOT_OP_BOTH     (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
-
-struct r300_pfs_compile_slot {
-       /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
-          defined above */
-       unsigned int used;
-
-       /* Selected sources */
-       int vsrc[3];
-       int ssrc[3];
-};
-
-/**
- * Store information during compilation of fragment programs.
- */
-struct r300_pfs_compile_state {
-       r300ContextPtr r300;
-       struct r300_fragment_program *fp;
-
-       int nrslots;            /* number of ALU slots used so far */
-
-       /* Track which (parts of) slots are already filled with instructions */
-       struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
-
-       /* Track the validity of R300 temporaries */
-       struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
-
-       /* Used to map Mesa's inputs/temps onto hardware temps */
-       int temp_in_use;
-       struct reg_acc temps[PFS_NUM_TEMP_REGS];
-       struct reg_acc inputs[32];      /* don't actually need 32... */
-
-       /* Track usage of hardware temps, for register allocation,
-        * indirection detection, etc. */
-       GLuint used_in_node;
-       GLuint dest_in_node;
-};
-
-
-/*
- * Usefull macros and values
- */
-#define ERROR(fmt, args...) do {                       \
-               fprintf(stderr, "%s::%s(): " fmt "\n",  \
-                       __FILE__, __FUNCTION__, ##args);        \
-               fp->error = GL_TRUE;                    \
-       } while(0)
-
-#define PFS_INVAL 0xFFFFFFFF
-#define COMPILE_STATE \
-       struct r300_fragment_program *fp = cs->fp; \
-       struct r300_fragment_program_code *code = &fp->code; \
-       (void)code
-
-#define SWIZZLE_XYZ            0
-#define SWIZZLE_XXX            1
-#define SWIZZLE_YYY            2
-#define SWIZZLE_ZZZ            3
-#define SWIZZLE_WWW            4
-#define SWIZZLE_YZX            5
-#define SWIZZLE_ZXY            6
-#define SWIZZLE_WZY            7
-#define SWIZZLE_111            8
-#define SWIZZLE_000            9
-#define SWIZZLE_HHH            10
-
-#define swizzle(r, x, y, z, w) do_swizzle(cs, r,               \
-                                         ((SWIZZLE_##x<<0)|    \
-                                          (SWIZZLE_##y<<3)|    \
-                                          (SWIZZLE_##z<<6)|    \
-                                          (SWIZZLE_##w<<9)),   \
-                                         0)
-
-#define REG_TYPE_INPUT         0
-#define REG_TYPE_OUTPUT                1
-#define REG_TYPE_TEMP          2
-#define REG_TYPE_CONST         3
-
-#define REG_TYPE_SHIFT         0
-#define REG_INDEX_SHIFT                2
-#define REG_VSWZ_SHIFT         8
-#define REG_SSWZ_SHIFT         13
-#define REG_NEGV_SHIFT         18
-#define REG_NEGS_SHIFT         19
-#define REG_ABS_SHIFT          20
-#define REG_NO_USE_SHIFT       21      // Hack for refcounting
-#define REG_VALID_SHIFT                22      // Does the register contain a defined value?
-#define REG_BUILTIN_SHIFT   23 // Is it a builtin (like all zero/all one)?
-
-#define REG_TYPE_MASK          (0x03 << REG_TYPE_SHIFT)
-#define REG_INDEX_MASK         (0x3F << REG_INDEX_SHIFT)
-#define REG_VSWZ_MASK          (0x1F << REG_VSWZ_SHIFT)
-#define REG_SSWZ_MASK          (0x1F << REG_SSWZ_SHIFT)
-#define REG_NEGV_MASK          (0x01 << REG_NEGV_SHIFT)
-#define REG_NEGS_MASK          (0x01 << REG_NEGS_SHIFT)
-#define REG_ABS_MASK           (0x01 << REG_ABS_SHIFT)
-#define REG_NO_USE_MASK                (0x01 << REG_NO_USE_SHIFT)
-#define REG_VALID_MASK         (0x01 << REG_VALID_SHIFT)
-#define REG_BUILTIN_MASK       (0x01 << REG_BUILTIN_SHIFT)
-
-#define REG(type, index, vswz, sswz, nouse, valid, builtin)    \
-       (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) |                   \
-        ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) |                \
-        ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) |              \
-        ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) |                \
-        ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) |  \
-        ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) |                   \
-        ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_GET_TYPE(reg)                                              \
-       ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
-#define REG_GET_INDEX(reg)                                             \
-       ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
-#define REG_GET_VSWZ(reg)                                              \
-       ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
-#define REG_GET_SSWZ(reg)                                              \
-       ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
-#define REG_GET_NO_USE(reg)                                            \
-       ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
-#define REG_GET_VALID(reg)                                             \
-       ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
-#define REG_GET_BUILTIN(reg)                                           \
-       ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
-#define REG_SET_TYPE(reg, type)                                                \
-       reg = ((reg & ~REG_TYPE_MASK) |                                 \
-              ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
-#define REG_SET_INDEX(reg, index)                                      \
-       reg = ((reg & ~REG_INDEX_MASK) |                                \
-              ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
-#define REG_SET_VSWZ(reg, vswz)                                                \
-       reg = ((reg & ~REG_VSWZ_MASK) |                                 \
-              ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
-#define REG_SET_SSWZ(reg, sswz)                                                \
-       reg = ((reg & ~REG_SSWZ_MASK) |                                 \
-              ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_SET_NO_USE(reg, nouse)                                     \
-       reg = ((reg & ~REG_NO_USE_MASK) |                               \
-              ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
-#define REG_SET_VALID(reg, valid)                                      \
-       reg = ((reg & ~REG_VALID_MASK) |                                \
-              ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
-#define REG_SET_BUILTIN(reg, builtin)                                  \
-       reg = ((reg & ~REG_BUILTIN_MASK) |                              \
-              ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
-#define REG_ABS(reg)                                                   \
-       reg = (reg | REG_ABS_MASK)
-#define REG_NEGV(reg)                                                  \
-       reg = (reg | REG_NEGV_MASK)
-#define REG_NEGS(reg)                                                  \
-       reg = (reg | REG_NEGS_MASK)
-
-#define NOP_INST0 (                                             \
-               (R300_ALU_OUTC_MAD) |                            \
-               (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
-               (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
-               (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
-#define NOP_INST1 (                                         \
-               ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
-               ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
-               ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
-#define NOP_INST2 ( \
-               (R300_ALU_OUTA_MAD) |                            \
-               (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
-               (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
-               (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
-#define NOP_INST3 (                                         \
-               ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
-               ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
-               ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
-
-
-/*
- * Datas structures for fragment program generation
- */
-
-/* description of r300 native hw instructions */
-static const struct {
-       const char *name;
-       int argc;
-       int v_op;
-       int s_op;
-} r300_fpop[] = {
-       /* *INDENT-OFF* */
-       {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
-       {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
-       {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
-       {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
-       {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
-       {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
-       {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
-       {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
-       {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
-       {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
-       {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
-       {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
-       {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
-       /* *INDENT-ON* */
-};
-
-/* vector swizzles r300 can support natively, with a couple of
- * cases we handle specially
- *
- * REG_VSWZ/REG_SSWZ is an index into this table
- */
-
-/* mapping from SWIZZLE_* to r300 native values for scalar insns */
-#define SWIZZLE_HALF 6
-
-#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
-                                         SWIZZLE_##y, \
-                                         SWIZZLE_##z, \
-                                         SWIZZLE_ZERO))
-/* native swizzles */
-static const struct r300_pfs_swizzle {
-       GLuint hash;            /* swizzle value this matches */
-       GLuint base;            /* base value for hw swizzle */
-       GLuint stride;          /* difference in base between arg0/1/2 */
-       GLuint flags;
-} v_swiz[] = {
-       /* *INDENT-OFF* */
-       {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
-       {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
-       {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
-       {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
-       {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
-       {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
-       {PFS_INVAL, 0, 0, 0},
-       /* *INDENT-ON* */
-};
-
-/* used during matching of non-native swizzles */
-#define SWZ_X_MASK (7 << 0)
-#define SWZ_Y_MASK (7 << 3)
-#define SWZ_Z_MASK (7 << 6)
-#define SWZ_W_MASK (7 << 9)
-static const struct {
-       GLuint hash;            /* used to mask matching swizzle components */
-       int mask;               /* actual outmask */
-       int count;              /* count of components matched */
-} s_mask[] = {
-       /* *INDENT-OFF* */
-       {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
-       {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
-       {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
-       {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
-       {SWZ_X_MASK, 1, 1},
-       {SWZ_Y_MASK, 2, 1},
-       {SWZ_Z_MASK, 4, 1},
-       {PFS_INVAL, PFS_INVAL, PFS_INVAL}
-       /* *INDENT-ON* */
-};
-
-static const struct {
-       int base;               /* hw value of swizzle */
-       int stride;             /* difference between SRC0/1/2 */
-       GLuint flags;
-} s_swiz[] = {
-       /* *INDENT-OFF* */
-       {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
-       {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
-       {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
-       {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
-       {R300_ALU_ARGA_ZERO, 0, 0},
-       {R300_ALU_ARGA_ONE, 0, 0},
-       {R300_ALU_ARGA_HALF, 0, 0}
-       /* *INDENT-ON* */
-};
-
-/* boiler-plate reg, for convenience */
-static const GLuint undef = REG(REG_TYPE_TEMP,
-                               0,
-                               SWIZZLE_XYZ,
-                               SWIZZLE_W,
-                               GL_FALSE,
-                               GL_FALSE,
-                               GL_FALSE);
-
-/* constant one source */
-static const GLuint pfs_one = REG(REG_TYPE_CONST,
-                                 0,
-                                 SWIZZLE_111,
-                                 SWIZZLE_ONE,
-                                 GL_FALSE,
-                                 GL_TRUE,
-                                 GL_TRUE);
-
-/* constant half source */
-static const GLuint pfs_half = REG(REG_TYPE_CONST,
-                                  0,
-                                  SWIZZLE_HHH,
-                                  SWIZZLE_HALF,
-                                  GL_FALSE,
-                                  GL_TRUE,
-                                  GL_TRUE);
-
-/* constant zero source */
-static const GLuint pfs_zero = REG(REG_TYPE_CONST,
-                                  0,
-                                  SWIZZLE_000,
-                                  SWIZZLE_ZERO,
-                                  GL_FALSE,
-                                  GL_TRUE,
-                                  GL_TRUE);
-
-/*
- * Common functions prototypes
- */
-static void dump_program(struct r300_fragment_program *fp,
-                        struct r300_fragment_program_code *code);
-static void emit_arith(struct r300_pfs_compile_state *cs, int op,
-                      GLuint dest, int mask,
-                      GLuint src0, GLuint src1, GLuint src2, int flags);
-
-/**
- * Get an R300 temporary that can be written to in the given slot.
- */
-static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
-{
-       COMPILE_STATE;
-       int r;
-
-       for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
-               if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
-                       break;
-       }
-
-       if (r >= PFS_NUM_TEMP_REGS) {
-               ERROR("Out of hardware temps\n");
-               return 0;
-       }
-       // Reserved is used to avoid the following scenario:
-       //  R300 temporary X is first assigned to Mesa temporary Y during vector ops
-       //  R300 temporary X is then assigned to Mesa temporary Z for further vector ops
-       //  Then scalar ops on Mesa temporary Z are emitted and move back in time
-       //  to overwrite the value of temporary Y.
-       // End scenario.
-       cs->hwtemps[r].reserved = cs->hwtemps[r].free;
-       cs->hwtemps[r].free = -1;
-
-       // Reset to some value that won't mess things up when the user
-       // tries to read from a temporary that hasn't been assigned a value yet.
-       // In the normal case, vector_valid and scalar_valid should be set to
-       // a sane value by the first emit that writes to this temporary.
-       cs->hwtemps[r].vector_valid = 0;
-       cs->hwtemps[r].scalar_valid = 0;
-
-       if (r > code->max_temp_idx)
-               code->max_temp_idx = r;
-
-       return r;
-}
-
-/**
- * Get an R300 temporary that will act as a TEX destination register.
- */
-static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-       int r;
-
-       for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
-               if (cs->used_in_node & (1 << r))
-                       continue;
-
-               // Note: Be very careful here
-               if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
-                       break;
-       }
-
-       if (r >= PFS_NUM_TEMP_REGS)
-               return get_hw_temp(cs, 0);      /* Will cause an indirection */
-
-       cs->hwtemps[r].reserved = cs->hwtemps[r].free;
-       cs->hwtemps[r].free = -1;
-
-       // Reset to some value that won't mess things up when the user
-       // tries to read from a temporary that hasn't been assigned a value yet.
-       // In the normal case, vector_valid and scalar_valid should be set to
-       // a sane value by the first emit that writes to this temporary.
-       cs->hwtemps[r].vector_valid = cs->nrslots;
-       cs->hwtemps[r].scalar_valid = cs->nrslots;
-
-       if (r > code->max_temp_idx)
-               code->max_temp_idx = r;
-
-       return r;
-}
-
-/**
- * Mark the given hardware register as free.
- */
-static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
-{
-       // Be very careful here. Consider sequences like
-       //  MAD r0, r1,r2,r3
-       //  TEX r4, ...
-       // The TEX instruction may be moved in front of the MAD instruction
-       // due to the way nodes work. We don't want to alias r1 and r4 in
-       // this case.
-       // I'm certain the register allocation could be further sanitized,
-       // but it's tricky because of stuff that can happen inside emit_tex
-       // and emit_arith.
-       cs->hwtemps[idx].free = cs->nrslots + 1;
-}
-
-/**
- * Create a new Mesa temporary register.
- */
-static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-       GLuint r = undef;
-       GLuint index;
-
-       index = ffs(~cs->temp_in_use);
-       if (!index) {
-               ERROR("Out of program temps\n");
-               return r;
-       }
-
-       cs->temp_in_use |= (1 << --index);
-       cs->temps[index].refcount = 0xFFFFFFFF;
-       cs->temps[index].reg = -1;
-
-       REG_SET_TYPE(r, REG_TYPE_TEMP);
-       REG_SET_INDEX(r, index);
-       REG_SET_VALID(r, GL_TRUE);
-       return r;
-}
-
-/**
- * Create a new Mesa temporary register that will act as the destination
- * register for a texture read.
- */
-static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-       GLuint r = undef;
-       GLuint index;
-
-       index = ffs(~cs->temp_in_use);
-       if (!index) {
-               ERROR("Out of program temps\n");
-               return r;
-       }
-
-       cs->temp_in_use |= (1 << --index);
-       cs->temps[index].refcount = 0xFFFFFFFF;
-       cs->temps[index].reg = get_hw_temp_tex(cs);
-
-       REG_SET_TYPE(r, REG_TYPE_TEMP);
-       REG_SET_INDEX(r, index);
-       REG_SET_VALID(r, GL_TRUE);
-       return r;
-}
-
-/**
- * Free a Mesa temporary and the associated R300 temporary.
- */
-static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
-{
-       GLuint index = REG_GET_INDEX(r);
-
-       if (!(cs->temp_in_use & (1 << index)))
-               return;
-
-       if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
-               free_hw_temp(cs, cs->temps[index].reg);
-               cs->temps[index].reg = -1;
-               cs->temp_in_use &= ~(1 << index);
-       } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
-               free_hw_temp(cs, cs->inputs[index].reg);
-               cs->inputs[index].reg = -1;
-       }
-}
-
-/**
- * Emit a hardware constant/parameter.
- *
- * \p cp Stable pointer to an array of 4 floats.
- *  The pointer must be stable in the sense that it remains to be valid
- *  and hold the contents of the constant/parameter throughout the lifetime
- *  of the fragment program (actually, up until the next time the fragment
- *  program is translated).
- */
-static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
-                           const GLfloat * cp)
-{
-       COMPILE_STATE;
-       GLuint reg = undef;
-       int index;
 
