--- /dev/null
+from migen.fhdl.std import *
+from migen.genlib.fsm import *
+from migen.actorlib.fifo import *
+from migen.flow.actor import EndpointDescription
+
+user_layout = EndpointDescription(
+ [ ("dst", 8),
+ ("length", 4*8),
+ ("error", 1),
+ ("d", 8)
+ ],
+ packetized=True
+)
+
+phy_layout = [
+ ("d", 8)
+]
+
+class FtdiPipe:
+ def __init__(self, layout):
+ self.sink = Sink(layout)
+ self.source = Source(layout)
+
+class FtdiTimeout(Module):
+ def __init__(self, clk_freq, length):
+ cnt_max = int(clk_freq*length)
+ width = bits_for(cnt_max)
+
+ self.clear = Signal()
+ self.done = Signal()
+
+ cnt = Signal(width)
+ self.sync += \
+ If(self.clear,
+ cnt.eq(0)
+ ).Elif(~self.done,
+ cnt.eq(cnt+1)
+ )
+ self.comb += self.done.eq(cnt == cnt_max)
+
+#
+# TB
+#
+import random
+
+def randn(max_n):
+ return random.randint(0, max_n-1)
+
+class RandRun:
+ def __init__(self, level=0):
+ self.run = True
+ self.level = level
+
+ def do_simulation(self, selfp):
+ self.run = True
+ n = randn(100)
+ if n < self.level:
+ self.run = False
--- /dev/null
+from liteusb.ftdi.uart import FtdiUART
+from liteusb.ftdi.dma import FtdiDMA
+from liteusb.ftdi.com import FtdiCom
+from liteusb.ftdi.crc import FtdiCRC32
\ No newline at end of file
--- /dev/null
+from migen.fhdl.std import *
+from migen.flow.actor import *
+
+from liteusb.ftdi.std import *
+from liteusb.ftdi.crossbar import FtdiCrossbar
+from liteusb.ftdi.packetizer import FtdiPacketizer
+from liteusb.ftdi.depacketizer import FtdiDepacketizer
+from liteusb.ftdi.phy import FtdiPHY
+
+class FtdiCom(Module):
+ def __init__(self, pads, *ports):
+ # crossbar
+ self.submodules.crossbar = FtdiCrossbar(list(ports))
+
+ # packetizer / depacketizer
+ self.submodules.packetizer = FtdiPacketizer()
+ self.submodules.depacketizer = FtdiDepacketizer()
+ self.comb += [
+ self.crossbar.slave.source.connect(self.packetizer.sink),
+ self.depacketizer.source.connect(self.crossbar.slave.sink)
+ ]
+
+ # phy
+ self.submodules.phy = FtdiPHY(pads)
+ self.comb += [
+ self.packetizer.source.connect(self.phy.sink),
+ self.phy.source.connect(self.depacketizer.sink)
+ ]
--- /dev/null
+
+from collections import OrderedDict
+from migen.fhdl.std import *
+from migen.genlib.fsm import FSM, NextState
+from migen.genlib.record import *
+from migen.genlib.misc import chooser, optree
+from migen.flow.actor import Sink, Source
+from migen.actorlib.fifo import SyncFIFO
+
+from liteusb.ftdi.std import *
+
+class CRCEngine(Module):
+ """Cyclic Redundancy Check Engine
+
+ Compute next CRC value from last CRC value and data input using
+ an optimized asynchronous LFSR.
+
+ Parameters
+ ----------
+ dat_width : int
+ Width of the data bus.
+ width : int
+ Width of the CRC.
+ polynom : int
+ Polynom of the CRC (ex: 0x04C11DB7 for IEEE 802.3 CRC)
+
+ Attributes
+ ----------
+ d : in
+ Data input.
+ last : in
+ last CRC value.
+ next :
+ next CRC value.
+ """
+ def __init__(self, dat_width, width, polynom):
+ self.d = Signal(dat_width)
+ self.last = Signal(width)
+ self.next = Signal(width)
+
+ ###
+
+ def _optimize_eq(l):
+ """
+ Replace even numbers of XORs in the equation
+ with an equivalent XOR
+ """
+ d = OrderedDict()
+ for e in l:
+ if e in d:
+ d[e] += 1
+ else:
+ d[e] = 1
+ r = []
+ for key, value in d.items():
+ if value%2 != 0:
+ r.append(key)
+ return r
+
+ # compute and optimize CRC's LFSR
+ curval = [[("state", i)] for i in range(width)]
+ for i in range(dat_width):
+ feedback = curval.pop() + [("din", i)]
+ for j in range(width-1):
+ if (polynom & (1<<(j+1))):
+ curval[j] += feedback
+ curval[j] = _optimize_eq(curval[j])
+ curval.insert(0, feedback)
+
+ # implement logic
+ for i in range(width):
+ xors = []
+ for t, n in curval[i]:
+ if t == "state":
+ xors += [self.last[n]]
+ elif t == "din":
+ xors += [self.d[n]]
+ self.comb += self.next[i].eq(optree("^", xors))
+
+@DecorateModule(InsertReset)
+@DecorateModule(InsertCE)
+class CRC32(Module):
+ """IEEE 802.3 CRC
+
+ Implement an IEEE 802.3 CRC generator/checker.