-       for (index = 0; index < code->const_nr; ++index) {
-               if (code->constant[index] == cp)
-                       break;
-       }
-
-       if (index >= code->const_nr) {
-               if (index >= PFS_NUM_CONST_REGS) {
-                       ERROR("Out of hw constants!\n");
-                       return reg;
-               }
-
-               code->const_nr++;
-               code->constant[index] = cp;
-       }
-
-       REG_SET_TYPE(reg, REG_TYPE_CONST);
-       REG_SET_INDEX(reg, index);
-       REG_SET_VALID(reg, GL_TRUE);
-       return reg;
-}
-
-static inline GLuint negate(GLuint r)
-{
-       REG_NEGS(r);
-       REG_NEGV(r);
-       return r;
-}
-
-/* Hack, to prevent clobbering sources used multiple times when
- * emulating non-native instructions
- */
-static inline GLuint keep(GLuint r)
-{
-       REG_SET_NO_USE(r, GL_TRUE);
-       return r;
-}
-
-static inline GLuint absolute(GLuint r)
-{
-       REG_ABS(r);
-       return r;
-}
-
-static int swz_native(struct r300_pfs_compile_state *cs,
-                     GLuint src, GLuint * r, GLuint arbneg)
-{
-       COMPILE_STATE;
-
-       /* Native swizzle, handle negation */
-       src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
-
-       if ((arbneg & 0x7) == 0x0) {
-               src = src & ~REG_NEGV_MASK;
-               *r = src;
-       } else if ((arbneg & 0x7) == 0x7) {
-               src |= REG_NEGV_MASK;
-               *r = src;
-       } else {
-               if (!REG_GET_VALID(*r))
-                       *r = get_temp_reg(cs);
-               src |= REG_NEGV_MASK;
-               emit_arith(cs,
-                          PFS_OP_MAD,
-                          *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
-               src = src & ~REG_NEGV_MASK;
-               emit_arith(cs,
-                          PFS_OP_MAD,
-                          *r,
-                          (arbneg ^ 0x7) | WRITEMASK_W,
-                          src, pfs_one, pfs_zero, 0);
-       }
-
-       return 3;
-}
-
-static int swz_emit_partial(struct r300_pfs_compile_state *cs,
-                           GLuint src,
-                           GLuint * r, int mask, int mc, GLuint arbneg)
-{
-       COMPILE_STATE;
-       GLuint tmp;
-       GLuint wmask = 0;
-
-       if (!REG_GET_VALID(*r))
-               *r = get_temp_reg(cs);
-
-       /* A partial match, VSWZ/mask define what parts of the
-        * desired swizzle we match
-        */
-       if (mc + s_mask[mask].count == 3) {
-               wmask = WRITEMASK_W;
-               src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
-       }
-
-       tmp = arbneg & s_mask[mask].mask;
-       if (tmp) {
-               tmp = tmp ^ s_mask[mask].mask;
-               if (tmp) {
-                       emit_arith(cs,
-                                  PFS_OP_MAD,
-                                  *r,
-                                  arbneg & s_mask[mask].mask,
-                                  keep(src) | REG_NEGV_MASK,
-                                  pfs_one, pfs_zero, 0);
-                       if (!wmask) {
-                               REG_SET_NO_USE(src, GL_TRUE);
-                       } else {
-                               REG_SET_NO_USE(src, GL_FALSE);
-                       }
-                       emit_arith(cs,
-                                  PFS_OP_MAD,
-                                  *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
-               } else {
-                       if (!wmask) {
-                               REG_SET_NO_USE(src, GL_TRUE);
-                       } else {
-                               REG_SET_NO_USE(src, GL_FALSE);
-                       }
-                       emit_arith(cs,
-                                  PFS_OP_MAD,
-                                  *r,
-                                  (arbneg & s_mask[mask].mask) | wmask,
-                                  src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
-               }
-       } else {
-               if (!wmask) {
-                       REG_SET_NO_USE(src, GL_TRUE);
-               } else {
-                       REG_SET_NO_USE(src, GL_FALSE);
-               }
-               emit_arith(cs, PFS_OP_MAD,
-                          *r,
-                          s_mask[mask].mask | wmask,
-                          src, pfs_one, pfs_zero, 0);
-       }
-
-       return s_mask[mask].count;
-}
-
-static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
-                        GLuint src, GLuint arbswz, GLuint arbneg)
-{
-       COMPILE_STATE;
-       GLuint r = undef;
-       GLuint vswz;
-       int c_mask = 0;
-       int v_match = 0;
-
-       /* If swizzling from something without an XYZW native swizzle,
-        * emit result to a temp, and do new swizzle from the temp.
-        */
-#if 0
-       if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
-               GLuint temp = get_temp_reg(fp);
-               emit_arith(fp,
-                          PFS_OP_MAD,
-                          temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
-               src = temp;
-       }
-#endif
-
-       if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
-               GLuint vsrcswz =
-                   (v_swiz[REG_GET_VSWZ(src)].
-                    hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
-                   REG_GET_SSWZ(src) << 9;
-               GLint i;
-
-               GLuint newswz = 0;
-               GLuint offset;
-               for (i = 0; i < 4; ++i) {
-                       offset = GET_SWZ(arbswz, i);
-
-                       newswz |=
-                           (offset <= 3) ? GET_SWZ(vsrcswz,
-                                                   offset) << i *
-                           3 : offset << i * 3;
-               }
-
-               arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
-               REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
-       } else {
-               /* set scalar swizzling */
-               REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
-
-       }
-       do {
-               vswz = REG_GET_VSWZ(src);
-               do {
-                       int chash;
-
-                       REG_SET_VSWZ(src, vswz);
-                       chash = v_swiz[REG_GET_VSWZ(src)].hash &
-                           s_mask[c_mask].hash;
-
-                       if (chash == (arbswz & s_mask[c_mask].hash)) {
-                               if (s_mask[c_mask].count == 3) {
-                                       v_match += swz_native(cs,
-                                                             src, &r, arbneg);
-                               } else {
-                                       v_match += swz_emit_partial(cs,
-                                                                   src,
-                                                                   &r,
-                                                                   c_mask,
-                                                                   v_match,
-                                                                   arbneg);
-                               }
-
-                               if (v_match == 3)
-                                       return r;
-
-                               /* Fill with something invalid.. all 0's was
-                                * wrong before, matched SWIZZLE_X.  So all
-                                * 1's will be okay for now
-                                */
-                               arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
-                       }
-               } while (v_swiz[++vswz].hash != PFS_INVAL);
-               REG_SET_VSWZ(src, SWIZZLE_XYZ);
-       } while (s_mask[++c_mask].hash != PFS_INVAL);
-
-       ERROR("should NEVER get here\n");
-       return r;
-}
-
-static GLuint t_src(struct r300_pfs_compile_state *cs,
-                   struct prog_src_register fpsrc)
-{
-       COMPILE_STATE;
-       GLuint r = undef;
-
-       switch (fpsrc.File) {
-       case PROGRAM_TEMPORARY:
-               REG_SET_INDEX(r, fpsrc.Index);
-               REG_SET_VALID(r, GL_TRUE);
-               REG_SET_TYPE(r, REG_TYPE_TEMP);
-               break;
-       case PROGRAM_INPUT:
-               REG_SET_INDEX(r, fpsrc.Index);
-               REG_SET_VALID(r, GL_TRUE);
-               REG_SET_TYPE(r, REG_TYPE_INPUT);
-               break;
-       case PROGRAM_LOCAL_PARAM:
-               r = emit_const4fv(cs,
-                                 fp->mesa_program.Base.LocalParams[fpsrc.
-                                                                   Index]);
-               break;
-       case PROGRAM_ENV_PARAM:
-               r = emit_const4fv(cs,
-                       cs->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
-               break;
-       case PROGRAM_STATE_VAR:
-       case PROGRAM_NAMED_PARAM:
-       case PROGRAM_CONSTANT:
-               r = emit_const4fv(cs,
-                                 fp->mesa_program.Base.Parameters->
-                                 ParameterValues[fpsrc.Index]);
-               break;
-       default:
-               ERROR("unknown SrcReg->File %x\n", fpsrc.File);
-               return r;
-       }
-
-       /* no point swizzling ONE/ZERO/HALF constants... */
-       if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
-               r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
-       return r;
-}
-
-static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
-                          struct prog_src_register fpsrc)
-{
-       struct prog_src_register src = fpsrc;
-       int sc = GET_SWZ(fpsrc.Swizzle, 0);     /* X */
-
-       src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
-
-       return t_src(cs, src);
-}
-
-static GLuint t_dst(struct r300_pfs_compile_state *cs,
-                   struct prog_dst_register dest)
-{
-       COMPILE_STATE;
-       GLuint r = undef;
-
-       switch (dest.File) {
-       case PROGRAM_TEMPORARY:
-               REG_SET_INDEX(r, dest.Index);
-               REG_SET_VALID(r, GL_TRUE);
-               REG_SET_TYPE(r, REG_TYPE_TEMP);
-               return r;
-       case PROGRAM_OUTPUT:
-               REG_SET_TYPE(r, REG_TYPE_OUTPUT);
-               switch (dest.Index) {
-               case FRAG_RESULT_COLR:
-               case FRAG_RESULT_DEPR:
-                       REG_SET_INDEX(r, dest.Index);
-                       REG_SET_VALID(r, GL_TRUE);
-                       return r;
-               default:
-                       ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
-                       return r;
-               }
-       default:
-               ERROR("Bad DstReg->File 0x%x\n", dest.File);
-               return r;
-       }
-}
-
-static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
-{
-       COMPILE_STATE;
-       int idx;
-       int index = REG_GET_INDEX(src);
-
-       switch (REG_GET_TYPE(src)) {
-       case REG_TYPE_TEMP:
-               /* NOTE: if reg==-1 here, a source is being read that
-                *       hasn't been written to. Undefined results.
-                */
-               if (cs->temps[index].reg == -1)
-                       cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
-
-               idx = cs->temps[index].reg;
-
-               if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
-                       free_temp(cs, src);
-               break;
-       case REG_TYPE_INPUT:
-               idx = cs->inputs[index].reg;
-
-               if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
-                       free_hw_temp(cs, cs->inputs[index].reg);
-               break;
-       case REG_TYPE_CONST:
-               return (index | SRC_CONST);
-       default:
-               ERROR("Invalid type for source reg\n");
-               return (0 | SRC_CONST);
-       }
-
-       if (!tex)
-               cs->used_in_node |= (1 << idx);
-
-       return idx;
-}
-
-static int t_hw_dst(struct r300_pfs_compile_state *cs,
-                   GLuint dest, GLboolean tex, int slot)
-{
-       COMPILE_STATE;
-       int idx;
-       GLuint index = REG_GET_INDEX(dest);
-       assert(REG_GET_VALID(dest));
-
-       switch (REG_GET_TYPE(dest)) {
-       case REG_TYPE_TEMP:
-               if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
-                       if (!tex) {
-                               cs->temps[index].reg = get_hw_temp(cs, slot);
-                       } else {
-                               cs->temps[index].reg = get_hw_temp_tex(cs);
-                       }
-               }
-               idx = cs->temps[index].reg;
-
-               if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
-                       free_temp(cs, dest);
-
-               cs->dest_in_node |= (1 << idx);
-               cs->used_in_node |= (1 << idx);
-               break;
-       case REG_TYPE_OUTPUT:
-               switch (index) {
-               case FRAG_RESULT_COLR:
-                       code->node[code->cur_node].flags |= R300_RGBA_OUT;
-                       break;
-               case FRAG_RESULT_DEPR:
-                       fp->WritesDepth = GL_TRUE;
-                       code->node[code->cur_node].flags |= R300_W_OUT;
-                       break;
-               }
-               return index;
-               break;
-       default:
-               ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
-               return 0;
-       }
-
-       return idx;
-}
-
-static void emit_nop(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-
-       if (cs->nrslots >= PFS_MAX_ALU_INST) {
-               ERROR("Out of ALU instruction slots\n");
-               return;
-       }
-
-       code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
-       code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
-       code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
-       code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
-       cs->nrslots++;
-}
-
-static void emit_tex(struct r300_pfs_compile_state *cs,
-                    struct prog_instruction *fpi, int opcode)
+static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
 {
-       COMPILE_STATE;
-       GLuint coord = t_src(cs, fpi->SrcReg[0]);
-       GLuint dest = undef, rdest = undef;
-       GLuint din, uin;
-       int unit = fpi->TexSrcUnit;
-       int hwsrc, hwdest;
-       GLuint tempreg = 0;
-
-       /**
-        * Hardware uses [0..1]x[0..1] range for rectangle textures
-        * instead of [0..Width]x[0..Height].
-        * Add a scaling instruction.
-        *
-        * \todo Refactor this once we have proper rewriting/optimization
-        * support for programs.
-        */
-       if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
-               gl_state_index tokens[STATE_LENGTH] = {
-                       STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
-                       0
-               };
-               int factor_index;
-               GLuint factorreg;
-
-               tokens[2] = unit;
-               factor_index =
-                       _mesa_add_state_reference(fp->mesa_program.Base.
-                                               Parameters, tokens);
-               factorreg =
-                       emit_const4fv(cs,
-                               fp->mesa_program.Base.Parameters->
-                               ParameterValues[factor_index]);
-               tempreg = keep(get_temp_reg(cs));
-
-               emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
-                       coord, factorreg, pfs_zero, 0);
-
-               coord = tempreg;
-       }
-
-       /* Texture operations do not support swizzles etc. in hardware,
-        * so emit an additional arithmetic operation if necessary.
-        */
-       if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
-           REG_GET_SSWZ(coord) != SWIZZLE_W ||
-           coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
-               assert(tempreg == 0);
-               tempreg = keep(get_temp_reg(cs));
-               emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
-                       coord, pfs_one, pfs_zero, 0);
-               coord = tempreg;
-       }
-
-       /* Ensure correct node indirection */
-       uin = cs->used_in_node;
-       din = cs->dest_in_node;
-
-       /* Resolve source/dest to hardware registers */
-       hwsrc = t_hw_src(cs, coord, GL_TRUE);
-
-       if (opcode != R300_TEX_OP_KIL) {
-               dest = t_dst(cs, fpi->DstReg);
-
-               /* r300 doesn't seem to be able to do TEX->output reg */
-               if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
-                       rdest = dest;
-                       dest = get_temp_reg_tex(cs);
-               } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
-                       /* in case write mask isn't XYZW */
-                       rdest = dest;
-                       dest = get_temp_reg_tex(cs);
-               }
-               hwdest =
-                   t_hw_dst(cs, dest, GL_TRUE,
-                            code->node[code->cur_node].alu_offset);
-
-               /* Use a temp that hasn't been used in this node, rather
-                * than causing an indirection
-                */
-               if (uin & (1 << hwdest)) {
-                       free_hw_temp(cs, hwdest);
-                       hwdest = get_hw_temp_tex(cs);
-                       cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
-               }
-       } else {
-               hwdest = 0;
-               unit = 0;
-       }
-
-       /* Indirection if source has been written in this node, or if the
-        * dest has been read/written in this node
-        */
-       if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
-            (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
-
-               /* Finish off current node */
-               if (code->node[code->cur_node].alu_offset == cs->nrslots)
-                       emit_nop(cs);
-
-               code->node[code->cur_node].alu_end =
-                   cs->nrslots - code->node[code->cur_node].alu_offset - 1;
-               assert(code->node[code->cur_node].alu_end >= 0);
-
-               if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
-                       ERROR("too many levels of texture indirection\n");
-                       return;
-               }
-
-               /* Start new node */
-               code->node[code->cur_node].tex_offset = code->tex.length;
-               code->node[code->cur_node].alu_offset = cs->nrslots;
-               code->node[code->cur_node].tex_end = -1;
-               code->node[code->cur_node].alu_end = -1;
-               code->node[code->cur_node].flags = 0;
-               cs->used_in_node = 0;
-               cs->dest_in_node = 0;
-       }
-
-       if (code->cur_node == 0)
-               code->first_node_has_tex = 1;
-
-       code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
-           | (hwdest << R300_DST_ADDR_SHIFT)
-           | (unit << R300_TEX_ID_SHIFT)
-           | (opcode << R300_TEX_INST_SHIFT);
-
-       cs->dest_in_node |= (1 << hwdest);
-       if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
-               cs->used_in_node |= (1 << hwsrc);
-
-       code->node[code->cur_node].tex_end++;
-
-       /* Copy from temp to output if needed */
-       if (REG_GET_VALID(rdest)) {
-               emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
-                          pfs_one, pfs_zero, 0);
-               free_temp(cs, dest);
-       }
+       struct gl_fragment_program *mp = &fp->mesa_program;
 
-       /* Free temp register */
-       if (tempreg != 0)
-               free_temp(cs, tempreg);
+       /* Ask Mesa nicely to fill in ParameterValues for us */
+       if (mp->Base.Parameters)
+               _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
 }
 
-/**
- * Returns the first slot where we could possibly allow writing to dest,
- * according to register allocation.
- */
-static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
-                                     GLuint dest, int mask)
-{
-       COMPILE_STATE;
-       int idx;
-       int pos;
-       GLuint index = REG_GET_INDEX(dest);
-       assert(REG_GET_VALID(dest));
-
-       switch (REG_GET_TYPE(dest)) {
-       case REG_TYPE_TEMP:
-               if (cs->temps[index].reg == -1)
-                       return 0;
-
-               idx = cs->temps[index].reg;
-               break;
-       case REG_TYPE_OUTPUT:
-               return 0;
-       default:
-               ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
-               return 0;
-       }
-
-       pos = cs->hwtemps[idx].reserved;
-       if (mask & WRITEMASK_XYZ) {
-               if (pos < cs->hwtemps[idx].vector_lastread)
-                       pos = cs->hwtemps[idx].vector_lastread;
-       }
-       if (mask & WRITEMASK_W) {
-               if (pos < cs->hwtemps[idx].scalar_lastread)
-                       pos = cs->hwtemps[idx].scalar_lastread;
-       }
-
-       return pos;
-}
 
 /**
- * Allocates a slot for an ALU instruction that can consist of
- * a vertex part or a scalar part or both.
+ * Transform the program to support fragment.position.
  *
- * Sources from src (src[0] to src[argc-1]) are added to the slot in the
- * appropriate position (vector and/or scalar), and their positions are
- * recorded in the srcpos array.
+ * Introduce a small fragment at the start of the program that will be
+ * the only code that directly reads the FRAG_ATTRIB_WPOS input.
+ * All other code pieces that reference that input will be rewritten
+ * to read from a newly allocated temporary.
  *
- * This function emits instruction code for the source fetch and the
- * argument selection. It does not emit instruction code for the
- * opcode or the destination selection.
- *
- * @return the index of the slot
- */
-static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
-                                GLboolean emit_vop,
-                                GLboolean emit_sop,
-                                int argc, GLuint * src, GLuint dest, int mask)
-{
-       COMPILE_STATE;
-       int hwsrc[3];
-       int srcpos[3];
-       unsigned int used;
-       int tempused;
-       int tempvsrc[3];
-       int tempssrc[3];
-       int pos;
-       int regnr;
-       int i, j;
-
-       // Determine instruction slots, whether sources are required on
-       // vector or scalar side, and the smallest slot number where
-       // all source registers are available
-       used = 0;
-       if (emit_vop)
-               used |= SLOT_OP_VECTOR;
-       if (emit_sop)
-               used |= SLOT_OP_SCALAR;
-
-       pos = get_earliest_allowed_write(cs, dest, mask);
-
-       if (code->node[code->cur_node].alu_offset > pos)
-               pos = code->node[code->cur_node].alu_offset;
-       for (i = 0; i < argc; ++i) {
-               if (!REG_GET_BUILTIN(src[i])) {
-                       if (emit_vop)
-                               used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
-                       if (emit_sop)
-                               used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
-               }
-
-               hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE);      /* Note: sideeffects wrt refcounting! */
-               regnr = hwsrc[i] & 31;
-
-               if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
-                       if (used & (SLOT_SRC_VECTOR << i)) {
-                               if (cs->hwtemps[regnr].vector_valid > pos)
-                                       pos = cs->hwtemps[regnr].vector_valid;
-                       }
-                       if (used & (SLOT_SRC_SCALAR << i)) {
-                               if (cs->hwtemps[regnr].scalar_valid > pos)
-                                       pos = cs->hwtemps[regnr].scalar_valid;
-                       }
-               }
-       }
-
-       // Find a slot that fits
-       for (;; ++pos) {
-               if (cs->slot[pos].used & used & SLOT_OP_BOTH)
-                       continue;
-
-               if (pos >= cs->nrslots) {
-                       if (cs->nrslots >= PFS_MAX_ALU_INST) {
-                               ERROR("Out of ALU instruction slots\n");
-                               return -1;
-                       }
-
-                       code->alu.inst[pos].inst0 = NOP_INST0;
-                       code->alu.inst[pos].inst1 = NOP_INST1;
-                       code->alu.inst[pos].inst2 = NOP_INST2;
-                       code->alu.inst[pos].inst3 = NOP_INST3;
-
-                       cs->nrslots++;
-               }
-               // Note: When we need both parts (vector and scalar) of a source,
-               // we always try to put them into the same position. This makes the
-               // code easier to read, and it is optimal (i.e. one doesn't gain
-               // anything by splitting the parts).
-               // It also avoids headaches with swizzles that access both parts (i.e WXY)
-               tempused = cs->slot[pos].used;
-               for (i = 0; i < 3; ++i) {
-                       tempvsrc[i] = cs->slot[pos].vsrc[i];
-                       tempssrc[i] = cs->slot[pos].ssrc[i];
-               }
-
-               for (i = 0; i < argc; ++i) {
-                       int flags = (used >> i) & SLOT_SRC_BOTH;
-
-                       if (!flags) {
-                               srcpos[i] = 0;
-                               continue;
-                       }
-
-                       for (j = 0; j < 3; ++j) {
-                               if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
-                                       if (tempvsrc[j] != hwsrc[i])
-                                               continue;
-                               }
-
-                               if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
-                                       if (tempssrc[j] != hwsrc[i])
-                                               continue;
-                               }
-
-                               break;
-                       }
-
-                       if (j == 3)
-                               break;
-
-                       srcpos[i] = j;
-                       tempused |= flags << j;
-                       if (flags & SLOT_SRC_VECTOR)
-                               tempvsrc[j] = hwsrc[i];
-                       if (flags & SLOT_SRC_SCALAR)
-                               tempssrc[j] = hwsrc[i];
-               }
-
-               if (i == argc)
-                       break;
-       }
-
-       // Found a slot, reserve it
-       cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
-       for (i = 0; i < 3; ++i) {
-               cs->slot[pos].vsrc[i] = tempvsrc[i];
-               cs->slot[pos].ssrc[i] = tempssrc[i];
-       }
-
-       for (i = 0; i < argc; ++i) {
-               if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
-                       int regnr = hwsrc[i] & 31;
-
-                       if (used & (SLOT_SRC_VECTOR << i)) {
-                               if (cs->hwtemps[regnr].vector_lastread < pos)
-                                       cs->hwtemps[regnr].vector_lastread =
-                                           pos;
-                       }
-                       if (used & (SLOT_SRC_SCALAR << i)) {
-                               if (cs->hwtemps[regnr].scalar_lastread < pos)
-                                       cs->hwtemps[regnr].scalar_lastread =
-                                           pos;
-                       }
-               }
-       }
-
-       // Emit the source fetch code
-       code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
-       code->alu.inst[pos].inst1 |=
-           ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
-            (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
-            (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
-
-       code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
-       code->alu.inst[pos].inst3 |=
-           ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
-            (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
-            (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
-
-       // Emit the argument selection code
-       if (emit_vop) {
-               int swz[3];
-
-               for (i = 0; i < 3; ++i) {
-                       if (i < argc) {
-                               swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
-                                         (srcpos[i] *
-                                          v_swiz[REG_GET_VSWZ(src[i])].
-                                          stride)) | ((src[i] & REG_NEGV_MASK)
-                                                      ? ARG_NEG : 0) | ((src[i]
-                                                                         &
-                                                                         REG_ABS_MASK)
-                                                                        ?
-                                                                        ARG_ABS
-                                                                        : 0);
-                       } else {
-                               swz[i] = R300_ALU_ARGC_ZERO;
-                       }
-               }
-
-               code->alu.inst[pos].inst0 &=
-                   ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
-                     R300_ALU_ARG2C_MASK);
-               code->alu.inst[pos].inst0 |=
-                   (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
-                                                        R300_ALU_ARG1C_SHIFT)
-                   | (swz[2] << R300_ALU_ARG2C_SHIFT);
-       }
-
-       if (emit_sop) {
-               int swz[3];
-
-               for (i = 0; i < 3; ++i) {
-                       if (i < argc) {
-                               swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
-                                         (srcpos[i] *
-                                          s_swiz[REG_GET_SSWZ(src[i])].
-                                          stride)) | ((src[i] & REG_NEGV_MASK)
-                                                      ? ARG_NEG : 0) | ((src[i]
-                                                                         &
-                                                                         REG_ABS_MASK)
-                                                                        ?
-                                                                        ARG_ABS
-                                                                        : 0);
-                       } else {
-                               swz[i] = R300_ALU_ARGA_ZERO;
-                       }
-               }
-
-               code->alu.inst[pos].inst2 &=
-                   ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
-                     R300_ALU_ARG2A_MASK);
-               code->alu.inst[pos].inst2 |=
-                   (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
-                                                        R300_ALU_ARG1A_SHIFT)
-                   | (swz[2] << R300_ALU_ARG2A_SHIFT);
-       }
-
-       return pos;
-}
-
-/**
- * Append an ALU instruction to the instruction list.
+ * \todo if/when r5xx supports the radeon_program architecture, this is a
+ * likely candidate for code sharing.
  */
-static void emit_arith(struct r300_pfs_compile_state *cs,
-                      int op,
-                      GLuint dest,
-                      int mask,
-                      GLuint src0, GLuint src1, GLuint src2, int flags)
+static void insert_WPOS_trailer(struct r300_fragment_program_compiler *compiler)
 {
-       COMPILE_STATE;
-       GLuint src[3] = { src0, src1, src2 };
-       int hwdest;
-       GLboolean emit_vop, emit_sop;
-       int vop, sop, argc;
-       int pos;
-
-       vop = r300_fpop[op].v_op;
-       sop = r300_fpop[op].s_op;
-       argc = r300_fpop[op].argc;
+       GLuint InputsRead = compiler->fp->mesa_program.Base.InputsRead;
 
-       if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
-           REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
-               if (mask & WRITEMASK_Z) {
-                       mask = WRITEMASK_W;
-               } else {
-                       return;
-               }
-       }
-
-       emit_vop = GL_FALSE;
-       emit_sop = GL_FALSE;
-       if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
-               emit_vop = GL_TRUE;
-       if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
-               emit_sop = GL_TRUE;
-
-       pos =
-           find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
-                                 mask);
-       if (pos < 0)
+       if (!(InputsRead & FRAG_BIT_WPOS))
                return;
 
-       hwdest = t_hw_dst(cs, dest, GL_FALSE, pos);     /* Note: Side effects wrt register allocation */
-
-       if (flags & PFS_FLAG_SAT) {
-               vop |= R300_ALU_OUTC_CLAMP;
-               sop |= R300_ALU_OUTA_CLAMP;
-       }
-
-       /* Throw the pieces together and get ALU/1 */
-       if (emit_vop) {
-               code->alu.inst[pos].inst0 |= vop;
-
-               code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
-
-               if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
-                       if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
-                               code->alu.inst[pos].inst1 |=
-                                   (mask & WRITEMASK_XYZ) <<
-                                   R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
-                       } else
-                               assert(0);
-               } else {
-                       code->alu.inst[pos].inst1 |=
-                           (mask & WRITEMASK_XYZ) <<
-                           R300_ALU_DSTC_REG_MASK_SHIFT;
-
-                       cs->hwtemps[hwdest].vector_valid = pos + 1;
-               }
-       }
-
-       /* And now ALU/3 */
-       if (emit_sop) {
-               code->alu.inst[pos].inst2 |= sop;
-
-               if (mask & WRITEMASK_W) {
-                       if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
-                               if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
-                                       code->alu.inst[pos].inst3 |=
-                                           (hwdest << R300_ALU_DSTA_SHIFT) |
-                                           R300_ALU_DSTA_OUTPUT;
-                               } else if (REG_GET_INDEX(dest) ==
-                                          FRAG_RESULT_DEPR) {
-                                       code->alu.inst[pos].inst3 |=
-                                           R300_ALU_DSTA_DEPTH;
-                               } else
-                                       assert(0);
-                       } else {
-                               code->alu.inst[pos].inst3 |=
-                                   (hwdest << R300_ALU_DSTA_SHIFT) |
-                                   R300_ALU_DSTA_REG;
-
-                               cs->hwtemps[hwdest].scalar_valid = pos + 1;
-                       }
-               }
-       }
-
-       return;
-}
-
-static GLfloat SinCosConsts[2][4] = {
-       {
-        1.273239545,           // 4/PI
-        -0.405284735,          // -4/(PI*PI)
-        3.141592654,           // PI
-        0.2225                 // weight
-        },
-       {
-        0.75,
-        0.0,
-        0.159154943,           // 1/(2*PI)
-        6.283185307            // 2*PI
-        }
-};
-
-/**
- * Emit a LIT instruction.
- * \p flags may be PFS_FLAG_SAT
- *
- * Definition of LIT (from ARB_fragment_program):
- * tmp = VectorLoad(op0);
- * if (tmp.x < 0) tmp.x = 0;
- * if (tmp.y < 0) tmp.y = 0;
- * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
- * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
- * result.x = 1.0;
- * result.y = tmp.x;
- * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
- * result.w = 1.0;
- *
- * The longest path of computation is the one leading to result.z,
- * consisting of 5 operations. This implementation of LIT takes
- * 5 slots. So unless there's some special undocumented opcode,
- * this implementation is potentially optimal. Unfortunately,
- * emit_arith is a bit too conservative because it doesn't understand
- * partial writes to the vector component.
- */
-static const GLfloat LitConst[4] =
-    { 127.999999, 127.999999, 127.999999, -127.999999 };
-
-static void emit_lit(struct r300_pfs_compile_state *cs,
-                    GLuint dest, int mask, GLuint src, int flags)
-{
-       COMPILE_STATE;
-       GLuint cnst;
-       int needTemporary;
-       GLuint temp;
-
-       cnst = emit_const4fv(cs, LitConst);
-
-       needTemporary = 0;
-       if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
-               needTemporary = 1;
-       } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
-               // LIT is typically followed by DP3/DP4, so there's no point
-               // in creating special code for this case
-               needTemporary = 1;
-       }
-
-       if (needTemporary) {
-               temp = keep(get_temp_reg(cs));
-       } else {
-               temp = keep(dest);
-       }
-
-       // Note: The order of emit_arith inside the slots is relevant,
-       // because emit_arith only looks at scalar vs. vector when resolving
-       // dependencies, and it does not consider individual vector components,
-       // so swizzling between the two parts can create fake dependencies.
-
-       // First slot
-       emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
-                  keep(src), pfs_zero, undef, 0);
-       emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
-
-       // Second slot
-       emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
-                  swizzle(temp, W, W, W, W), cnst, undef, 0);
-       emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
-                  swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
-
-       // Third slot
-       // If desired, we saturate the y result here.
-       // This does not affect the use as a condition variable in the CMP later
-       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
-                  temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
-       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
-                  swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
-
-       // Fourth slot
-       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
-                  pfs_one, pfs_one, pfs_zero, 0);
-       emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
-
-       // Fifth slot
-       emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
-                  pfs_zero, swizzle(temp, W, W, W, W),
-                  negate(swizzle(temp, Y, Y, Y, Y)), flags);
-       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
-                  pfs_zero, 0);
-
-       if (needTemporary) {
-               emit_arith(cs, PFS_OP_MAD, dest, mask,
-                          temp, pfs_one, pfs_zero, flags);
-               free_temp(cs, temp);
-       } else {
-               // Decrease refcount of the destination
-               t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
-       }
-}
-
-static GLboolean parse_program(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-       struct gl_fragment_program *mp = &fp->mesa_program;
-       const struct prog_instruction *inst = mp->Base.Instructions;
-       struct prog_instruction *fpi;
-       GLuint src[3], dest, temp[2];
-       int flags, mask = 0;
-       int const_sin[2];
-
-       if (!inst || inst[0].Opcode == OPCODE_END) {
-               ERROR("empty program?\n");
-               return GL_FALSE;
-       }
-
-       for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
-               if (fpi->SaturateMode == SATURATE_ZERO_ONE)
-                       flags = PFS_FLAG_SAT;
-               else
-                       flags = 0;
-
-               if (fpi->Opcode != OPCODE_KIL) {
-                       dest = t_dst(cs, fpi->DstReg);
-                       mask = fpi->DstReg.WriteMask;
-               }
-
-               switch (fpi->Opcode) {
-               case OPCODE_ABS:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  absolute(src[0]), pfs_one, pfs_zero, flags);
-                       break;
-               case OPCODE_ADD:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], pfs_one, src[1], flags);
-                       break;
-               case OPCODE_CMP:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       src[2] = t_src(cs, fpi->SrcReg[2]);
-                       /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
-                        *    r300 - if src2.c < 0.0 ? src1.c : src0.c
-                        */
-                       emit_arith(cs, PFS_OP_CMP, dest, mask,
-                                  src[2], src[1], src[0], flags);
-                       break;
-               case OPCODE_COS:
-                       /*
-                        * cos using a parabola (see SIN):
-                        * cos(x):
-                        *   x = (x/(2*PI))+0.75
-                        *   x = frac(x)
-                        *   x = (x*2*PI)-PI
-                        *   result = sin(x)
-                        */
-                       temp[0] = get_temp_reg(cs);
-                       const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
-                       const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
-                       /* add 0.5*PI and do range reduction */
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
-                                  swizzle(src[0], X, X, X, X),
-                                  swizzle(const_sin[1], Z, Z, Z, Z),
-                                  swizzle(const_sin[1], X, X, X, X), 0);
-
-                       emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
-                                  swizzle(temp[0], X, X, X, X),
-                                  undef, undef, 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),       //2*PI
-                                  negate(swizzle(const_sin[0], Z, Z, Z, Z)),   //-PI
-                                  0);
-
-                       /* SIN */
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0],
-                                  WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
-                                                                     Z, Z, Z,
-                                                                     Z),
-                                  const_sin[0], pfs_zero, 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
-                                  swizzle(temp[0], Y, Y, Y, Y),
-                                  absolute(swizzle(temp[0], Z, Z, Z, Z)),
-                                  swizzle(temp[0], X, X, X, X), 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
-                                  swizzle(temp[0], X, X, X, X),
-                                  absolute(swizzle(temp[0], X, X, X, X)),
-                                  negate(swizzle(temp[0], X, X, X, X)), 0);
-
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  swizzle(temp[0], Y, Y, Y, Y),
-                                  swizzle(const_sin[0], W, W, W, W),
-                                  swizzle(temp[0], X, X, X, X), flags);
-
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_DP3:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_DP3, dest, mask,
-                                  src[0], src[1], undef, flags);
-                       break;
-               case OPCODE_DP4:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_DP4, dest, mask,
-                                  src[0], src[1], undef, flags);
-                       break;
-               case OPCODE_DPH:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       /* src0.xyz1 -> temp
-                        * DP4 dest, temp, src1
-                        */
-                       emit_arith(cs, PFS_OP_DP4, dest, mask,
-                                  swizzle(src[0], X, Y, Z, ONE), src[1],
-                                  undef, flags);
-                       break;
-               case OPCODE_DST:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       /* dest.y = src0.y * src1.y */
-                       if (mask & WRITEMASK_Y)
-                               emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
-                                          keep(src[0]), keep(src[1]),
-                                          pfs_zero, flags);
-                       /* dest.z = src0.z */
-                       if (mask & WRITEMASK_Z)
-                               emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
-                                          src[0], pfs_one, pfs_zero, flags);
-                       /* result.x = 1.0
-                        * result.w = src1.w */
-                       if (mask & WRITEMASK_XW) {
-                               REG_SET_VSWZ(src[1], SWIZZLE_111);      /*Cheat */
-                               emit_arith(cs, PFS_OP_MAD, dest,
-                                          mask & WRITEMASK_XW,
-                                          src[1], pfs_one, pfs_zero, flags);
-                       }
-                       break;
-               case OPCODE_EX2:
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_EX2, dest, mask,
-                                  src[0], undef, undef, flags);
-                       break;
-               case OPCODE_FLR:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       temp[0] = get_temp_reg(cs);
-                       /* FRC temp, src0
-                        * MAD dest, src0, 1.0, -temp
-                        */
-                       emit_arith(cs, PFS_OP_FRC, temp[0], mask,
-                                  keep(src[0]), undef, undef, 0);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], pfs_one, negate(temp[0]), flags);
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_FRC:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_FRC, dest, mask,
-                                  src[0], undef, undef, flags);
-                       break;
-               case OPCODE_KIL:
-                       emit_tex(cs, fpi, R300_TEX_OP_KIL);
-                       break;
-               case OPCODE_LG2:
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_LG2, dest, mask,
-                                  src[0], undef, undef, flags);
-                       break;
-               case OPCODE_LIT:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       emit_lit(cs, dest, mask, src[0], flags);
-                       break;
-               case OPCODE_LRP:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       src[2] = t_src(cs, fpi->SrcReg[2]);
-                       /* result = tmp0tmp1 + (1 - tmp0)tmp2
-                        *        = tmp0tmp1 + tmp2 + (-tmp0)tmp2
-                        *     MAD temp, -tmp0, tmp2, tmp2
-                        *     MAD result, tmp0, tmp1, temp
-                        */
-                       temp[0] = get_temp_reg(cs);
-                       emit_arith(cs, PFS_OP_MAD, temp[0], mask,
-                                  negate(keep(src[0])), keep(src[2]), src[2],
-                                  0);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], src[1], temp[0], flags);
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_MAD:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       src[2] = t_src(cs, fpi->SrcReg[2]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], src[1], src[2], flags);
-                       break;
-               case OPCODE_MAX:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_MAX, dest, mask,
-                                  src[0], src[1], undef, flags);
-                       break;
-               case OPCODE_MIN:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_MIN, dest, mask,
-                                  src[0], src[1], undef, flags);
-                       break;
-               case OPCODE_MOV:
-               case OPCODE_SWZ:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], pfs_one, pfs_zero, flags);
-                       break;
-               case OPCODE_MUL:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], src[1], pfs_zero, flags);
-                       break;
-               case OPCODE_POW:
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
-                       temp[0] = get_temp_reg(cs);
-                       emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
-                                  src[0], undef, undef, 0);
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
-                                  temp[0], src[1], pfs_zero, 0);
-                       emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
-                                  temp[0], undef, undef, 0);
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_RCP:
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_RCP, dest, mask,
-                                  src[0], undef, undef, flags);
-                       break;
-               case OPCODE_RSQ:
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-                       emit_arith(cs, PFS_OP_RSQ, dest, mask,
-                                  absolute(src[0]), pfs_zero, pfs_zero, flags);
-                       break;
-               case OPCODE_SCS:
-                       /*
-                        * scs using a parabola :
-                        * scs(x):
-                        *   result.x = sin(-abs(x)+0.5*PI)  (cos)
-                        *   result.y = sin(x)               (sin)
-                        *
-                        */
-                       temp[0] = get_temp_reg(cs);
-                       temp[1] = get_temp_reg(cs);
-                       const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
-                       const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
-                       /* x = -abs(x)+0.5*PI */
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z),     //PI
-                                  pfs_half,
-                                  negate(abs
-                                         (swizzle(keep(src[0]), X, X, X, X))),
-                                  0);
-
-                       /* C*x (sin) */
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
-                                  swizzle(const_sin[0], Y, Y, Y, Y),
-                                  swizzle(keep(src[0]), X, X, X, X),
-                                  pfs_zero, 0);
-
-                       /* B*x, C*x (cos) */
-                       emit_arith(cs, PFS_OP_MAD, temp[0],
-                                  WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
-                                                                     Z, Z, Z,
-                                                                     Z),
-                                  const_sin[0], pfs_zero, 0);
-
-                       /* B*x (sin) */
-                       emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
-                                  swizzle(const_sin[0], X, X, X, X),
-                                  keep(src[0]), pfs_zero, 0);
-
-                       /* y = B*x + C*x*abs(x) (sin) */
-                       emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
-                                  absolute(src[0]),
-                                  swizzle(temp[0], W, W, W, W),
-                                  swizzle(temp[1], W, W, W, W), 0);
-
-                       /* y = B*x + C*x*abs(x) (cos) */
-                       emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
-                                  swizzle(temp[0], Y, Y, Y, Y),
-                                  absolute(swizzle(temp[0], Z, Z, Z, Z)),
-                                  swizzle(temp[0], X, X, X, X), 0);
-
-                       /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
-                       emit_arith(cs, PFS_OP_MAD, temp[0],
-                                  WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
-                                                                     W, Z, Y,
-                                                                     X),
-                                  absolute(swizzle(temp[1], W, Z, Y, X)),
-                                  negate(swizzle(temp[1], W, Z, Y, X)), 0);
-
-                       /* dest.xy = mad(temp.xy, P, temp2.wz) */
-                       emit_arith(cs, PFS_OP_MAD, dest,
-                                  mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
-                                  swizzle(const_sin[0], W, W, W, W),
-                                  swizzle(temp[1], W, Z, Y, X), flags);
-
-                       free_temp(cs, temp[0]);
-                       free_temp(cs, temp[1]);
-                       break;
-               case OPCODE_SGE:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       temp[0] = get_temp_reg(cs);
-                       /* temp = src0 - src1
-                        * dest.c = (temp.c < 0.0) ? 0 : 1
-                        */
-                       emit_arith(cs, PFS_OP_MAD, temp[0], mask,
-                                  src[0], pfs_one, negate(src[1]), 0);
-                       emit_arith(cs, PFS_OP_CMP, dest, mask,
-                                  pfs_one, pfs_zero, temp[0], 0);
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_SIN:
-                       /*
-                        *  using a parabola:
-                        * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
-                        * extra precision is obtained by weighting against
-                        * itself squared.
-                        */
-
-                       temp[0] = get_temp_reg(cs);
-                       const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
-                       const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
-                       src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
-                       /* do range reduction */
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
-                                  swizzle(keep(src[0]), X, X, X, X),
-                                  swizzle(const_sin[1], Z, Z, Z, Z),
-                                  pfs_half, 0);
-
-                       emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
-                                  swizzle(temp[0], X, X, X, X),
-                                  undef, undef, 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),       //2*PI
-                                  negate(swizzle(const_sin[0], Z, Z, Z, Z)),   //PI
-                                  0);
-
-                       /* SIN */
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0],
-                                  WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
-                                                                     Z, Z, Z,
-                                                                     Z),
-                                  const_sin[0], pfs_zero, 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
-                                  swizzle(temp[0], Y, Y, Y, Y),
-                                  absolute(swizzle(temp[0], Z, Z, Z, Z)),
-                                  swizzle(temp[0], X, X, X, X), 0);
-
-                       emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
-                                  swizzle(temp[0], X, X, X, X),
-                                  absolute(swizzle(temp[0], X, X, X, X)),
-                                  negate(swizzle(temp[0], X, X, X, X)), 0);
-
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  swizzle(temp[0], Y, Y, Y, Y),
-                                  swizzle(const_sin[0], W, W, W, W),
-                                  swizzle(temp[0], X, X, X, X), flags);
-
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_SLT:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       temp[0] = get_temp_reg(cs);
-                       /* temp = src0 - src1
-                        * dest.c = (temp.c < 0.0) ? 1 : 0
-                        */
-                       emit_arith(cs, PFS_OP_MAD, temp[0], mask,
-                                  src[0], pfs_one, negate(src[1]), 0);
-                       emit_arith(cs, PFS_OP_CMP, dest, mask,
-                                  pfs_zero, pfs_one, temp[0], 0);
-                       free_temp(cs, temp[0]);
-                       break;
-               case OPCODE_SUB:
-                       src[0] = t_src(cs, fpi->SrcReg[0]);
-                       src[1] = t_src(cs, fpi->SrcReg[1]);
-                       emit_arith(cs, PFS_OP_MAD, dest, mask,
-                                  src[0], pfs_one, negate(src[1]), flags);
-                       break;
-               case OPCODE_TEX:
-                       emit_tex(cs, fpi, R300_TEX_OP_LD);
-                       break;
-               case OPCODE_TXB:
-                       emit_tex(cs, fpi, R300_TEX_OP_TXB);
-                       break;
-               case OPCODE_TXP:
-                       emit_tex(cs, fpi, R300_TEX_OP_TXP);
-                       break;
-               case OPCODE_XPD:{
-                               src[0] = t_src(cs, fpi->SrcReg[0]);
-                               src[1] = t_src(cs, fpi->SrcReg[1]);
-                               temp[0] = get_temp_reg(cs);
-                               /* temp = src0.zxy * src1.yzx */
-                               emit_arith(cs, PFS_OP_MAD, temp[0],
-                                          WRITEMASK_XYZ, swizzle(keep(src[0]),
-                                                                 Z, X, Y, W),
-                                          swizzle(keep(src[1]), Y, Z, X, W),
-                                          pfs_zero, 0);
-                               /* dest.xyz = src0.yzx * src1.zxy - temp
-                                * dest.w       = undefined
-                                * */
-                               emit_arith(cs, PFS_OP_MAD, dest,
-                                          mask & WRITEMASK_XYZ, swizzle(src[0],
-                                                                        Y, Z,
-                                                                        X, W),
-                                          swizzle(src[1], Z, X, Y, W),
-                                          negate(temp[0]), flags);
-                               /* cleanup */
-                               free_temp(cs, temp[0]);
-                               break;
-                       }
-               default:
-                       ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
-                       break;
-               }
-
-               if (fp->error)
-                       return GL_FALSE;
-
-       }
-
-       return GL_TRUE;
-}
-
-static void insert_wpos(struct gl_program *prog)
-{
        static gl_state_index tokens[STATE_LENGTH] = {
                STATE_INTERNAL, STATE_R300_WINDOW_DIMENSION, 0, 0, 0
        };
        struct prog_instruction *fpi;
        GLuint window_index;
        int i = 0;
-       GLuint tempregi = prog->NumTemporaries;
-       /* should do something else if no temps left... */
-       prog->NumTemporaries++;
+       GLuint tempregi = radeonCompilerAllocateTemporary(&compiler->compiler);
 