+
+ Parameters
+ ----------
+ dat_width : int
+ Width of the data bus.
+
+ Attributes
+ ----------
+ d : in
+ Data input.
+ value : out
+ CRC value (used for generator).
+ error : out
+ CRC error (used for checker).
+ """
+ width = 32
+ polynom = 0x04C11DB7
+ init = 2**width-1
+ check = 0xC704DD7B
+ def __init__(self, dat_width):
+ self.d = Signal(dat_width)
+ self.value = Signal(self.width)
+ self.error = Signal()
+
+ ###
+
+ self.submodules.engine = CRCEngine(dat_width, self.width, self.polynom)
+ reg = Signal(self.width, reset=self.init)
+ self.sync += reg.eq(self.engine.next)
+ self.comb += [
+ self.engine.d.eq(self.d),
+ self.engine.last.eq(reg),
+
+ self.value.eq(~reg[::-1]),
+ self.error.eq(self.engine.next != self.check)
+ ]
+
+class CRCInserter(Module):
+ """CRC Inserter
+
+ Append a CRC at the end of each packet.
+
+ Parameters
+ ----------
+ layout : layout
+ Layout of the dataflow.
+
+ Attributes
+ ----------
+ sink : in
+ Packets input without CRC.
+ source : out
+ Packets output with CRC.
+ """
+ def __init__(self, crc_class, layout):
+ self.sink = sink = Sink(layout)
+ self.source = source = Source(layout)
+ self.busy = Signal()
+
+ ###
+
+ dw = flen(sink.d)
+ crc = crc_class(dw)
+ fsm = FSM(reset_state="IDLE")
+ self.submodules += crc, fsm
+
+ fsm.act("IDLE",
+ crc.reset.eq(1),
+ sink.ack.eq(1),
+ If(sink.stb & sink.sop,
+ sink.ack.eq(0),
+ NextState("COPY"),
+ )
+ )
+ fsm.act("COPY",
+ crc.ce.eq(sink.stb & source.ack),
+ crc.d.eq(sink.d),
+ Record.connect(sink, source),
+ source.eop.eq(0),
+ If(sink.stb & sink.eop & source.ack,
+ NextState("INSERT"),
+ )
+ )
+ ratio = crc.width//dw
+ if ratio > 1:
+ cnt = Signal(max=ratio, reset=ratio-1)
+ cnt_done = Signal()
+ fsm.act("INSERT",
+ source.stb.eq(1),
+ chooser(crc.value, cnt, source.d, reverse=True),
+ If(cnt_done,
+ source.eop.eq(1),
+ If(source.ack, NextState("IDLE"))
+ )
+ )
+ self.comb += cnt_done.eq(cnt == 0)
+ self.sync += \
+ If(fsm.ongoing("IDLE"),
+ cnt.eq(cnt.reset)
+ ).Elif(fsm.ongoing("INSERT") & ~cnt_done,
+ cnt.eq(cnt - source.ack)
+ )
+ else:
+ fsm.act("INSERT",
+ source.stb.eq(1),
+ source.eop.eq(1),
+ source.d.eq(crc.value),
+ If(source.ack, NextState("IDLE"))
+ )
+ self.comb += self.busy.eq(~fsm.ongoing("IDLE"))
+
+class CRC32Inserter(CRCInserter):
+ def __init__(self, layout):
+ CRCInserter.__init__(self, CRC32, layout)
+
+class CRCChecker(Module):
+ """CRC Checker
+
+ Check CRC at the end of each packet.
+
+ Parameters
+ ----------
+ layout : layout
+ Layout of the dataflow.
+
+ Attributes
+ ----------
+ sink : in
+ Packets input with CRC.
+ source : out
+ Packets output without CRC and "error" set to 0
+ on eop when CRC OK / set to 1 when CRC KO.