-       fpi = _mesa_alloc_instructions(prog->NumInstructions + 3);
-       _mesa_init_instructions(fpi, prog->NumInstructions + 3);
+       fpi = radeonClauseInsertInstructions(&compiler->compiler, &compiler->compiler.Clauses[0], 0, 3);
 
        /* perspective divide */
        fpi[i].Opcode = OPCODE_RCP;
@@ -2121,7 +118,7 @@ static void insert_wpos(struct gl_program *prog)
        i++;
 
        /* viewport transformation */
-       window_index = _mesa_add_state_reference(prog->Parameters, tokens);
+       window_index = _mesa_add_state_reference(compiler->fp->mesa_program.Base.Parameters, tokens);
 
        fpi[i].Opcode = OPCODE_MAD;
 
@@ -2146,193 +143,42 @@ static void insert_wpos(struct gl_program *prog)
            MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ZERO);
        i++;
 
-       _mesa_copy_instructions(&fpi[i], prog->Instructions,
-                               prog->NumInstructions);
-
-       free(prog->Instructions);
-
-       prog->Instructions = fpi;
-
-       prog->NumInstructions += i;
-       fpi = &prog->Instructions[prog->NumInstructions - 1];
-
-       assert(fpi->Opcode == OPCODE_END);
-
-       for (fpi = &prog->Instructions[3]; fpi->Opcode != OPCODE_END; fpi++) {
-               for (i = 0; i < 3; i++)
-                       if (fpi->SrcReg[i].File == PROGRAM_INPUT &&
-                           fpi->SrcReg[i].Index == FRAG_ATTRIB_WPOS) {
-                               fpi->SrcReg[i].File = PROGRAM_TEMPORARY;
-                               fpi->SrcReg[i].Index = tempregi;
-                       }
-       }
-}
-
-/* - Init structures
- * - Determine what hwregs each input corresponds to
- */
-static void init_program(struct r300_pfs_compile_state *cs)
-{
-       COMPILE_STATE;
-       struct gl_fragment_program *mp = &fp->mesa_program;
-       struct prog_instruction *fpi;
-       GLuint InputsRead = mp->Base.InputsRead;
-       GLuint temps_used = 0;  /* for fp->temps[] */
-       int i, j;
-
-       /* New compile, reset tracking data */
-       fp->optimization =
-           driQueryOptioni(&cs->r300->radeon.optionCache, "fp_optimization");
-       fp->translated = GL_FALSE;
-       fp->error = GL_FALSE;
-       fp->WritesDepth = GL_FALSE;
-       code->tex.length = 0;
-       code->cur_node = 0;
-       code->first_node_has_tex = 0;
-       code->const_nr = 0;
-       code->max_temp_idx = 0;
-       code->node[0].alu_end = -1;
-       code->node[0].tex_end = -1;
-
-       for (i = 0; i < PFS_MAX_ALU_INST; i++) {
-               for (j = 0; j < 3; j++) {
-                       cs->slot[i].vsrc[j] = SRC_CONST;
-                       cs->slot[i].ssrc[j] = SRC_CONST;
-               }
-       }
-
-       /* Work out what temps the Mesa inputs correspond to, this must match
-        * what setup_rs_unit does, which shouldn't be a problem as rs_unit
-        * configures itself based on the fragprog's InputsRead
-        *
-        * NOTE: this depends on get_hw_temp() allocating registers in order,
-        * starting from register 0.
-        */
-
-       /* Texcoords come first */
-       for (i = 0; i < cs->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
-               if (InputsRead & (FRAG_BIT_TEX0 << i)) {
-                       cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
-                       cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
-                           get_hw_temp(cs, 0);
-               }
-       }
-       InputsRead &= ~FRAG_BITS_TEX_ANY;
-
-       /* fragment position treated as a texcoord */
-       if (InputsRead & FRAG_BIT_WPOS) {
-               cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
-               cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
-               insert_wpos(&mp->Base);
-       }
-       InputsRead &= ~FRAG_BIT_WPOS;
-
-       /* Then primary colour */
-       if (InputsRead & FRAG_BIT_COL0) {
-               cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
-               cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
-       }
-       InputsRead &= ~FRAG_BIT_COL0;
-
-       /* Secondary color */
-       if (InputsRead & FRAG_BIT_COL1) {
-               cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
-               cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
-       }
-       InputsRead &= ~FRAG_BIT_COL1;
-
-       /* Anything else */
-       if (InputsRead) {
-               WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
-               /* force read from hwreg 0 for now */
-               for (i = 0; i < 32; i++)
-                       if (InputsRead & (1 << i))
-                               cs->inputs[i].reg = 0;
-       }
-
-       /* Pre-parse the mesa program, grabbing refcounts on input/temp regs.
-        * That way, we can free up the reg when it's no longer needed
-        */
-       if (!mp->Base.Instructions) {
-               ERROR("No instructions found in program\n");
-               return;
-       }
-
-       for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
-               int idx;
-
-               for (i = 0; i < 3; i++) {
-                       idx = fpi->SrcReg[i].Index;
-                       switch (fpi->SrcReg[i].File) {
-                       case PROGRAM_TEMPORARY:
-                               if (!(temps_used & (1 << idx))) {
-                                       cs->temps[idx].reg = -1;
-                                       cs->temps[idx].refcount = 1;
-                                       temps_used |= (1 << idx);
-                               } else
-                                       cs->temps[idx].refcount++;
-                               break;
-                       case PROGRAM_INPUT:
-                               cs->inputs[idx].refcount++;
-                               break;
-                       default:
-                               break;
+       for (; i < compiler->compiler.Clauses[0].NumInstructions; ++i) {
+               int reg;
+               for (reg = 0; reg < 3; reg++) {
+                       if (fpi[i].SrcReg[reg].File == PROGRAM_INPUT &&
+                           fpi[i].SrcReg[reg].Index == FRAG_ATTRIB_WPOS) {
+                               fpi[i].SrcReg[reg].File = PROGRAM_TEMPORARY;
+                               fpi[i].SrcReg[reg].Index = tempregi;
                        }
                }
-
-               idx = fpi->DstReg.Index;
-               if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
-                       if (!(temps_used & (1 << idx))) {
-                               cs->temps[idx].reg = -1;
-                               cs->temps[idx].refcount = 1;
-                               temps_used |= (1 << idx);
-                       } else
-                               cs->temps[idx].refcount++;
-               }
        }
-       cs->temp_in_use = temps_used;
 }
 
-static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
-{
-       struct gl_fragment_program *mp = &fp->mesa_program;
-
-       /* Ask Mesa nicely to fill in ParameterValues for us */
-       if (mp->Base.Parameters)
-               _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
-}
 
 void r300TranslateFragmentShader(r300ContextPtr r300,
                                 struct r300_fragment_program *fp)
 {
        if (!fp->translated) {
-               struct r300_pfs_compile_state cs;
+               struct r300_fragment_program_compiler compiler;
 
-               _mesa_memset(&cs, 0, sizeof(cs));
-               cs.r300 = r300;
-               cs.fp = fp;
-               init_program(&cs);
+               compiler.r300 = r300;
+               compiler.fp = fp;
+               compiler.code = &fp->code;
 
-               if (parse_program(&cs) == GL_FALSE) {
-                       dump_program(fp, &fp->code);
-                       return;
-               }
+               radeonCompilerInit(&compiler.compiler, r300->radeon.glCtx, &fp->mesa_program.Base);
+
+               insert_WPOS_trailer(&compiler);
+
+               if (!r300FragmentProgramEmit(&compiler))
+                       fp->error = GL_TRUE;
 
-               /* Finish off */
-               fp->code.node[fp->code.cur_node].alu_end =
-                   cs.nrslots - fp->code.node[fp->code.cur_node].alu_offset - 1;
-               if (fp->code.node[fp->code.cur_node].tex_end < 0)
-                       fp->code.node[fp->code.cur_node].tex_end = 0;
-               fp->code.alu_offset = 0;
-               fp->code.alu_end = cs.nrslots - 1;
-               fp->code.tex_offset = 0;
-               fp->code.tex_end = fp->code.tex.length ? fp->code.tex.length - 1 : 0;
-               assert(fp->code.node[fp->code.cur_node].alu_end >= 0);
-               assert(fp->code.alu_end >= 0);
+               radeonCompilerCleanup(&compiler.compiler);
 
-               fp->translated = GL_TRUE;
-               if (RADEON_DEBUG & DEBUG_PIXEL)
-                       dump_program(fp, &fp->code);
+               if (!fp->error)
+                       fp->translated = GL_TRUE;
+               if (fp->error || (RADEON_DEBUG & DEBUG_PIXEL))
+                       r300FragmentProgramDump(fp, &fp->code);
                r300UpdateStateParameters(r300->radeon.glCtx, _NEW_PROGRAM);
        }
 
@@ -2340,8 +186,9 @@ void r300TranslateFragmentShader(r300ContextPtr r300,
 }
 
 /* just some random things... */
-static void dump_program(struct r300_fragment_program *fp,
-                        struct r300_fragment_program_code *code)
+void r300FragmentProgramDump(
+       struct r300_fragment_program *fp,
+       struct r300_fragment_program_code *code)
 {
        int n, i, j;
        static int pc = 0;
index 561d7c6423a3e388b2f4976c4075b20e7845a2ea..8c836c4bda67eb4de8f18fb884fda872f10e48d9 100644 (file)
@@ -40,6 +40,7 @@
 #include "shader/prog_instruction.h"
 
 #include "r300_context.h"
+#include "radeon_program.h"
 
 /* supported hw opcodes */
 #define PFS_OP_MAD 0
@@ -136,4 +137,23 @@ struct r300_fragment_program;
 extern void r300TranslateFragmentShader(r300ContextPtr r300,
                                        struct r300_fragment_program *fp);
 