+ """
+ def __init__(self, crc_class, layout):
+ self.sink = sink = Sink(layout)
+ self.source = source = Source(layout)
+ self.busy = Signal()
+
+ ###
+
+ dw = flen(sink.d)
+ crc = crc_class(dw)
+ self.submodules += crc
+ ratio = crc.width//dw
+
+ error = Signal()
+ fifo = InsertReset(SyncFIFO(layout, ratio + 1))
+ self.submodules += fifo
+
+ fsm = FSM(reset_state="RESET")
+ self.submodules += fsm
+
+ fifo_in = Signal()
+ fifo_out = Signal()
+ fifo_full = Signal()
+
+ self.comb += [
+ fifo_full.eq(fifo.fifo.level == ratio),
+ fifo_in.eq(sink.stb & (~fifo_full | fifo_out)),
+ fifo_out.eq(source.stb & source.ack),
+
+ Record.connect(sink, fifo.sink),
+ fifo.sink.stb.eq(fifo_in),
+ self.sink.ack.eq(fifo_in),
+
+ source.stb.eq(sink.stb & fifo_full),
+ source.sop.eq(fifo.source.sop),
+ source.eop.eq(sink.eop),
+ fifo.source.ack.eq(fifo_out),
+ source.payload.eq(fifo.source.payload),
+
+ source.error.eq(sink.error | crc.error),
+ ]
+
+ fsm.act("RESET",
+ crc.reset.eq(1),
+ fifo.reset.eq(1),
+ NextState("IDLE"),
+ )
+ fsm.act("IDLE",
+ crc.d.eq(sink.d),
+ If(sink.stb & sink.sop & sink.ack,
+ crc.ce.eq(1),
+ NextState("COPY")
+ )
+ )
+ fsm.act("COPY",
+ crc.d.eq(sink.d),
+ If(sink.stb & sink.ack,
+ crc.ce.eq(1),
+ If(sink.eop,
+ NextState("RESET")
+ )
+ )
+ )
+ self.comb += self.busy.eq(~fsm.ongoing("IDLE"))
+
+class CRC32Checker(CRCChecker):
+ def __init__(self, layout):
+ CRCChecker.__init__(self, CRC32, layout)
+
+class FtdiCRC32(Module):
+ def __init__(self, tag):
+ self.tag = tag
+
+ self.submodules.inserter = CRC32Inserter(user_layout)
+ self.submodules.checker = CRC32Checker(user_layout)
+
+ self.dma_sink = self.inserter.sink
+ self.dma_source = self.checker.source
+
+ self.sink = self.checker.sink
+ self.source = self.inserter.source
--- /dev/null
+from migen.fhdl.std import *
+from migen.actorlib.structuring import *
+from migen.genlib.fsm import FSM, NextState
+
+from liteusb.ftdi.std import *
+
+class FtdiDepacketizer(Module):
+ def __init__(self, timeout=10):
+ self.sink = sink = Sink(phy_layout)
+ self.source = source = Source(user_layout)
+
+ # Packet description
+ # - preamble : 4 bytes
+ # - dst : 1 byte
+ # - length : 4 bytes
+ # - payload
+ preamble = Array(Signal(8) for i in range(4))
+
+ header = [
+ # dst
+ source.dst,
+ # length
+ source.length[24:32],
+ source.length[16:24],
+ source.length[8:16],
+ source.length[0:8],
+ ]
+
+ header_pack = InsertReset(Pack(phy_layout, len(header)))
+ self.submodules += header_pack
+
+ for i, byte in enumerate(header):
+ chunk = getattr(header_pack.source.payload, "chunk" + str(i))
+ self.comb += byte.eq(chunk.d)
+
+ fsm = FSM()
+ self.submodules += fsm
+
+ self.comb += preamble[0].eq(sink.d)
+ for i in range(1, 4):
+ self.sync += If(sink.stb & sink.ack,
+ preamble[i].eq(preamble[i-1])
+ )
+ fsm.act("WAIT_SOP",
+ If( (preamble[3] == 0x5A) &
+ (preamble[2] == 0xA5) &
+ (preamble[1] == 0x5A) &
+ (preamble[0] == 0xA5) &
+ sink.stb,
+ NextState("RECEIVE_HEADER")
+ ),
+ sink.ack.eq(1),
+ header_pack.source.ack.eq(1),
+ )
+
+ self.submodules.timeout = FtdiTimeout(60000000, timeout)
+ self.comb += self.timeout.clear.eq(fsm.ongoing("WAIT_SOP"))
+
+ fsm.act("RECEIVE_HEADER",
+ header_pack.sink.stb.eq(sink.stb),
+ header_pack.sink.payload.eq(sink.payload),
+ If(self.timeout.done, NextState("WAIT_SOP"))
+ .Elif(header_pack.source.stb, NextState("RECEIVE_PAYLOAD"))
+ .Else(sink.ack.eq(1))
+ )
+
+ self.comb += header_pack.reset.eq(self.timeout.done)
+
+ sop = Signal()
+ eop = Signal()
+ cnt = Signal(32)
+
+ fsm.act("RECEIVE_PAYLOAD",
+ source.stb.eq(sink.stb),
+ source.sop.eq(sop),
+ source.eop.eq(eop),
+ source.d.eq(sink.d),
+ sink.ack.eq(source.ack),
+ If((eop & sink.stb & source.ack) | self.timeout.done, NextState("WAIT_SOP"))
+ )
+
+ self.sync += \
+ If(fsm.ongoing("WAIT_SOP"),
+ cnt.eq(0)
+ ).Elif(source.stb & source.ack,
+ cnt.eq(cnt + 1)
+ )
+ self.comb += sop.eq(cnt == 0)
+ self.comb += eop.eq(cnt == source.length - 1)
+
+#
+# TB
+#
+src_data = [
+ 0x5A, 0xA5, 0x5A, 0xA5, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x01, 0x02, 0x03,
+ 0x5A, 0xA5, 0x5A, 0xA5, 0x12, 0x00, 0x00, 0x00, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+]*4
+
+class DepacketizerSourceModel(Module, Source, RandRun):
+ def __init__(self, data):
+ Source.__init__(self, phy_layout)
+ RandRun.__init__(self, 50)
+ self.data = data
+
+ self._stb = 0
+ self._cnt = 0
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+
+ if self.run and not self._stb:
+ self._stb = 1
+
+ if selfp.stb and selfp.ack:
+ self._cnt +=1
+
+ selfp.stb = self._stb
+ selfp.d = self.data[self._cnt]
+
+ if self._cnt == len(self.data)-1:
+ raise StopSimulation
+
+
+class DepacketizerSinkModel(Module, Sink, RandRun):
+ def __init__(self):
+ Sink.__init__(self, user_layout, True)
+ RandRun.__init__(self, 50)
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+ if self.run:
+ selfp.ack = 1
+ else:
+ selfp.ack = 0
+
+
+class TB(Module):
+ def __init__(self):
+ self.submodules.source = DepacketizerSourceModel(src_data)
+ self.submodules.dut = FtdiDepacketizer()
+ self.submodules.sink = DepacketizerSinkModel()
+
+ self.comb += [
+ self.source.connect(self.dut.sink),
+ self.dut.source.connect(self.sink),
+ ]
+
+def main():
+ from migen.sim.generic import run_simulation
+ run_simulation(TB(), ncycles=400, vcd_name="tb_depacketizer.vcd")
+
+if __name__ == "__main__":
+ main()
--- /dev/null
+from migen.fhdl.std import *
+from migen.actorlib.structuring import *
+from migen.genlib.fsm import FSM, NextState
+
+from liteusb.ftdi.std import *
+
+class FtdiPacketizer(Module):
+ def __init__(self):
+ self.sink = sink = Sink(user_layout)
+ self.source = source = Source(phy_layout)
+
+ # Packet description
+ # - preamble : 4 bytes
+ # - dst : 1 byte
+ # - length : 4 bytes
+ # - payload
+ header = [
+ # preamble
+ 0x5A,
+ 0xA5,
+ 0x5A,
+ 0xA5,
+ # dst
+ sink.dst,
+ # length
+ sink.length[24:32],
+ sink.length[16:24],
+ sink.length[8:16],
+ sink.length[0:8],
+ ]
+
+ header_unpack = Unpack(len(header), phy_layout)
+ self.submodules += header_unpack
+
+ for i, byte in enumerate(header):
+ chunk = getattr(header_unpack.sink.payload, "chunk" + str(i))
+ self.comb += chunk.d.eq(byte)
+
+ fsm = FSM()
+ self.submodules += fsm
+
+ fsm.act("WAIT_SOP",
+ If(sink.stb & sink.sop, NextState("SEND_HEADER"))
+ )
+
+ fsm.act("SEND_HEADER",
+ header_unpack.sink.stb.eq(1),
+ source.stb.eq(1),
+ source.d.eq(header_unpack.source.d),
+ header_unpack.source.ack.eq(source.ack),
+ If(header_unpack.sink.ack, NextState("SEND_DATA"))
+ )
+
+ fsm.act("SEND_DATA",
+ source.stb.eq(sink.stb),
+ source.d.eq(sink.d),
+ sink.ack.eq(source.ack),
+ If(source.ack & sink.eop, NextState("WAIT_SOP"))
+ )
+
+#
+# TB
+#
+src_data = [
+ (0x01, 4,
+ [0x0, 0x1, 0x2, 0x3]
+ ),
+ (0x16, 8,