+
+/**
+ * Used internally by the r300 fragment program code to store compile-time
+ * only data.
+ */
+struct r300_fragment_program_compiler {
+       r300ContextPtr r300;
+       struct r300_fragment_program *fp;
+       struct r300_fragment_program_code *code;
+       struct radeon_compiler compiler;
+};
+
+extern GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler);
+
+
+extern void r300FragmentProgramDump(
+       struct r300_fragment_program *fp,
+       struct r300_fragment_program_code *code);
+
 #endif
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog_emit.c b/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
new file mode 100644 (file)
index 0000000..fe8a347
--- /dev/null
@@ -0,0 +1,2232 @@
+/*
+ * Copyright (C) 2005 Ben Skeggs.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+/**
+ * \file
+ *
+ * Emit the r300_fragment_program_code that can be understood by the hardware.
+ * Input is a pre-transformed radeon_program.
+ *
+ * \author Ben Skeggs <darktama@iinet.net.au>
+ *
+ * \author Jerome Glisse <j.glisse@gmail.com>
+ *
+ * \todo FogOption
+ *
+ * \todo Verify results of opcodes for accuracy, I've only checked them in
+ * specific cases.
+ */
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/prog_instruction.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+
+#include "r300_context.h"
+#include "r300_fragprog.h"
+#include "r300_reg.h"
+#include "r300_state.h"
+
+/* Mapping Mesa registers to R300 temporaries */
+struct reg_acc {
+       int reg;                /* Assigned hw temp */
+       unsigned int refcount;  /* Number of uses by mesa program */
+};
+
+/**
+ * Describe the current lifetime information for an R300 temporary
+ */
+struct reg_lifetime {
+       /* Index of the first slot where this register is free in the sense
+          that it can be used as a new destination register.
+          This is -1 if the register has been assigned to a Mesa register
+          and the last access to the register has not yet been emitted */
+       int free;
+
+       /* Index of the first slot where this register is currently reserved.
+          This is used to stop e.g. a scalar operation from being moved
+          before the allocation time of a register that was first allocated
+          for a vector operation. */
+       int reserved;
+
+       /* Index of the first slot in which the register can be used as a
+          source without losing the value that is written by the last
+          emitted instruction that writes to the register */
+       int vector_valid;
+       int scalar_valid;
+
+       /* Index to the slot where the register was last read.
+          This is also the first slot in which the register may be written again */
+       int vector_lastread;
+       int scalar_lastread;
+};
+
+/**
+ * Store usage information about an ALU instruction slot during the
+ * compilation of a fragment program.
+ */
+#define SLOT_SRC_VECTOR  (1<<0)
+#define SLOT_SRC_SCALAR  (1<<3)
+#define SLOT_SRC_BOTH    (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
+#define SLOT_OP_VECTOR   (1<<16)
+#define SLOT_OP_SCALAR   (1<<17)
+#define SLOT_OP_BOTH     (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
+
+struct r300_pfs_compile_slot {
+       /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
+          defined above */
+       unsigned int used;
+
+       /* Selected sources */
+       int vsrc[3];
+       int ssrc[3];
+};
+
+/**
+ * Store information during compilation of fragment programs.
+ */
+struct r300_pfs_compile_state {
+       struct r300_fragment_program_compiler *compiler;
+
+       int nrslots;            /* number of ALU slots used so far */
+
+       /* Track which (parts of) slots are already filled with instructions */
+       struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
+
+       /* Track the validity of R300 temporaries */
+       struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
+
+       /* Used to map Mesa's inputs/temps onto hardware temps */
+       int temp_in_use;
+       struct reg_acc temps[PFS_NUM_TEMP_REGS];
+       struct reg_acc inputs[32];      /* don't actually need 32... */
+
+       /* Track usage of hardware temps, for register allocation,
+        * indirection detection, etc. */
+       GLuint used_in_node;
+       GLuint dest_in_node;
+};
+
+
+/*
+ * Usefull macros and values
+ */
+#define ERROR(fmt, args...) do {                       \
+               fprintf(stderr, "%s::%s(): " fmt "\n",  \
+                       __FILE__, __FUNCTION__, ##args);        \
+               fp->error = GL_TRUE;                    \
+       } while(0)
+
+#define PFS_INVAL 0xFFFFFFFF
+#define COMPILE_STATE \
+       struct r300_fragment_program *fp = cs->compiler->fp; \
+       struct r300_fragment_program_code *code = cs->compiler->code; \
+       (void)code; (void)fp
+
+#define SWIZZLE_XYZ            0
+#define SWIZZLE_XXX            1
+#define SWIZZLE_YYY            2
+#define SWIZZLE_ZZZ            3
+#define SWIZZLE_WWW            4
+#define SWIZZLE_YZX            5
+#define SWIZZLE_ZXY            6
+#define SWIZZLE_WZY            7
+#define SWIZZLE_111            8
+#define SWIZZLE_000            9
+#define SWIZZLE_HHH            10
+
+#define swizzle(r, x, y, z, w) do_swizzle(cs, r,               \
+                                         ((SWIZZLE_##x<<0)|    \
+                                          (SWIZZLE_##y<<3)|    \
+                                          (SWIZZLE_##z<<6)|    \
+                                          (SWIZZLE_##w<<9)),   \
+                                         0)
+
+#define REG_TYPE_INPUT         0
+#define REG_TYPE_OUTPUT                1
+#define REG_TYPE_TEMP          2
+#define REG_TYPE_CONST         3
+
+#define REG_TYPE_SHIFT         0
+#define REG_INDEX_SHIFT                2
+#define REG_VSWZ_SHIFT         8
+#define REG_SSWZ_SHIFT         13
+#define REG_NEGV_SHIFT         18
+#define REG_NEGS_SHIFT         19
+#define REG_ABS_SHIFT          20
+#define REG_NO_USE_SHIFT       21      // Hack for refcounting
+#define REG_VALID_SHIFT                22      // Does the register contain a defined value?
+#define REG_BUILTIN_SHIFT   23 // Is it a builtin (like all zero/all one)?
+
+#define REG_TYPE_MASK          (0x03 << REG_TYPE_SHIFT)
+#define REG_INDEX_MASK         (0x3F << REG_INDEX_SHIFT)
+#define REG_VSWZ_MASK          (0x1F << REG_VSWZ_SHIFT)
+#define REG_SSWZ_MASK          (0x1F << REG_SSWZ_SHIFT)
+#define REG_NEGV_MASK          (0x01 << REG_NEGV_SHIFT)
+#define REG_NEGS_MASK          (0x01 << REG_NEGS_SHIFT)
+#define REG_ABS_MASK           (0x01 << REG_ABS_SHIFT)
+#define REG_NO_USE_MASK                (0x01 << REG_NO_USE_SHIFT)
+#define REG_VALID_MASK         (0x01 << REG_VALID_SHIFT)
+#define REG_BUILTIN_MASK       (0x01 << REG_BUILTIN_SHIFT)
+
+#define REG(type, index, vswz, sswz, nouse, valid, builtin)    \
+       (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) |                   \
+        ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) |                \
+        ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) |              \
+        ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) |                \
+        ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) |  \
+        ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) |                   \
+        ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_GET_TYPE(reg)                                              \
+       ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
+#define REG_GET_INDEX(reg)                                             \
+       ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
+#define REG_GET_VSWZ(reg)                                              \
+       ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
+#define REG_GET_SSWZ(reg)                                              \
+       ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
+#define REG_GET_NO_USE(reg)                                            \
+       ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
+#define REG_GET_VALID(reg)                                             \
+       ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
+#define REG_GET_BUILTIN(reg)                                           \
+       ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
+#define REG_SET_TYPE(reg, type)                                                \
+       reg = ((reg & ~REG_TYPE_MASK) |                                 \
+              ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
+#define REG_SET_INDEX(reg, index)                                      \
+       reg = ((reg & ~REG_INDEX_MASK) |                                \
+              ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
+#define REG_SET_VSWZ(reg, vswz)                                                \
+       reg = ((reg & ~REG_VSWZ_MASK) |                                 \
+              ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
+#define REG_SET_SSWZ(reg, sswz)                                                \
+       reg = ((reg & ~REG_SSWZ_MASK) |                                 \
+              ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_SET_NO_USE(reg, nouse)                                     \
+       reg = ((reg & ~REG_NO_USE_MASK) |                               \
+              ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
+#define REG_SET_VALID(reg, valid)                                      \
+       reg = ((reg & ~REG_VALID_MASK) |                                \
+              ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
+#define REG_SET_BUILTIN(reg, builtin)                                  \
+       reg = ((reg & ~REG_BUILTIN_MASK) |                              \
+              ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
+#define REG_ABS(reg)                                                   \
+       reg = (reg | REG_ABS_MASK)
+#define REG_NEGV(reg)                                                  \
+       reg = (reg | REG_NEGV_MASK)
+#define REG_NEGS(reg)                                                  \
+       reg = (reg | REG_NEGS_MASK)
+
+#define NOP_INST0 (                                             \
+               (R300_ALU_OUTC_MAD) |                            \
+               (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
+               (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
+               (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
+#define NOP_INST1 (                                         \
+               ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
+               ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
+               ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
+#define NOP_INST2 ( \
+               (R300_ALU_OUTA_MAD) |                            \
+               (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
+               (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
+               (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
+#define NOP_INST3 (                                         \
+               ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
+               ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
+               ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
+
+
+/*
+ * Datas structures for fragment program generation
+ */
+
+/* description of r300 native hw instructions */
+static const struct {
+       const char *name;
+       int argc;
+       int v_op;
+       int s_op;
+} r300_fpop[] = {
+       /* *INDENT-OFF* */
+       {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
+       {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
+       {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
+       {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
+       {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
+       {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
+       {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
+       {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
+       {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
+       {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
+       {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
+       {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
+       {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
+       /* *INDENT-ON* */
+};
+
+/* vector swizzles r300 can support natively, with a couple of
+ * cases we handle specially
+ *
+ * REG_VSWZ/REG_SSWZ is an index into this table
+ */
+
+/* mapping from SWIZZLE_* to r300 native values for scalar insns */
+#define SWIZZLE_HALF 6
+
+#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
+                                         SWIZZLE_##y, \
+                                         SWIZZLE_##z, \
+                                         SWIZZLE_ZERO))
+/* native swizzles */
+static const struct r300_pfs_swizzle {
+       GLuint hash;            /* swizzle value this matches */
+       GLuint base;            /* base value for hw swizzle */
+       GLuint stride;          /* difference in base between arg0/1/2 */
+       GLuint flags;
+} v_swiz[] = {
+       /* *INDENT-OFF* */
+       {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
+       {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
+       {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
+       {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
+       {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
+       {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
+       {PFS_INVAL, 0, 0, 0},
+       /* *INDENT-ON* */
+};
+
+/* used during matching of non-native swizzles */
+#define SWZ_X_MASK (7 << 0)
+#define SWZ_Y_MASK (7 << 3)
+#define SWZ_Z_MASK (7 << 6)
+#define SWZ_W_MASK (7 << 9)
+static const struct {
+       GLuint hash;            /* used to mask matching swizzle components */
+       int mask;               /* actual outmask */
+       int count;              /* count of components matched */
+} s_mask[] = {
+       /* *INDENT-OFF* */
+       {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
+       {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
+       {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
+       {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
+       {SWZ_X_MASK, 1, 1},
+       {SWZ_Y_MASK, 2, 1},
+       {SWZ_Z_MASK, 4, 1},
+       {PFS_INVAL, PFS_INVAL, PFS_INVAL}
+       /* *INDENT-ON* */
+};
+
+static const struct {
+       int base;               /* hw value of swizzle */
+       int stride;             /* difference between SRC0/1/2 */
+       GLuint flags;
+} s_swiz[] = {
+       /* *INDENT-OFF* */
+       {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
+       {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
+       {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
+       {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
+       {R300_ALU_ARGA_ZERO, 0, 0},
+       {R300_ALU_ARGA_ONE, 0, 0},
+       {R300_ALU_ARGA_HALF, 0, 0}
+       /* *INDENT-ON* */
+};
+
+/* boiler-plate reg, for convenience */
+static const GLuint undef = REG(REG_TYPE_TEMP,
+                               0,
+                               SWIZZLE_XYZ,
+                               SWIZZLE_W,
+                               GL_FALSE,
+                               GL_FALSE,
+                               GL_FALSE);
+
+/* constant one source */
+static const GLuint pfs_one = REG(REG_TYPE_CONST,
+                                 0,
+                                 SWIZZLE_111,
+                                 SWIZZLE_ONE,
+                                 GL_FALSE,
+                                 GL_TRUE,
+                                 GL_TRUE);
+
+/* constant half source */
+static const GLuint pfs_half = REG(REG_TYPE_CONST,
+                                  0,
+                                  SWIZZLE_HHH,
+                                  SWIZZLE_HALF,
+                                  GL_FALSE,
+                                  GL_TRUE,
+                                  GL_TRUE);
+
+/* constant zero source */
+static const GLuint pfs_zero = REG(REG_TYPE_CONST,
+                                  0,
+                                  SWIZZLE_000,
+                                  SWIZZLE_ZERO,
+                                  GL_FALSE,
+                                  GL_TRUE,
+                                  GL_TRUE);
+
+/*
+ * Common functions prototypes
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs, int op,
+                      GLuint dest, int mask,
+                      GLuint src0, GLuint src1, GLuint src2, int flags);
+
+/**
+ * Get an R300 temporary that can be written to in the given slot.
+ */
+static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
+{
+       COMPILE_STATE;
+       int r;
+
+       for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+               if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
+                       break;
+       }
+
+       if (r >= PFS_NUM_TEMP_REGS) {
+               ERROR("Out of hardware temps\n");
+               return 0;
+       }
+       // Reserved is used to avoid the following scenario:
+       //  R300 temporary X is first assigned to Mesa temporary Y during vector ops
+       //  R300 temporary X is then assigned to Mesa temporary Z for further vector ops
+       //  Then scalar ops on Mesa temporary Z are emitted and move back in time
+       //  to overwrite the value of temporary Y.
+       // End scenario.
+       cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+       cs->hwtemps[r].free = -1;
+
+       // Reset to some value that won't mess things up when the user
+       // tries to read from a temporary that hasn't been assigned a value yet.
+       // In the normal case, vector_valid and scalar_valid should be set to
+       // a sane value by the first emit that writes to this temporary.
+       cs->hwtemps[r].vector_valid = 0;
+       cs->hwtemps[r].scalar_valid = 0;
+
+       if (r > code->max_temp_idx)
+               code->max_temp_idx = r;
+
+       return r;
+}
+
+/**
+ * Get an R300 temporary that will act as a TEX destination register.
+ */
+static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+       int r;
+
+       for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+               if (cs->used_in_node & (1 << r))
+                       continue;
+
+               // Note: Be very careful here
+               if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
+                       break;
+       }
+
+       if (r >= PFS_NUM_TEMP_REGS)
+               return get_hw_temp(cs, 0);      /* Will cause an indirection */
+
+       cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+       cs->hwtemps[r].free = -1;
+
+       // Reset to some value that won't mess things up when the user
+       // tries to read from a temporary that hasn't been assigned a value yet.
+       // In the normal case, vector_valid and scalar_valid should be set to
+       // a sane value by the first emit that writes to this temporary.
+       cs->hwtemps[r].vector_valid = cs->nrslots;
+       cs->hwtemps[r].scalar_valid = cs->nrslots;
+
+       if (r > code->max_temp_idx)
+               code->max_temp_idx = r;
+
+       return r;
+}
+
+/**
+ * Mark the given hardware register as free.
+ */
+static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
+{
+       // Be very careful here. Consider sequences like
+       //  MAD r0, r1,r2,r3
+       //  TEX r4, ...
+       // The TEX instruction may be moved in front of the MAD instruction
+       // due to the way nodes work. We don't want to alias r1 and r4 in
+       // this case.
+       // I'm certain the register allocation could be further sanitized,
+       // but it's tricky because of stuff that can happen inside emit_tex
+       // and emit_arith.
+       cs->hwtemps[idx].free = cs->nrslots + 1;
+}
+
+/**
+ * Create a new Mesa temporary register.
+ */
+static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+       GLuint r = undef;
+       GLuint index;
+
+       index = ffs(~cs->temp_in_use);
+       if (!index) {
+               ERROR("Out of program temps\n");
+               return r;
+       }
+
+       cs->temp_in_use |= (1 << --index);
+       cs->temps[index].refcount = 0xFFFFFFFF;
+       cs->temps[index].reg = -1;
+
+       REG_SET_TYPE(r, REG_TYPE_TEMP);
+       REG_SET_INDEX(r, index);
+       REG_SET_VALID(r, GL_TRUE);
+       return r;
+}
+
+/**
+ * Create a new Mesa temporary register that will act as the destination
+ * register for a texture read.
+ */
+static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+       GLuint r = undef;
+       GLuint index;
+
+       index = ffs(~cs->temp_in_use);
+       if (!index) {
+               ERROR("Out of program temps\n");
+               return r;
+       }
+
+       cs->temp_in_use |= (1 << --index);
+       cs->temps[index].refcount = 0xFFFFFFFF;
+       cs->temps[index].reg = get_hw_temp_tex(cs);
+
+       REG_SET_TYPE(r, REG_TYPE_TEMP);
+       REG_SET_INDEX(r, index);
+       REG_SET_VALID(r, GL_TRUE);
+       return r;
+}
+
+/**
+ * Free a Mesa temporary and the associated R300 temporary.
+ */
+static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
+{
+       GLuint index = REG_GET_INDEX(r);
+
+       if (!(cs->temp_in_use & (1 << index)))
+               return;
+
+       if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
+               free_hw_temp(cs, cs->temps[index].reg);
+               cs->temps[index].reg = -1;
+               cs->temp_in_use &= ~(1 << index);
+       } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
+               free_hw_temp(cs, cs->inputs[index].reg);
+               cs->inputs[index].reg = -1;
+       }
+}
+
+/**
+ * Emit a hardware constant/parameter.
+ *
+ * \p cp Stable pointer to an array of 4 floats.
+ *  The pointer must be stable in the sense that it remains to be valid
+ *  and hold the contents of the constant/parameter throughout the lifetime
+ *  of the fragment program (actually, up until the next time the fragment
+ *  program is translated).
+ */
+static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
+                           const GLfloat * cp)
+{
+       COMPILE_STATE;
+       GLuint reg = undef;
+       int index;
+
+       for (index = 0; index < code->const_nr; ++index) {
+               if (code->constant[index] == cp)
+                       break;
+       }
+
+       if (index >= code->const_nr) {
+               if (index >= PFS_NUM_CONST_REGS) {
+                       ERROR("Out of hw constants!\n");
+                       return reg;
+               }
+
+               code->const_nr++;
+               code->constant[index] = cp;
+       }
+
+       REG_SET_TYPE(reg, REG_TYPE_CONST);
+       REG_SET_INDEX(reg, index);
+       REG_SET_VALID(reg, GL_TRUE);
+       return reg;
+}
+
+static inline GLuint negate(GLuint r)
+{
+       REG_NEGS(r);
+       REG_NEGV(r);
+       return r;
+}
+
+/* Hack, to prevent clobbering sources used multiple times when
+ * emulating non-native instructions
+ */
+static inline GLuint keep(GLuint r)
+{
+       REG_SET_NO_USE(r, GL_TRUE);
+       return r;
+}
+
+static inline GLuint absolute(GLuint r)
+{
+       REG_ABS(r);
+       return r;
+}
+
+static int swz_native(struct r300_pfs_compile_state *cs,
+                     GLuint src, GLuint * r, GLuint arbneg)
+{
+       COMPILE_STATE;
+
+       /* Native swizzle, handle negation */
+       src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
+
+       if ((arbneg & 0x7) == 0x0) {
+               src = src & ~REG_NEGV_MASK;
+               *r = src;
+       } else if ((arbneg & 0x7) == 0x7) {
+               src |= REG_NEGV_MASK;
+               *r = src;
+       } else {
+               if (!REG_GET_VALID(*r))
+                       *r = get_temp_reg(cs);
+               src |= REG_NEGV_MASK;
+               emit_arith(cs,
+                          PFS_OP_MAD,
+                          *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
+               src = src & ~REG_NEGV_MASK;
+               emit_arith(cs,
+                          PFS_OP_MAD,
+                          *r,
+                          (arbneg ^ 0x7) | WRITEMASK_W,
+                          src, pfs_one, pfs_zero, 0);
+       }
+
+       return 3;
+}
+
+static int swz_emit_partial(struct r300_pfs_compile_state *cs,
+                           GLuint src,
+                           GLuint * r, int mask, int mc, GLuint arbneg)
+{
+       COMPILE_STATE;
+       GLuint tmp;
+       GLuint wmask = 0;
+
+       if (!REG_GET_VALID(*r))
+               *r = get_temp_reg(cs);
+
+       /* A partial match, VSWZ/mask define what parts of the
+        * desired swizzle we match
+        */
+       if (mc + s_mask[mask].count == 3) {
+               wmask = WRITEMASK_W;
+               src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
+       }
+
+       tmp = arbneg & s_mask[mask].mask;
+       if (tmp) {
+               tmp = tmp ^ s_mask[mask].mask;
+               if (tmp) {
+                       emit_arith(cs,
+                                  PFS_OP_MAD,
+                                  *r,
+                                  arbneg & s_mask[mask].mask,
+                                  keep(src) | REG_NEGV_MASK,
+                                  pfs_one, pfs_zero, 0);
+                       if (!wmask) {
+                               REG_SET_NO_USE(src, GL_TRUE);
+                       } else {
+                               REG_SET_NO_USE(src, GL_FALSE);
+                       }
+                       emit_arith(cs,
+                                  PFS_OP_MAD,
+                                  *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
+               } else {
+                       if (!wmask) {
+                               REG_SET_NO_USE(src, GL_TRUE);
+                       } else {
+                               REG_SET_NO_USE(src, GL_FALSE);
+                       }
+                       emit_arith(cs,
+                                  PFS_OP_MAD,
+                                  *r,
+                                  (arbneg & s_mask[mask].mask) | wmask,
+                                  src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
+               }
+       } else {
+               if (!wmask) {
+                       REG_SET_NO_USE(src, GL_TRUE);
+               } else {
+                       REG_SET_NO_USE(src, GL_FALSE);
+               }
+               emit_arith(cs, PFS_OP_MAD,
+                          *r,
+                          s_mask[mask].mask | wmask,
+                          src, pfs_one, pfs_zero, 0);
+       }
+
+       return s_mask[mask].count;
+}
+
+static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
+                        GLuint src, GLuint arbswz, GLuint arbneg)
+{
+       COMPILE_STATE;
+       GLuint r = undef;
+       GLuint vswz;
+       int c_mask = 0;
+       int v_match = 0;
+
+       /* If swizzling from something without an XYZW native swizzle,
+        * emit result to a temp, and do new swizzle from the temp.
+        */
+#if 0
+       if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+               GLuint temp = get_temp_reg(fp);
+               emit_arith(fp,
+                          PFS_OP_MAD,
+                          temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
+               src = temp;
+       }
+#endif
+
+       if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+               GLuint vsrcswz =
+                   (v_swiz[REG_GET_VSWZ(src)].
+                    hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
+                   REG_GET_SSWZ(src) << 9;
+               GLint i;
+
+               GLuint newswz = 0;
+               GLuint offset;
+               for (i = 0; i < 4; ++i) {
+                       offset = GET_SWZ(arbswz, i);
+
+                       newswz |=
+                           (offset <= 3) ? GET_SWZ(vsrcswz,
+                                                   offset) << i *
+                           3 : offset << i * 3;
+               }
+
+               arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
+               REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
+       } else {
+               /* set scalar swizzling */
+               REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
+
+       }
+       do {
+               vswz = REG_GET_VSWZ(src);
+               do {
+                       int chash;
+
+                       REG_SET_VSWZ(src, vswz);
+                       chash = v_swiz[REG_GET_VSWZ(src)].hash &
+                           s_mask[c_mask].hash;
+
+                       if (chash == (arbswz & s_mask[c_mask].hash)) {
+                               if (s_mask[c_mask].count == 3) {
+                                       v_match += swz_native(cs,
+                                                             src, &r, arbneg);
+                               } else {
+                                       v_match += swz_emit_partial(cs,
+                                                                   src,
+                                                                   &r,
+                                                                   c_mask,
+                                                                   v_match,
+                                                                   arbneg);
+                               }
+
+                               if (v_match == 3)
+                                       return r;
+
+                               /* Fill with something invalid.. all 0's was
+                                * wrong before, matched SWIZZLE_X.  So all
+                                * 1's will be okay for now
+                                */
+                               arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
+                       }
+               } while (v_swiz[++vswz].hash != PFS_INVAL);
+               REG_SET_VSWZ(src, SWIZZLE_XYZ);
+       } while (s_mask[++c_mask].hash != PFS_INVAL);
+
+       ERROR("should NEVER get here\n");
+       return r;
+}
+
+static GLuint t_src(struct r300_pfs_compile_state *cs,
+                   struct prog_src_register fpsrc)
+{
+       COMPILE_STATE;
+       GLuint r = undef;
+
+       switch (fpsrc.File) {
+       case PROGRAM_TEMPORARY:
+               REG_SET_INDEX(r, fpsrc.Index);
+               REG_SET_VALID(r, GL_TRUE);
+               REG_SET_TYPE(r, REG_TYPE_TEMP);
+               break;
+       case PROGRAM_INPUT:
+               REG_SET_INDEX(r, fpsrc.Index);
+               REG_SET_VALID(r, GL_TRUE);
+               REG_SET_TYPE(r, REG_TYPE_INPUT);
+               break;
+       case PROGRAM_LOCAL_PARAM:
+               r = emit_const4fv(cs,
+                                 fp->mesa_program.Base.LocalParams[fpsrc.
+                                                                   Index]);
+               break;
+       case PROGRAM_ENV_PARAM:
+               r = emit_const4fv(cs,
+                       cs->compiler->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
+               break;
+       case PROGRAM_STATE_VAR:
+       case PROGRAM_NAMED_PARAM:
+       case PROGRAM_CONSTANT:
+               r = emit_const4fv(cs,
+                                 fp->mesa_program.Base.Parameters->
+                                 ParameterValues[fpsrc.Index]);
+               break;
+       default:
+               ERROR("unknown SrcReg->File %x\n", fpsrc.File);
+               return r;
+       }
+
+       /* no point swizzling ONE/ZERO/HALF constants... */
+       if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
+               r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
+       return r;
+}
+
+static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
+                          struct prog_src_register fpsrc)
+{
+       struct prog_src_register src = fpsrc;
+       int sc = GET_SWZ(fpsrc.Swizzle, 0);     /* X */
+
+       src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
+
+       return t_src(cs, src);
+}
+
+static GLuint t_dst(struct r300_pfs_compile_state *cs,
+                   struct prog_dst_register dest)
+{
+       COMPILE_STATE;
+       GLuint r = undef;
+
+       switch (dest.File) {
+       case PROGRAM_TEMPORARY:
+               REG_SET_INDEX(r, dest.Index);
+               REG_SET_VALID(r, GL_TRUE);
+               REG_SET_TYPE(r, REG_TYPE_TEMP);
+               return r;
+       case PROGRAM_OUTPUT:
+               REG_SET_TYPE(r, REG_TYPE_OUTPUT);
+               switch (dest.Index) {
+               case FRAG_RESULT_COLR:
+               case FRAG_RESULT_DEPR:
+                       REG_SET_INDEX(r, dest.Index);
+                       REG_SET_VALID(r, GL_TRUE);
+                       return r;
+               default:
+                       ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
+                       return r;
+               }
+       default:
+               ERROR("Bad DstReg->File 0x%x\n", dest.File);
+               return r;
+       }
+}
+
+static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
+{
+       COMPILE_STATE;
+       int idx;
+       int index = REG_GET_INDEX(src);
+
+       switch (REG_GET_TYPE(src)) {
+       case REG_TYPE_TEMP:
+               /* NOTE: if reg==-1 here, a source is being read that
+                *       hasn't been written to. Undefined results.
+                */
+               if (cs->temps[index].reg == -1)
+                       cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
+
+               idx = cs->temps[index].reg;
+
+               if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
+                       free_temp(cs, src);
+               break;
+       case REG_TYPE_INPUT:
+               idx = cs->inputs[index].reg;
+
+               if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
+                       free_hw_temp(cs, cs->inputs[index].reg);
+               break;
+       case REG_TYPE_CONST:
+               return (index | SRC_CONST);
+       default:
+               ERROR("Invalid type for source reg\n");
+               return (0 | SRC_CONST);
+       }
+
+       if (!tex)
+               cs->used_in_node |= (1 << idx);
+
+       return idx;
+}
+
+static int t_hw_dst(struct r300_pfs_compile_state *cs,
+                   GLuint dest, GLboolean tex, int slot)
+{
+       COMPILE_STATE;
+       int idx;
+       GLuint index = REG_GET_INDEX(dest);
+       assert(REG_GET_VALID(dest));
+
+       switch (REG_GET_TYPE(dest)) {
+       case REG_TYPE_TEMP:
+               if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
+                       if (!tex) {
+                               cs->temps[index].reg = get_hw_temp(cs, slot);
+                       } else {
+                               cs->temps[index].reg = get_hw_temp_tex(cs);
+                       }
+               }
+               idx = cs->temps[index].reg;
+
+               if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
+                       free_temp(cs, dest);
+
+               cs->dest_in_node |= (1 << idx);
+               cs->used_in_node |= (1 << idx);
+               break;
+       case REG_TYPE_OUTPUT:
+               switch (index) {
+               case FRAG_RESULT_COLR:
+                       code->node[code->cur_node].flags |= R300_RGBA_OUT;
+                       break;
+               case FRAG_RESULT_DEPR:
+                       fp->WritesDepth = GL_TRUE;
+                       code->node[code->cur_node].flags |= R300_W_OUT;
+                       break;
+               }
+               return index;
+               break;
+       default:
+               ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+               return 0;
+       }
+
+       return idx;
+}
+
+static void emit_nop(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+
+       if (cs->nrslots >= PFS_MAX_ALU_INST) {
+               ERROR("Out of ALU instruction slots\n");
+               return;
+       }
+
+       code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
+       code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
+       code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
+       code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
+       cs->nrslots++;
+}
+
+static void emit_tex(struct r300_pfs_compile_state *cs,
+                    struct prog_instruction *fpi, int opcode)
+{
+       COMPILE_STATE;
+       GLuint coord = t_src(cs, fpi->SrcReg[0]);
+       GLuint dest = undef, rdest = undef;
+       GLuint din, uin;
+       int unit = fpi->TexSrcUnit;
+       int hwsrc, hwdest;
+       GLuint tempreg = 0;
+
+       /**
+        * Hardware uses [0..1]x[0..1] range for rectangle textures
+        * instead of [0..Width]x[0..Height].
+        * Add a scaling instruction.
+        *
+        * \todo Refactor this once we have proper rewriting/optimization
+        * support for programs.
+        */
+       if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
+               gl_state_index tokens[STATE_LENGTH] = {
+                       STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
+                       0
+               };
+               int factor_index;
+               GLuint factorreg;
+
+               tokens[2] = unit;
+               factor_index =
+                       _mesa_add_state_reference(fp->mesa_program.Base.
+                                               Parameters, tokens);
+               factorreg =
+                       emit_const4fv(cs,
+                               fp->mesa_program.Base.Parameters->
+                               ParameterValues[factor_index]);
+               tempreg = keep(get_temp_reg(cs));
+
+               emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+                       coord, factorreg, pfs_zero, 0);
+
+               coord = tempreg;
+       }
+
+       /* Texture operations do not support swizzles etc. in hardware,
+        * so emit an additional arithmetic operation if necessary.
+        */
+       if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
+           REG_GET_SSWZ(coord) != SWIZZLE_W ||
+           coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
+               assert(tempreg == 0);
+               tempreg = keep(get_temp_reg(cs));
+               emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+                       coord, pfs_one, pfs_zero, 0);
+               coord = tempreg;
+       }
+
+       /* Ensure correct node indirection */
+       uin = cs->used_in_node;
+       din = cs->dest_in_node;
+
+       /* Resolve source/dest to hardware registers */
+       hwsrc = t_hw_src(cs, coord, GL_TRUE);
+
+       if (opcode != R300_TEX_OP_KIL) {
+               dest = t_dst(cs, fpi->DstReg);
+
+               /* r300 doesn't seem to be able to do TEX->output reg */
+               if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+                       rdest = dest;
+                       dest = get_temp_reg_tex(cs);
+               } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
+                       /* in case write mask isn't XYZW */
+                       rdest = dest;
+                       dest = get_temp_reg_tex(cs);
+               }
+               hwdest =
+                   t_hw_dst(cs, dest, GL_TRUE,
+                            code->node[code->cur_node].alu_offset);
+
+               /* Use a temp that hasn't been used in this node, rather
+                * than causing an indirection
+                */
+               if (uin & (1 << hwdest)) {
+                       free_hw_temp(cs, hwdest);
+                       hwdest = get_hw_temp_tex(cs);
+                       cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
+               }
+       } else {
+               hwdest = 0;
+               unit = 0;
+       }
+
+       /* Indirection if source has been written in this node, or if the
+        * dest has been read/written in this node
+        */
+       if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
+            (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
+
+               /* Finish off current node */
+               if (code->node[code->cur_node].alu_offset == cs->nrslots)
+                       emit_nop(cs);
+
+               code->node[code->cur_node].alu_end =
+                   cs->nrslots - code->node[code->cur_node].alu_offset - 1;
+               assert(code->node[code->cur_node].alu_end >= 0);
+
+               if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
+                       ERROR("too many levels of texture indirection\n");
+                       return;
+               }
+
+               /* Start new node */
+               code->node[code->cur_node].tex_offset = code->tex.length;
+               code->node[code->cur_node].alu_offset = cs->nrslots;
+               code->node[code->cur_node].tex_end = -1;
+               code->node[code->cur_node].alu_end = -1;
+               code->node[code->cur_node].flags = 0;
+               cs->used_in_node = 0;
+               cs->dest_in_node = 0;
+       }
+
+       if (code->cur_node == 0)
+               code->first_node_has_tex = 1;
+
+       code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
+           | (hwdest << R300_DST_ADDR_SHIFT)
+           | (unit << R300_TEX_ID_SHIFT)
+           | (opcode << R300_TEX_INST_SHIFT);
+
+       cs->dest_in_node |= (1 << hwdest);
+       if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
+               cs->used_in_node |= (1 << hwsrc);
+
+       code->node[code->cur_node].tex_end++;
+
+       /* Copy from temp to output if needed */
+       if (REG_GET_VALID(rdest)) {
+               emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
+                          pfs_one, pfs_zero, 0);
+               free_temp(cs, dest);
+       }
+
+       /* Free temp register */
+       if (tempreg != 0)
+               free_temp(cs, tempreg);
+}
+
+/**
+ * Returns the first slot where we could possibly allow writing to dest,
+ * according to register allocation.
+ */
+static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
+                                     GLuint dest, int mask)
+{
+       COMPILE_STATE;
+       int idx;
+       int pos;
+       GLuint index = REG_GET_INDEX(dest);
+       assert(REG_GET_VALID(dest));
+
+       switch (REG_GET_TYPE(dest)) {
+       case REG_TYPE_TEMP:
+               if (cs->temps[index].reg == -1)
+                       return 0;
+
+               idx = cs->temps[index].reg;
+               break;
+       case REG_TYPE_OUTPUT:
+               return 0;
+       default:
+               ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+               return 0;
+       }
+
+       pos = cs->hwtemps[idx].reserved;
+       if (mask & WRITEMASK_XYZ) {
+               if (pos < cs->hwtemps[idx].vector_lastread)
+                       pos = cs->hwtemps[idx].vector_lastread;
+       }
+       if (mask & WRITEMASK_W) {
+               if (pos < cs->hwtemps[idx].scalar_lastread)
+                       pos = cs->hwtemps[idx].scalar_lastread;
+       }
+
+       return pos;
+}
+
+/**
+ * Allocates a slot for an ALU instruction that can consist of
+ * a vertex part or a scalar part or both.
+ *
+ * Sources from src (src[0] to src[argc-1]) are added to the slot in the
+ * appropriate position (vector and/or scalar), and their positions are
+ * recorded in the srcpos array.
+ *
+ * This function emits instruction code for the source fetch and the
+ * argument selection. It does not emit instruction code for the
+ * opcode or the destination selection.
+ *
+ * @return the index of the slot
+ */
+static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
+                                GLboolean emit_vop,
+                                GLboolean emit_sop,
+                                int argc, GLuint * src, GLuint dest, int mask)
+{
+       COMPILE_STATE;
+       int hwsrc[3];
+       int srcpos[3];
+       unsigned int used;
+       int tempused;
+       int tempvsrc[3];
+       int tempssrc[3];
+       int pos;
+       int regnr;
+       int i, j;
+
+       // Determine instruction slots, whether sources are required on
+       // vector or scalar side, and the smallest slot number where
+       // all source registers are available
+       used = 0;
+       if (emit_vop)
+               used |= SLOT_OP_VECTOR;
+       if (emit_sop)
+               used |= SLOT_OP_SCALAR;
+
+       pos = get_earliest_allowed_write(cs, dest, mask);
+
+       if (code->node[code->cur_node].alu_offset > pos)
+               pos = code->node[code->cur_node].alu_offset;
+       for (i = 0; i < argc; ++i) {
+               if (!REG_GET_BUILTIN(src[i])) {
+                       if (emit_vop)
+                               used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
+                       if (emit_sop)
+                               used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
+               }
+
+               hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE);      /* Note: sideeffects wrt refcounting! */
+               regnr = hwsrc[i] & 31;
+
+               if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+                       if (used & (SLOT_SRC_VECTOR << i)) {
+                               if (cs->hwtemps[regnr].vector_valid > pos)
+                                       pos = cs->hwtemps[regnr].vector_valid;
+                       }
+                       if (used & (SLOT_SRC_SCALAR << i)) {
+                               if (cs->hwtemps[regnr].scalar_valid > pos)
+                                       pos = cs->hwtemps[regnr].scalar_valid;
+                       }
+               }
+       }
+