+ [0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7]
+ ),
+ (0x22, 16,
+ [0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF]
+ ),
+]
+
+class PacketizerSourceModel(Module, Source, RandRun):
+ def __init__(self, data):
+ Source.__init__(self, user_layout, True)
+ RandRun.__init__(self, 25)
+ self.data = data
+
+ self._stb = 0
+ self._sop = 0
+ self._eop = 0
+ self._frame_cnt = 0
+ self._payload_cnt = 0
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+ dst, length, payload = self.data[self._frame_cnt]
+
+ if selfp.stb and selfp.ack:
+ if self._payload_cnt == length-1:
+ self._frame_cnt += 1
+ self._payload_cnt = 0
+ else:
+ self._payload_cnt += 1
+ if self.run:
+ self._stb = 1
+ else:
+ self._stb = 0
+
+ if self.run and not self._stb:
+ self._stb = 1
+
+ self._sop = int((self._payload_cnt == 0))
+ self._eop = int((self._payload_cnt == length-1))
+
+ selfp.stb = self._stb
+ selfp.sop = self._sop & self._stb
+ selfp.eop = self._eop & self._stb
+ selfp.dst = dst
+ selfp.length = length
+ selfp.d = payload[self._payload_cnt]
+
+ if self._frame_cnt == len(self.data):
+ raise StopSimulation
+
+class PacketizerSinkModel(Module, Sink, RandRun):
+ def __init__(self):
+ Sink.__init__(self, phy_layout)
+ RandRun.__init__(self, 25)
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+ if self.run:
+ selfp.ack = 1
+ else:
+ selfp.ack = 0
+
+
+class TB(Module):
+ def __init__(self):
+ self.submodules.source = PacketizerSourceModel(src_data)
+ self.submodules.dut = FtdiPacketizer()
+ self.submodules.sink = PacketizerSinkModel()
+
+ self.comb +=[
+ self.source.connect(self.dut.sink),
+ self.dut.source.connect(self.sink),
+ ]
+
+def main():
+ from migen.sim.generic import run_simulation
+ run_simulation(TB(), ncycles=400, vcd_name="tb_packetizer.vcd")
+
+if __name__ == "__main__":
+ main()
--- /dev/null
+from migen.fhdl.std import *
+from migen.genlib.roundrobin import *
+from migen.genlib.record import Record
+
+from liteusb.ftdi.std import *
+
+class FtdiCrossbar(Module):
+ def __init__(self, masters, slave=None):
+ if slave is None:
+ slave = FtdiPipe(user_layout)
+ self.slave = slave
+
+ # masters --> slave arbitration
+ self.submodules.rr = RoundRobin(len(masters))
+ cases = {}
+ for i, m in enumerate(masters):
+ sop = Signal()
+ eop = Signal()
+ ongoing = Signal()
+ self.comb += [
+ sop.eq(m.source.stb & m.source.sop),
+ eop.eq(m.source.stb & m.source.eop & m.source.ack),
+ ]
+ self.sync += ongoing.eq((sop | ongoing) & ~eop)
+ self.comb += self.rr.request[i].eq(sop | ongoing)
+
+ cases[i] = [Record.connect(masters[i].source, slave.source)]
+ self.comb += Case(self.rr.grant, cases)
+
+ # slave --> master demux
+ cases = {}
+ for i, m in enumerate(masters):
+ cases[m.tag] = [Record.connect(slave.sink, masters[i].sink)]
+ cases["default"] = [slave.sink.ack.eq(1)]
+ self.comb += Case(slave.sink.dst, cases)
--- /dev/null
+from migen.fhdl.std import *
+from migen.flow.actor import *
+from migen.flow.network import *
+from migen.actorlib import dma_lasmi, structuring, spi
+from migen.bank.description import *
+from migen.bank.eventmanager import *
+from migen.genlib.record import Record
+
+from liteusb.ftdi.std import *
+
+class FtdiDMAWriter(Module, AutoCSR):
+ def __init__(self, lasmim):
+ self.sink = sink = Sink(user_layout)
+
+ # Pack data
+ pack_factor = lasmim.dw//8
+ pack = structuring.Pack(phy_layout, pack_factor, reverse=True)