+       // Find a slot that fits
+       for (;; ++pos) {
+               if (cs->slot[pos].used & used & SLOT_OP_BOTH)
+                       continue;
+
+               if (pos >= cs->nrslots) {
+                       if (cs->nrslots >= PFS_MAX_ALU_INST) {
+                               ERROR("Out of ALU instruction slots\n");
+                               return -1;
+                       }
+
+                       code->alu.inst[pos].inst0 = NOP_INST0;
+                       code->alu.inst[pos].inst1 = NOP_INST1;
+                       code->alu.inst[pos].inst2 = NOP_INST2;
+                       code->alu.inst[pos].inst3 = NOP_INST3;
+
+                       cs->nrslots++;
+               }
+               // Note: When we need both parts (vector and scalar) of a source,
+               // we always try to put them into the same position. This makes the
+               // code easier to read, and it is optimal (i.e. one doesn't gain
+               // anything by splitting the parts).
+               // It also avoids headaches with swizzles that access both parts (i.e WXY)
+               tempused = cs->slot[pos].used;
+               for (i = 0; i < 3; ++i) {
+                       tempvsrc[i] = cs->slot[pos].vsrc[i];
+                       tempssrc[i] = cs->slot[pos].ssrc[i];
+               }
+
+               for (i = 0; i < argc; ++i) {
+                       int flags = (used >> i) & SLOT_SRC_BOTH;
+
+                       if (!flags) {
+                               srcpos[i] = 0;
+                               continue;
+                       }
+
+                       for (j = 0; j < 3; ++j) {
+                               if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
+                                       if (tempvsrc[j] != hwsrc[i])
+                                               continue;
+                               }
+
+                               if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
+                                       if (tempssrc[j] != hwsrc[i])
+                                               continue;
+                               }
+
+                               break;
+                       }
+
+                       if (j == 3)
+                               break;
+
+                       srcpos[i] = j;
+                       tempused |= flags << j;
+                       if (flags & SLOT_SRC_VECTOR)
+                               tempvsrc[j] = hwsrc[i];
+                       if (flags & SLOT_SRC_SCALAR)
+                               tempssrc[j] = hwsrc[i];
+               }
+
+               if (i == argc)
+                       break;
+       }
+
+       // Found a slot, reserve it
+       cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
+       for (i = 0; i < 3; ++i) {
+               cs->slot[pos].vsrc[i] = tempvsrc[i];
+               cs->slot[pos].ssrc[i] = tempssrc[i];
+       }
+
+       for (i = 0; i < argc; ++i) {
+               if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+                       int regnr = hwsrc[i] & 31;
+
+                       if (used & (SLOT_SRC_VECTOR << i)) {
+                               if (cs->hwtemps[regnr].vector_lastread < pos)
+                                       cs->hwtemps[regnr].vector_lastread =
+                                           pos;
+                       }
+                       if (used & (SLOT_SRC_SCALAR << i)) {
+                               if (cs->hwtemps[regnr].scalar_lastread < pos)
+                                       cs->hwtemps[regnr].scalar_lastread =
+                                           pos;
+                       }
+               }
+       }
+
+       // Emit the source fetch code
+       code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
+       code->alu.inst[pos].inst1 |=
+           ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
+            (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
+            (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
+
+       code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
+       code->alu.inst[pos].inst3 |=
+           ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
+            (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
+            (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
+
+       // Emit the argument selection code
+       if (emit_vop) {
+               int swz[3];
+
+               for (i = 0; i < 3; ++i) {
+                       if (i < argc) {
+                               swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
+                                         (srcpos[i] *
+                                          v_swiz[REG_GET_VSWZ(src[i])].
+                                          stride)) | ((src[i] & REG_NEGV_MASK)
+                                                      ? ARG_NEG : 0) | ((src[i]
+                                                                         &
+                                                                         REG_ABS_MASK)
+                                                                        ?
+                                                                        ARG_ABS
+                                                                        : 0);
+                       } else {
+                               swz[i] = R300_ALU_ARGC_ZERO;
+                       }
+               }
+
+               code->alu.inst[pos].inst0 &=
+                   ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
+                     R300_ALU_ARG2C_MASK);
+               code->alu.inst[pos].inst0 |=
+                   (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
+                                                        R300_ALU_ARG1C_SHIFT)
+                   | (swz[2] << R300_ALU_ARG2C_SHIFT);
+       }
+
+       if (emit_sop) {
+               int swz[3];
+
+               for (i = 0; i < 3; ++i) {
+                       if (i < argc) {
+                               swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
+                                         (srcpos[i] *
+                                          s_swiz[REG_GET_SSWZ(src[i])].
+                                          stride)) | ((src[i] & REG_NEGV_MASK)
+                                                      ? ARG_NEG : 0) | ((src[i]
+                                                                         &
+                                                                         REG_ABS_MASK)
+                                                                        ?
+                                                                        ARG_ABS
+                                                                        : 0);
+                       } else {
+                               swz[i] = R300_ALU_ARGA_ZERO;
+                       }
+               }
+
+               code->alu.inst[pos].inst2 &=
+                   ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
+                     R300_ALU_ARG2A_MASK);
+               code->alu.inst[pos].inst2 |=
+                   (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
+                                                        R300_ALU_ARG1A_SHIFT)
+                   | (swz[2] << R300_ALU_ARG2A_SHIFT);
+       }
+
+       return pos;
+}
+
+/**
+ * Append an ALU instruction to the instruction list.
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs,
+                      int op,
+                      GLuint dest,
+                      int mask,
+                      GLuint src0, GLuint src1, GLuint src2, int flags)
+{
+       COMPILE_STATE;
+       GLuint src[3] = { src0, src1, src2 };
+       int hwdest;
+       GLboolean emit_vop, emit_sop;
+       int vop, sop, argc;
+       int pos;
+
+       vop = r300_fpop[op].v_op;
+       sop = r300_fpop[op].s_op;
+       argc = r300_fpop[op].argc;
+
+       if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
+           REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
+               if (mask & WRITEMASK_Z) {
+                       mask = WRITEMASK_W;
+               } else {
+                       return;
+               }
+       }
+
+       emit_vop = GL_FALSE;
+       emit_sop = GL_FALSE;
+       if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
+               emit_vop = GL_TRUE;
+       if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
+               emit_sop = GL_TRUE;
+
+       pos =
+           find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
+                                 mask);
+       if (pos < 0)
+               return;
+
+       hwdest = t_hw_dst(cs, dest, GL_FALSE, pos);     /* Note: Side effects wrt register allocation */
+
+       if (flags & PFS_FLAG_SAT) {
+               vop |= R300_ALU_OUTC_CLAMP;
+               sop |= R300_ALU_OUTA_CLAMP;
+       }
+
+       /* Throw the pieces together and get ALU/1 */
+       if (emit_vop) {
+               code->alu.inst[pos].inst0 |= vop;
+
+               code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
+
+               if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+                       if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+                               code->alu.inst[pos].inst1 |=
+                                   (mask & WRITEMASK_XYZ) <<
+                                   R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
+                       } else
+                               assert(0);
+               } else {
+                       code->alu.inst[pos].inst1 |=
+                           (mask & WRITEMASK_XYZ) <<
+                           R300_ALU_DSTC_REG_MASK_SHIFT;
+
+                       cs->hwtemps[hwdest].vector_valid = pos + 1;
+               }
+       }
+
+       /* And now ALU/3 */
+       if (emit_sop) {
+               code->alu.inst[pos].inst2 |= sop;
+
+               if (mask & WRITEMASK_W) {
+                       if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+                               if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+                                       code->alu.inst[pos].inst3 |=
+                                           (hwdest << R300_ALU_DSTA_SHIFT) |
+                                           R300_ALU_DSTA_OUTPUT;
+                               } else if (REG_GET_INDEX(dest) ==
+                                          FRAG_RESULT_DEPR) {
+                                       code->alu.inst[pos].inst3 |=
+                                           R300_ALU_DSTA_DEPTH;
+                               } else
+                                       assert(0);
+                       } else {
+                               code->alu.inst[pos].inst3 |=
+                                   (hwdest << R300_ALU_DSTA_SHIFT) |
+                                   R300_ALU_DSTA_REG;
+
+                               cs->hwtemps[hwdest].scalar_valid = pos + 1;
+                       }
+               }
+       }
+
+       return;
+}
+
+static GLfloat SinCosConsts[2][4] = {
+       {
+        1.273239545,           // 4/PI
+        -0.405284735,          // -4/(PI*PI)
+        3.141592654,           // PI
+        0.2225                 // weight
+        },
+       {
+        0.75,
+        0.0,
+        0.159154943,           // 1/(2*PI)
+        6.283185307            // 2*PI
+        }
+};
+
+/**
+ * Emit a LIT instruction.
+ * \p flags may be PFS_FLAG_SAT
+ *
+ * Definition of LIT (from ARB_fragment_program):
+ * tmp = VectorLoad(op0);
+ * if (tmp.x < 0) tmp.x = 0;
+ * if (tmp.y < 0) tmp.y = 0;
+ * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
+ * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
+ * result.x = 1.0;
+ * result.y = tmp.x;
+ * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
+ * result.w = 1.0;
+ *
+ * The longest path of computation is the one leading to result.z,
+ * consisting of 5 operations. This implementation of LIT takes
+ * 5 slots. So unless there's some special undocumented opcode,
+ * this implementation is potentially optimal. Unfortunately,
+ * emit_arith is a bit too conservative because it doesn't understand
+ * partial writes to the vector component.
+ */
+static const GLfloat LitConst[4] =
+    { 127.999999, 127.999999, 127.999999, -127.999999 };
+
+static void emit_lit(struct r300_pfs_compile_state *cs,
+                    GLuint dest, int mask, GLuint src, int flags)
+{
+       COMPILE_STATE;
+       GLuint cnst;
+       int needTemporary;
+       GLuint temp;
+
+       cnst = emit_const4fv(cs, LitConst);
+
+       needTemporary = 0;
+       if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
+               needTemporary = 1;
+       } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+               // LIT is typically followed by DP3/DP4, so there's no point
+               // in creating special code for this case
+               needTemporary = 1;
+       }
+
+       if (needTemporary) {
+               temp = keep(get_temp_reg(cs));
+       } else {
+               temp = keep(dest);
+       }
+
+       // Note: The order of emit_arith inside the slots is relevant,
+       // because emit_arith only looks at scalar vs. vector when resolving
+       // dependencies, and it does not consider individual vector components,
+       // so swizzling between the two parts can create fake dependencies.
+
+       // First slot
+       emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
+                  keep(src), pfs_zero, undef, 0);
+       emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
+
+       // Second slot
+       emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
+                  swizzle(temp, W, W, W, W), cnst, undef, 0);
+       emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
+                  swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
+
+       // Third slot
+       // If desired, we saturate the y result here.
+       // This does not affect the use as a condition variable in the CMP later
+       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
+                  temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
+       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
+                  swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
+
+       // Fourth slot
+       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
+                  pfs_one, pfs_one, pfs_zero, 0);
+       emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
+
+       // Fifth slot
+       emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
+                  pfs_zero, swizzle(temp, W, W, W, W),
+                  negate(swizzle(temp, Y, Y, Y, Y)), flags);
+       emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
+                  pfs_zero, 0);
+
+       if (needTemporary) {
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                          temp, pfs_one, pfs_zero, flags);
+               free_temp(cs, temp);
+       } else {
+               // Decrease refcount of the destination
+               t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
+       }
+}
+
+static void emit_instruction(struct r300_pfs_compile_state *cs, struct prog_instruction *fpi)
+{
+       COMPILE_STATE;
+       GLuint src[3], dest, temp[2];
+       int flags, mask = 0;
+       int const_sin[2];
+
+       if (fpi->SaturateMode == SATURATE_ZERO_ONE)
+               flags = PFS_FLAG_SAT;
+       else
+               flags = 0;
+
+       if (fpi->Opcode != OPCODE_KIL) {
+               dest = t_dst(cs, fpi->DstReg);
+               mask = fpi->DstReg.WriteMask;
+       }
+
+       switch (fpi->Opcode) {
+       case OPCODE_ABS:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               absolute(src[0]), pfs_one, pfs_zero, flags);
+               break;
+       case OPCODE_ADD:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], pfs_one, src[1], flags);
+               break;
+       case OPCODE_CMP:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               src[2] = t_src(cs, fpi->SrcReg[2]);
+               /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
+                       *    r300 - if src2.c < 0.0 ? src1.c : src0.c
+                       */
+               emit_arith(cs, PFS_OP_CMP, dest, mask,
+                               src[2], src[1], src[0], flags);
+               break;
+       case OPCODE_COS:
+               /*
+                       * cos using a parabola (see SIN):
+                       * cos(x):
+                       *   x = (x/(2*PI))+0.75
+                       *   x = frac(x)
+                       *   x = (x*2*PI)-PI
+                       *   result = sin(x)
+                       */
+               temp[0] = get_temp_reg(cs);
+               const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+               const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+               /* add 0.5*PI and do range reduction */
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+                               swizzle(src[0], X, X, X, X),
+                               swizzle(const_sin[1], Z, Z, Z, Z),
+                               swizzle(const_sin[1], X, X, X, X), 0);
+
+               emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+                               swizzle(temp[0], X, X, X, X),
+                               undef, undef, 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),       //2*PI
+                               negate(swizzle(const_sin[0], Z, Z, Z, Z)),      //-PI
+                               0);
+
+               /* SIN */
+
+               emit_arith(cs, PFS_OP_MAD, temp[0],
+                               WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+                                                               Z, Z, Z,
+                                                               Z),
+                               const_sin[0], pfs_zero, 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+                               swizzle(temp[0], Y, Y, Y, Y),
+                               absolute(swizzle(temp[0], Z, Z, Z, Z)),
+                               swizzle(temp[0], X, X, X, X), 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+                               swizzle(temp[0], X, X, X, X),
+                               absolute(swizzle(temp[0], X, X, X, X)),
+                               negate(swizzle(temp[0], X, X, X, X)), 0);
+
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               swizzle(temp[0], Y, Y, Y, Y),
+                               swizzle(const_sin[0], W, W, W, W),
+                               swizzle(temp[0], X, X, X, X), flags);
+
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_DP3:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_DP3, dest, mask,
+                               src[0], src[1], undef, flags);
+               break;
+       case OPCODE_DP4:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_DP4, dest, mask,
+                               src[0], src[1], undef, flags);
+               break;
+       case OPCODE_DPH:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               /* src0.xyz1 -> temp
+                       * DP4 dest, temp, src1
+                       */
+               emit_arith(cs, PFS_OP_DP4, dest, mask,
+                               swizzle(src[0], X, Y, Z, ONE), src[1],
+                               undef, flags);
+               break;
+       case OPCODE_DST:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               /* dest.y = src0.y * src1.y */
+               if (mask & WRITEMASK_Y)
+                       emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
+                                       keep(src[0]), keep(src[1]),
+                                       pfs_zero, flags);
+               /* dest.z = src0.z */
+               if (mask & WRITEMASK_Z)
+                       emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
+                                       src[0], pfs_one, pfs_zero, flags);
+               /* result.x = 1.0
+                       * result.w = src1.w */
+               if (mask & WRITEMASK_XW) {
+                       REG_SET_VSWZ(src[1], SWIZZLE_111);      /*Cheat */
+                       emit_arith(cs, PFS_OP_MAD, dest,
+                                       mask & WRITEMASK_XW,
+                                       src[1], pfs_one, pfs_zero, flags);
+               }
+               break;
+       case OPCODE_EX2:
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_EX2, dest, mask,
+                               src[0], undef, undef, flags);
+               break;
+       case OPCODE_FLR:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               temp[0] = get_temp_reg(cs);
+               /* FRC temp, src0
+                       * MAD dest, src0, 1.0, -temp
+                       */
+               emit_arith(cs, PFS_OP_FRC, temp[0], mask,
+                               keep(src[0]), undef, undef, 0);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], pfs_one, negate(temp[0]), flags);
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_FRC:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_FRC, dest, mask,
+                               src[0], undef, undef, flags);
+               break;
+       case OPCODE_KIL:
+               emit_tex(cs, fpi, R300_TEX_OP_KIL);
+               break;
+       case OPCODE_LG2:
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_LG2, dest, mask,
+                               src[0], undef, undef, flags);
+               break;
+       case OPCODE_LIT:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               emit_lit(cs, dest, mask, src[0], flags);
+               break;
+       case OPCODE_LRP:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               src[2] = t_src(cs, fpi->SrcReg[2]);
+               /* result = tmp0tmp1 + (1 - tmp0)tmp2
+                       *        = tmp0tmp1 + tmp2 + (-tmp0)tmp2
+                       *     MAD temp, -tmp0, tmp2, tmp2
+                       *     MAD result, tmp0, tmp1, temp
+                       */
+               temp[0] = get_temp_reg(cs);
+               emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+                               negate(keep(src[0])), keep(src[2]), src[2],
+                               0);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], src[1], temp[0], flags);
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_MAD:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               src[2] = t_src(cs, fpi->SrcReg[2]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], src[1], src[2], flags);
+               break;
+       case OPCODE_MAX:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_MAX, dest, mask,
+                               src[0], src[1], undef, flags);
+               break;
+       case OPCODE_MIN:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_MIN, dest, mask,
+                               src[0], src[1], undef, flags);
+               break;
+       case OPCODE_MOV:
+       case OPCODE_SWZ:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], pfs_one, pfs_zero, flags);
+               break;
+       case OPCODE_MUL:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], src[1], pfs_zero, flags);
+               break;
+       case OPCODE_POW:
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+               src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
+               temp[0] = get_temp_reg(cs);
+               emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
+                               src[0], undef, undef, 0);
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+                               temp[0], src[1], pfs_zero, 0);
+               emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
+                               temp[0], undef, undef, 0);
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_RCP:
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_RCP, dest, mask,
+                               src[0], undef, undef, flags);
+               break;
+       case OPCODE_RSQ:
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+               emit_arith(cs, PFS_OP_RSQ, dest, mask,
+                               absolute(src[0]), pfs_zero, pfs_zero, flags);
+               break;
+       case OPCODE_SCS:
+               /*
+                       * scs using a parabola :
+                       * scs(x):
+                       *   result.x = sin(-abs(x)+0.5*PI)  (cos)
+                       *   result.y = sin(x)               (sin)
+                       *
+                       */
+               temp[0] = get_temp_reg(cs);
+               temp[1] = get_temp_reg(cs);
+               const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+               const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+               /* x = -abs(x)+0.5*PI */
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z),     //PI
+                               pfs_half,
+                               negate(abs
+                                       (swizzle(keep(src[0]), X, X, X, X))),
+                               0);
+
+               /* C*x (sin) */
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+                               swizzle(const_sin[0], Y, Y, Y, Y),
+                               swizzle(keep(src[0]), X, X, X, X),
+                               pfs_zero, 0);
+
+               /* B*x, C*x (cos) */
+               emit_arith(cs, PFS_OP_MAD, temp[0],
+                               WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+                                                               Z, Z, Z,
+                                                               Z),
+                               const_sin[0], pfs_zero, 0);
+
+               /* B*x (sin) */
+               emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+                               swizzle(const_sin[0], X, X, X, X),
+                               keep(src[0]), pfs_zero, 0);
+
+               /* y = B*x + C*x*abs(x) (sin) */
+               emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
+                               absolute(src[0]),
+                               swizzle(temp[0], W, W, W, W),
+                               swizzle(temp[1], W, W, W, W), 0);
+
+               /* y = B*x + C*x*abs(x) (cos) */
+               emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+                               swizzle(temp[0], Y, Y, Y, Y),
+                               absolute(swizzle(temp[0], Z, Z, Z, Z)),
+                               swizzle(temp[0], X, X, X, X), 0);
+
+               /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
+               emit_arith(cs, PFS_OP_MAD, temp[0],
+                               WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
+                                                               W, Z, Y,
+                                                               X),
+                               absolute(swizzle(temp[1], W, Z, Y, X)),
+                               negate(swizzle(temp[1], W, Z, Y, X)), 0);
+
+               /* dest.xy = mad(temp.xy, P, temp2.wz) */
+               emit_arith(cs, PFS_OP_MAD, dest,
+                               mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
+                               swizzle(const_sin[0], W, W, W, W),
+                               swizzle(temp[1], W, Z, Y, X), flags);
+
+               free_temp(cs, temp[0]);
+               free_temp(cs, temp[1]);
+               break;
+       case OPCODE_SGE:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               temp[0] = get_temp_reg(cs);
+               /* temp = src0 - src1
+                       * dest.c = (temp.c < 0.0) ? 0 : 1
+                       */
+               emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+                               src[0], pfs_one, negate(src[1]), 0);
+               emit_arith(cs, PFS_OP_CMP, dest, mask,
+                               pfs_one, pfs_zero, temp[0], 0);
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_SIN:
+               /*
+                       *  using a parabola:
+                       * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
+                       * extra precision is obtained by weighting against
+                       * itself squared.
+                       */
+
+               temp[0] = get_temp_reg(cs);
+               const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+               const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+               src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+               /* do range reduction */
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+                               swizzle(keep(src[0]), X, X, X, X),
+                               swizzle(const_sin[1], Z, Z, Z, Z),
+                               pfs_half, 0);
+
+               emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+                               swizzle(temp[0], X, X, X, X),
+                               undef, undef, 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W),       //2*PI
+                               negate(swizzle(const_sin[0], Z, Z, Z, Z)),      //PI
+                               0);
+
+               /* SIN */
+
+               emit_arith(cs, PFS_OP_MAD, temp[0],
+                               WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+                                                               Z, Z, Z,
+                                                               Z),
+                               const_sin[0], pfs_zero, 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+                               swizzle(temp[0], Y, Y, Y, Y),
+                               absolute(swizzle(temp[0], Z, Z, Z, Z)),
+                               swizzle(temp[0], X, X, X, X), 0);
+
+               emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+                               swizzle(temp[0], X, X, X, X),
+                               absolute(swizzle(temp[0], X, X, X, X)),
+                               negate(swizzle(temp[0], X, X, X, X)), 0);
+
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               swizzle(temp[0], Y, Y, Y, Y),
+                               swizzle(const_sin[0], W, W, W, W),
+                               swizzle(temp[0], X, X, X, X), flags);
+
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_SLT:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               temp[0] = get_temp_reg(cs);
+               /* temp = src0 - src1
+                       * dest.c = (temp.c < 0.0) ? 1 : 0
+                       */
+               emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+                               src[0], pfs_one, negate(src[1]), 0);
+               emit_arith(cs, PFS_OP_CMP, dest, mask,
+                               pfs_zero, pfs_one, temp[0], 0);
+               free_temp(cs, temp[0]);
+               break;
+       case OPCODE_SUB:
+               src[0] = t_src(cs, fpi->SrcReg[0]);
+               src[1] = t_src(cs, fpi->SrcReg[1]);
+               emit_arith(cs, PFS_OP_MAD, dest, mask,
+                               src[0], pfs_one, negate(src[1]), flags);
+               break;
+       case OPCODE_TEX:
+               emit_tex(cs, fpi, R300_TEX_OP_LD);
+               break;
+       case OPCODE_TXB:
+               emit_tex(cs, fpi, R300_TEX_OP_TXB);
+               break;
+       case OPCODE_TXP:
+               emit_tex(cs, fpi, R300_TEX_OP_TXP);
+               break;
+       case OPCODE_XPD:{
+                       src[0] = t_src(cs, fpi->SrcReg[0]);
+                       src[1] = t_src(cs, fpi->SrcReg[1]);
+                       temp[0] = get_temp_reg(cs);
+                       /* temp = src0.zxy * src1.yzx */
+                       emit_arith(cs, PFS_OP_MAD, temp[0],
+                                       WRITEMASK_XYZ, swizzle(keep(src[0]),
+                                                               Z, X, Y, W),
+                                       swizzle(keep(src[1]), Y, Z, X, W),
+                                       pfs_zero, 0);
+                       /* dest.xyz = src0.yzx * src1.zxy - temp
+                               * dest.w       = undefined
+                               * */
+                       emit_arith(cs, PFS_OP_MAD, dest,
+                                       mask & WRITEMASK_XYZ, swizzle(src[0],
+                                                                       Y, Z,
+                                                                       X, W),
+                                       swizzle(src[1], Z, X, Y, W),
+                                       negate(temp[0]), flags);
+                       /* cleanup */
+                       free_temp(cs, temp[0]);
+                       break;
+               }
+       default:
+               ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
+               break;
+       }
+}
+
+static GLboolean parse_program(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+       int clauseidx;
+
+       for (clauseidx = 0; clauseidx < cs->compiler->compiler.NumClauses; ++clauseidx) {
+               struct radeon_clause* clause = &cs->compiler->compiler.Clauses[clauseidx];
+               int ip;
+
+               for(ip = 0; ip < clause->NumInstructions; ++ip) {
+                       emit_instruction(cs, clause->Instructions + ip);
+
+                       if (fp->error)
+                               return GL_FALSE;
+               }
+       }
+
+       return GL_TRUE;
+}
+
+
+/* - Init structures
+ * - Determine what hwregs each input corresponds to
+ */
+static void init_program(struct r300_pfs_compile_state *cs)
+{
+       COMPILE_STATE;
+       struct gl_fragment_program *mp = &fp->mesa_program;
+       GLuint InputsRead = mp->Base.InputsRead;
+       GLuint temps_used = 0;  /* for fp->temps[] */
+       int i, j;
+
+       /* New compile, reset tracking data */
+       fp->optimization =
+           driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization");
+       fp->translated = GL_FALSE;
+       fp->error = GL_FALSE;
+       fp->WritesDepth = GL_FALSE;
+       code->tex.length = 0;
+       code->cur_node = 0;
+       code->first_node_has_tex = 0;
+       code->const_nr = 0;
+       code->max_temp_idx = 0;
+       code->node[0].alu_end = -1;
+       code->node[0].tex_end = -1;
+
+       for (i = 0; i < PFS_MAX_ALU_INST; i++) {
+               for (j = 0; j < 3; j++) {
+                       cs->slot[i].vsrc[j] = SRC_CONST;
+                       cs->slot[i].ssrc[j] = SRC_CONST;
+               }
+       }
+
+       /* Work out what temps the Mesa inputs correspond to, this must match
+        * what setup_rs_unit does, which shouldn't be a problem as rs_unit
+        * configures itself based on the fragprog's InputsRead
+        *
+        * NOTE: this depends on get_hw_temp() allocating registers in order,
+        * starting from register 0.
+        */
+
+       /* Texcoords come first */
+       for (i = 0; i < cs->compiler->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
+               if (InputsRead & (FRAG_BIT_TEX0 << i)) {
+                       cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
+                       cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
+                           get_hw_temp(cs, 0);
+               }
+       }
+       InputsRead &= ~FRAG_BITS_TEX_ANY;
+
+       /* fragment position treated as a texcoord */
+       if (InputsRead & FRAG_BIT_WPOS) {
+               cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
+               cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
+       }
+       InputsRead &= ~FRAG_BIT_WPOS;
+
+       /* Then primary colour */
+       if (InputsRead & FRAG_BIT_COL0) {
+               cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
+               cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
+       }
+       InputsRead &= ~FRAG_BIT_COL0;
+
+       /* Secondary color */
+       if (InputsRead & FRAG_BIT_COL1) {
+               cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
+               cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
+       }
+       InputsRead &= ~FRAG_BIT_COL1;
+
+       /* Anything else */
+       if (InputsRead) {
+               WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
+               /* force read from hwreg 0 for now */
+               for (i = 0; i < 32; i++)
+                       if (InputsRead & (1 << i))
+                               cs->inputs[i].reg = 0;
+       }
+
+       /* Pre-parse the program, grabbing refcounts on input/temp regs.
+        * That way, we can free up the reg when it's no longer needed
+        */
+       for (i = 0; i < cs->compiler->compiler.Clauses[0].NumInstructions; ++i) {
+               struct prog_instruction *fpi = cs->compiler->compiler.Clauses[0].Instructions + i;
+               int idx;
+
+               for (j = 0; j < 3; j++) {
+                       idx = fpi->SrcReg[j].Index;
+                       switch (fpi->SrcReg[j].File) {
+                       case PROGRAM_TEMPORARY:
+                               if (!(temps_used & (1 << idx))) {
+                                       cs->temps[idx].reg = -1;
+                                       cs->temps[idx].refcount = 1;
+                                       temps_used |= (1 << idx);
+                               } else
+                                       cs->temps[idx].refcount++;
+                               break;
+                       case PROGRAM_INPUT:
+                               cs->inputs[idx].refcount++;
+                               break;
+                       default:
+                               break;
+                       }
+               }
+
+               idx = fpi->DstReg.Index;
+               if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
+                       if (!(temps_used & (1 << idx))) {
+                               cs->temps[idx].reg = -1;
+                               cs->temps[idx].refcount = 1;
+                               temps_used |= (1 << idx);
+                       } else
+                               cs->temps[idx].refcount++;
+               }
+       }
+       cs->temp_in_use = temps_used;
+}
+
+
+/**
+ * Final compilation step: Turn the intermediate radeon_program into
+ * machine-readable instructions.
+ */
+GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler)
+{
+       struct r300_pfs_compile_state cs;
+       struct r300_fragment_program_code *code = compiler->code;
+
+       _mesa_memset(&cs, 0, sizeof(cs));
+       cs.compiler = compiler;
+       init_program(&cs);
+
+       if (!parse_program(&cs))
+               return GL_FALSE;
+
+       /* Finish off */
+       code->node[code->cur_node].alu_end =
+               cs.nrslots - code->node[code->cur_node].alu_offset - 1;
+       if (code->node[code->cur_node].tex_end < 0)
+               code->node[code->cur_node].tex_end = 0;
+       code->alu_offset = 0;
+       code->alu_end = cs.nrslots - 1;
+       code->tex_offset = 0;
+       code->tex_end = code->tex.length ? code->tex.length - 1 : 0;
+       assert(code->node[code->cur_node].alu_end >= 0);
+       assert(code->alu_end >= 0);
+
+       return GL_TRUE;
+}
+
diff --git a/src/mesa/drivers/dri/r300/radeon_program.c b/src/mesa/drivers/dri/r300/radeon_program.c
new file mode 100644 (file)
index 0000000..7b03fa6
--- /dev/null
@@ -0,0 +1,151 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#include "radeon_program.h"
+
+
+/**
+ * Initialize a compiler structure with a single mixed clause
+ * containing all instructions from the source program.
+ */
+void radeonCompilerInit(
+       struct radeon_compiler *compiler,
+       GLcontext *ctx,
+       struct gl_program *source)
+{
+       struct radeon_clause* clause;
+
+       _mesa_memset(compiler, 0, sizeof(*compiler));
+       compiler->Source = source;
+       compiler->Ctx = ctx;
+
+       compiler->NumTemporaries = source->NumTemporaries;
+
+       clause = radeonCompilerInsertClause(compiler, 0, CLAUSE_MIXED);
+       clause->NumInstructions = 0;
+       while(source->Instructions[clause->NumInstructions].Opcode != OPCODE_END)
+               clause->NumInstructions++;
+       clause->ReservedInstructions = clause->NumInstructions;
+       clause->Instructions = _mesa_alloc_instructions(clause->NumInstructions);
+       _mesa_copy_instructions(clause->Instructions, source->Instructions, clause->NumInstructions);
+}
+
+
+/**
+ * Free all data that is referenced by the compiler structure.
+ * However, the compiler structure itself is not freed.
+ */
+void radeonCompilerCleanup(struct radeon_compiler *compiler)
+{
+       radeonCompilerEraseClauses(compiler, 0, compiler->NumClauses);
+}
+
+
+/**
+ * Allocate and return a unique temporary register.
+ */
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler)
+{
+       if (compiler->NumTemporaries >= 256) {
+               _mesa_problem(compiler->Ctx, "radeonCompiler: Too many temporaries");
+               return 0;
+       }
+
+       return compiler->NumTemporaries++;
+}
+
+
+/**
+ * \p position index of the new clause; later clauses are moved
+ * \p type of the new clause; one of CLAUSE_XXX
+ * \return a pointer to the new clause
+ */
+struct radeon_clause* radeonCompilerInsertClause(
+       struct radeon_compiler *compiler,
+       int position, int type)
+{
+       struct radeon_clause* oldClauses = compiler->Clauses;
+       struct radeon_clause* clause;
+
+       assert(position >= 0 && position <= compiler->NumClauses);
+
+       compiler->Clauses = (struct radeon_clause *)
+               _mesa_malloc((compiler->NumClauses+1) * sizeof(struct radeon_clause));
+       if (oldClauses) {
+               _mesa_memcpy(compiler->Clauses, oldClauses,
+                       position*sizeof(struct radeon_clause));
+               _mesa_memcpy(compiler->Clauses+position+1, oldClauses+position,
+                       (compiler->NumClauses - position) * sizeof(struct radeon_clause));
+               _mesa_free(oldClauses);
+       }
+       compiler->NumClauses++;
+
+       clause = compiler->Clauses + position;
+       _mesa_memset(clause, 0, sizeof(*clause));
+       clause->Type = type;
+
+       return clause;
+}
+
+
+/**
+ * Remove clauses in the range [start, end)
+ */
+void radeonCompilerEraseClauses(
+       struct radeon_compiler *compiler,
+       int start, int end)
+{
+       struct radeon_clause* oldClauses = compiler->Clauses;
+       int i;
+
+       assert(0 <= start);
+       assert(start <= end);
+       assert(end <= compiler->NumClauses);
+
+       if (end == start)
+               return;
+
+       for(i = start; i < end; ++i) {
+               struct radeon_clause* clause = oldClauses + i;
+               _mesa_free_instructions(clause->Instructions, clause->NumInstructions);
+       }
+
+       if (start > 0 || end < compiler->NumClauses) {
+               compiler->Clauses = (struct radeon_clause*)
+                       _mesa_malloc((compiler->NumClauses+start-end) * sizeof(struct radeon_clause));
+               _mesa_memcpy(compiler->Clauses, oldClauses,
+                       start * sizeof(struct radeon_clause));
+               _mesa_memcpy(compiler->Clauses + start, oldClauses + end,
+                       (compiler->NumClauses - end) * sizeof(struct radeon_clause));
+               compiler->NumClauses -= end - start;
+       } else {
+               compiler->Clauses = 0;
+               compiler->NumClauses = 0;
+       }
+
+       _mesa_free(oldClauses);
+}
diff --git a/src/mesa/drivers/dri/r300/radeon_program.h b/src/mesa/drivers/dri/r300/radeon_program.h
new file mode 100644 (file)
index 0000000..18091ac
--- /dev/null
@@ -0,0 +1,110 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef __RADEON_PROGRAM_H_
+#define __RADEON_PROGRAM_H_
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/program.h"
+#include "shader/prog_instruction.h"
+
+
+enum {
+       CLAUSE_MIXED = 0,
+       CLAUSE_ALU,
+       CLAUSE_TEX
+};
+
+/**
+ * A clause is simply a sequence of instructions that are executed
+ * in order.
+ */
+struct radeon_clause {
+       /**
+        * Type of this clause, one of CLAUSE_XXX.
+        */
+       int Type : 2;
+
+       /**
+        * Pointer to an array of instructions.
+        * The array is terminated by an OPCODE_END instruction.
+        */
+       struct prog_instruction *Instructions;
+
+       /**
+        * Number of instructions in this clause.
+        */
+       int NumInstructions;
+
+       /**
+        * Space reserved for instructions in this clause.
+        */
+       int ReservedInstructions;
+};
+
+/**
+ * A compile object, holding the current intermediate state during compilation.
+ */
+struct radeon_compiler {
+       struct gl_program *Source;
+       GLcontext* Ctx;
+
+       /**
+        * Number of clauses in this program.
+        */
+       int NumClauses;
+
+       /**
+        * Pointer to an array of NumClauses clauses.
+        */
+       struct radeon_clause *Clauses;
+
+       /**
+        * Number of registers in the PROGRAM_TEMPORARIES file.
+        */
+       int NumTemporaries;
+};
+
+void radeonCompilerInit(
+       struct radeon_compiler *compiler,
+       GLcontext *ctx,
+       struct gl_program *source);
+void radeonCompilerCleanup(struct radeon_compiler *compiler);
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler);
+
+struct radeon_clause *radeonCompilerInsertClause(
+       struct radeon_compiler *compiler,
+       int position,
+       int type);
+void radeonCompilerEraseClauses(
+       struct radeon_compiler *compiler,
+       int start,
+       int end);
+
+#endif