+ cast = structuring.Cast(pack.source.payload.layout, lasmim.dw)
+
+ # DMA
+ writer = dma_lasmi.Writer(lasmim)
+ self._reset = CSR()
+ self.dma = InsertReset(spi.DMAWriteController(writer, mode=spi.MODE_SINGLE_SHOT))
+ self.comb += self.dma.reset.eq(self._reset.r & self._reset.re)
+
+ # Remove sop/eop/length/dst fields from payload
+ self.comb += [
+ pack.sink.stb.eq(sink.stb),
+ pack.sink.payload.eq(sink.payload),
+ sink.ack.eq(pack.sink.ack)
+ ]
+
+ # Graph
+ g = DataFlowGraph()
+ g.add_pipeline(pack, cast, self.dma)
+ self.submodules += CompositeActor(g)
+
+ # IRQ
+ self.submodules.ev = EventManager()
+ self.ev.done = EventSourcePulse()
+ self.ev.finalize()
+ self.comb += self.ev.done.trigger.eq(sink.stb & sink.eop)
+
+ # CRC
+ self._crc_failed = CSRStatus()
+ self.sync += \
+ If(sink.stb & sink.eop,
+ self._crc_failed.status.eq(sink.error)
+ )
+
+class FtdiDMAReader(Module, AutoCSR):
+ def __init__(self, lasmim, tag):
+ self.source = source = Source(user_layout)
+
+ reader = dma_lasmi.Reader(lasmim)
+ self.dma = spi.DMAReadController(reader, mode=spi.MODE_SINGLE_SHOT)
+
+ pack_factor = lasmim.dw//8
+ packed_dat = structuring.pack_layout(8, pack_factor)
+ cast = structuring.Cast(lasmim.dw, packed_dat)
+ unpack = structuring.Unpack(pack_factor, phy_layout, reverse=True)
+
+ # Graph
+ cnt = Signal(32)
+ self.sync += \
+ If(self.dma.generator._r_shoot.re,
+ cnt.eq(0)
+ ).Elif(source.stb & source.ack,
+ cnt.eq(cnt + 1)
+ )
+ g = DataFlowGraph()
+ g.add_pipeline(self.dma, cast, unpack)
+ self.submodules += CompositeActor(g)
+ self.comb += [
+ source.stb.eq(unpack.source.stb),
+ source.sop.eq(cnt == 0),
+ source.eop.eq(cnt == (self.dma.length*pack_factor-1)),
+ source.length.eq(self.dma.length*pack_factor+4),
+ source.d.eq(unpack.source.d),
+ source.dst.eq(tag),
+ unpack.source.ack.eq(source.ack)
+ ]
+
+ # IRQ
+ self.submodules.ev = EventManager()
+ self.ev.done = EventSourcePulse()
+ self.ev.finalize()
+ self.comb += self.ev.done.trigger.eq(source.stb & source.eop)
+
+class FtdiDMA(Module, AutoCSR):
+ def __init__(self, lasmim_ftdi_dma_wr, lasmim_ftdi_dma_rd, tag):
+ self.tag = tag
+
+ self.submodules.writer = FtdiDMAWriter(lasmim_ftdi_dma_wr)
+ self.submodules.reader = FtdiDMAReader(lasmim_ftdi_dma_rd, self.tag)
+ self.submodules.ev = SharedIRQ(self.writer.ev, self.reader.ev)
+
+ self.sink = self.writer.sink
+ self.source = self.reader.source
--- /dev/null
+from migen.fhdl.std import *
+from migen.bank.description import *
+from migen.bank.eventmanager import *
+from migen.genlib.fifo import SyncFIFOBuffered
+
+from liteusb.ftdi.std import *
+
+class FtdiUART(Module, AutoCSR):
+ def __init__(self, tag, fifo_depth=64):
+ self.tag = tag
+
+ self._rxtx = CSR(8)
+
+ self.submodules.ev = EventManager()
+ self.ev.tx = EventSourcePulse()
+ self.ev.rx = EventSourceLevel()
+ self.ev.finalize()
+
+ self.source = source = Source(user_layout)
+ self.sink = sink = Sink(user_layout)
+
+ ###
+
+ # TX
+ tx_start = self._rxtx.re
+ tx_done = self.ev.tx.trigger
+
+ self.sync += \
+ If(tx_start,
+ source.stb.eq(1),
+ source.d.eq(self._rxtx.r),
+ ).Elif(tx_done,
+ source.stb.eq(0)
+ )
+
+ self.comb += [
+ source.sop.eq(1),
+ source.eop.eq(1),
+ source.length.eq(1),
+ source.dst.eq(self.tag),
+ tx_done.eq(source.stb & source.ack),
+ ]
+
+ # RX
+ rx_available = self.ev.rx.trigger
+
+ rx_fifo = SyncFIFOBuffered(8, fifo_depth)
+ self.submodules += rx_fifo
+ self.comb += [
+ rx_fifo.we.eq(sink.stb),
+ sink.ack.eq(sink.stb & rx_fifo.writable),
+ rx_fifo.din.eq(sink.d),
+
+ rx_available.eq(rx_fifo.readable),
+ rx_fifo.re.eq(self.ev.rx.clear),
+ self._rxtx.w.eq(rx_fifo.dout)
+ ]
--- /dev/null
+from migen.fhdl.std import *
+from migen.flow.actor import *
+from migen.actorlib.fifo import AsyncFIFO
+from migen.fhdl.specials import *
+
+from liteusb.ftdi.std import *
+
+class FtdiPHY(Module):
+ def __init__(self, pads, fifo_depth=32, read_time=16, write_time=16):
+ dw = flen(pads.data)
+
+ #
+ # Read / Write Fifos
+ #
+
+ # Read Fifo (Ftdi --> SoC)
+ read_fifo = RenameClockDomains(AsyncFIFO(phy_layout, fifo_depth),
+ {"write":"ftdi", "read":"sys"})
+ read_buffer = RenameClockDomains(SyncFIFO(phy_layout, 4),
+ {"sys":"ftdi"})
+ self.comb += read_buffer.source.connect(read_fifo.sink)
+
+ # Write Fifo (SoC --> Ftdi)
+ write_fifo = RenameClockDomains(AsyncFIFO(phy_layout, fifo_depth),
+ {"write":"sys", "read":"ftdi"})
+
+ self.submodules += read_fifo, read_buffer, write_fifo
+
+ #
+ # Sink / Source interfaces
+ #
+ self.sink = write_fifo.sink
+ self.source = read_fifo.source
+
+ #
+ # Read / Write Arbitration
+ #
+ wants_write = Signal()
+ wants_read = Signal()
+
+ txe_n = Signal()
+ rxf_n = Signal()
+
+ self.comb += [
+ txe_n.eq(pads.txe_n),
+ rxf_n.eq(pads.rxf_n),
+ wants_write.eq(~txe_n & write_fifo.source.stb),
+ wants_read.eq(~rxf_n & read_fifo.sink.ack),
+ ]
+
+ def anti_starvation(timeout):
+ en = Signal()
+ max_time = Signal()
+ if timeout:
+ t = timeout - 1
+ time = Signal(max=t+1)
+ self.comb += max_time.eq(time == 0)
+ self.sync += If(~en,
+ time.eq(t)
+ ).Elif(~max_time,
+ time.eq(time - 1)
+ )
+ else:
+ self.comb += max_time.eq(0)
+ return en, max_time
+
+ read_time_en, max_read_time = anti_starvation(read_time)
+ write_time_en, max_write_time = anti_starvation(write_time)
+
+ data_w_accepted = Signal(reset=1)
+
+ fsm = FSM()
+ self.submodules += RenameClockDomains(fsm, {"sys": "ftdi"})
+
+ fsm.act("READ",
+ read_time_en.eq(1),
+ If(wants_write,
+ If(~wants_read | max_read_time, NextState("RTW"))
+ )
+ )
+ fsm.act("RTW",
+ NextState("WRITE")
+ )
+ fsm.act("WRITE",
+ write_time_en.eq(1),
+ If(wants_read,
+ If(~wants_write | max_write_time, NextState("WTR"))
+ ),
+ write_fifo.source.ack.eq(wants_write & data_w_accepted)
+ )
+ fsm.act("WTR",
+ NextState("READ")
+ )
+
+ #
+ # Read / Write Actions
+ #
+
+ data_w = Signal(dw)
+ data_r = Signal(dw)
+ data_oe = Signal()
+
+ pads.oe_n.reset = 1
+ pads.rd_n.reset = 1
+ pads.wr_n.reset = 1
+
+ self.sync.ftdi += [
+ If(fsm.ongoing("READ"),
+ data_oe.eq(0),
+
+ pads.oe_n.eq(0),
+ pads.rd_n.eq(~wants_read),
+ pads.wr_n.eq(1)
+
+ ).Elif(fsm.ongoing("WRITE"),
+ data_oe.eq(1),
+
+ pads.oe_n.eq(1),
+ pads.rd_n.eq(1),
+ pads.wr_n.eq(~wants_write),
+
+ data_w_accepted.eq(~txe_n)
+
+ ).Else(
+ data_oe.eq(1),
+
+ pads.oe_n.eq(~fsm.ongoing("WTR")),
+ pads.rd_n.eq(1),
+ pads.wr_n.eq(1)
+ ),
+ read_buffer.sink.stb.eq(~pads.rd_n & ~rxf_n),
+ read_buffer.sink.d.eq(data_r),
+ If(~txe_n & data_w_accepted,
+ data_w.eq(write_fifo.source.d)
+ )
+ ]
+
+ #
+ # Databus Tristate
+ #
+ self.specials += Tristate(pads.data, data_w, data_oe, data_r)
+
+ self.debug = Signal(8)
+ self.comb += self.debug.eq(data_r)
+
+
+#
+# TB
+#
+class FtdiModel(Module, RandRun):
+ def __init__(self, rd_data):
+ RandRun.__init__(self, 50)
+ self.rd_data = [0] + rd_data
+ self.rd_idx = 0
+
+ # pads
+ self.data = Signal(8)
+ self.rxf_n = Signal(reset=1)
+ self.txe_n = Signal(reset=1)
+ self.rd_n = Signal(reset=1)
+ self.wr_n = Signal(reset=1)
+ self.oe_n = Signal(reset=1)
+ self.siwua = Signal()
+ self.pwren_n = Signal(reset=1)
+
+ self.init = True
+ self.wr_data = []
+ self.wait_wr_n = False
+ self.rd_done = 0
+
+ def wr_sim(self, selfp):
+ if not selfp.wr_n and not selfp.txe_n:
+ self.wr_data.append(selfp.data)
+ self.wait_wr_n = False
+
+ if not self.wait_wr_n:
+ if self.run:
+ selfp.txe_n = 1
+ else:
+ if selfp.txe_n:
+ self.wait_wr_n = True
+ selfp.txe_n = 0
+
+ def rd_sim(self, selfp):
+ rxf_n = selfp.rxf_n
+ if self.run:
+ if self.rd_idx < len(self.rd_data)-1:
+ self.rd_done = selfp.rxf_n
+ selfp.rxf_n = 0
+ else:
+ selfp.rxf_n = self.rd_done
+ else:
+ selfp.rxf_n = self.rd_done
+
+ if not selfp.rd_n and not selfp.oe_n:
+ if self.rd_idx < len(self.rd_data)-1:
+ self.rd_idx += not rxf_n
+ selfp.data = self.rd_data[self.rd_idx]
+ self.rd_done = 1
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+ if self.init:
+ selfp.rxf_n = 0
+ self.wr_data = []
+ self.init = False
+ self.wr_sim(selfp)
+ self.rd_sim(selfp)
+
+class UserModel(Module, RandRun):
+ def __init__(self, wr_data):
+ RandRun.__init__(self, 50)
+ self.wr_data = wr_data
+ self.wr_data_idx = 0
+
+ self.sink = Sink(phy_layout)
+ self.source = Source(phy_layout)
+
+ self.rd_data = []
+
+ def wr_sim(self, selfp):
+ auth = True
+ if selfp.source.stb and not selfp.source.ack:
+ auth = False
+ if auth:
+ if self.wr_data_idx < len(self.wr_data):
+ if self.run:
+ selfp.source.d = self.wr_data[self.wr_data_idx]
+ selfp.source.stb = 1
+ self.wr_data_idx += 1
+ else:
+ selfp.source.stb = 0
+ else:
+ self.source.stb = 0
+
+ def rd_sim(self, selfp):
+ if self.run:
+ selfp.sink.ack = 1
+ else:
+ selfp.sink.ack = 0
+ if selfp.sink.stb & selfp.sink.ack:
+ self.rd_data.append(selfp.sink.d)
+
+ def do_simulation(self, selfp):
+ RandRun.do_simulation(self, selfp)
+ self.wr_sim(selfp)
+ self.rd_sim(selfp)
+
+
+LENGTH = 512
+model_rd_data = [i%256 for i in range(LENGTH)][::-1]
+user_wr_data = [i%256 for i in range(LENGTH)]
+
+class TB(Module):
+ def __init__(self):
+ self.submodules.model = FtdiModel(model_rd_data)
+ self.submodules.phy = FtdiPHY(self.model)
+
+ self.submodules.user = UserModel(user_wr_data)
+
+ self.comb += [
+ self.user.source.connect(self.phy.sink),
+ self.phy.source.connect(self.user.sink)
+ ]
+
+ # Use sys_clk as ftdi_clk in simulation
+ self.comb += [
+ ClockSignal("ftdi").eq(ClockSignal()),
+ ResetSignal("ftdi").eq(ResetSignal())
+ ]
+
+def print_results(s, l1, l2):
+ def comp(l1, l2):
+ r = True
+ try:
+ for i, val in enumerate(l1):
+ if val != l2[i]:
+ print(s + " : val : %02X, exp : %02X" %(val, l2[i]))
+ r = False
+ except:
+ return r
+ return r
+
+ c = comp(l1, l2)
+ r = s + " "
+ if c:
+ r += "[OK]"
+ else:
+ r += "[KO]"
+ print(r)
+
+def main():
+ from migen.sim.generic import run_simulation
+ tb = TB()
+ run_simulation(tb, ncycles=8000, vcd_name="tb_phy.vcd")
+
+ ###
+ #print(tb.user.rd_data)
+ #print(tb.model.wr_data)
+ #print(len(tb.user.rd_data))
+ #print(len(tb.model.wr_data))
+
+ print_results("FtdiModel --> UserModel", model_rd_data, tb.user.rd_data)
+ print_results("UserModel --> FtdiModel", user_wr_data, tb.model.wr_data)
+
+if __name__ == "__main__":
+ main()