preprocessing/passes/apply_substs.h \
preprocessing/passes/apply_to_const.cpp \
preprocessing/passes/apply_to_const.h \
+ preprocessing/passes/bool_to_bv.cpp \
+ preprocessing/passes/bool_to_bv.h \
preprocessing/passes/bv_abstraction.cpp \
preprocessing/passes/bv_abstraction.h \
preprocessing/passes/bv_ackermann.cpp \
preprocessing/passes/bv_gauss.h \
preprocessing/passes/bv_intro_pow2.cpp \
preprocessing/passes/bv_intro_pow2.h \
+ preprocessing/passes/bv_to_bool.cpp \
+ preprocessing/passes/bv_to_bool.h \
preprocessing/passes/extended_rewriter_pass.cpp \
preprocessing/passes/extended_rewriter_pass.h \
preprocessing/passes/global_negate.cpp \
preprocessing/passes/nl_ext_purify.h \
preprocessing/passes/pseudo_boolean_processor.cpp \
preprocessing/passes/pseudo_boolean_processor.h \
- preprocessing/passes/bool_to_bv.cpp \
- preprocessing/passes/bool_to_bv.h \
- preprocessing/passes/bv_to_bool.cpp \
- preprocessing/passes/bv_to_bool.h \
preprocessing/passes/quantifiers_preprocess.cpp \
preprocessing/passes/quantifiers_preprocess.h \
preprocessing/passes/quantifier_macros.cpp \
preprocessing/passes/symmetry_detect.h \
preprocessing/passes/synth_rew_rules.cpp \
preprocessing/passes/synth_rew_rules.h \
+ preprocessing/passes/unconstrained_simplifier.cpp \
+ preprocessing/passes/unconstrained_simplifier.h \
preprocessing/preprocessing_pass.cpp \
preprocessing/preprocessing_pass.h \
preprocessing/preprocessing_pass_context.cpp \
theory/type_enumerator.h \
theory/type_set.cpp \
theory/type_set.h \
- theory/unconstrained_simplifier.cpp \
- theory/unconstrained_simplifier.h \
theory/valuation.cpp \
theory/valuation.h \
theory/arith/approx_simplex.cpp \
--- /dev/null
+/********************* */
+/*! \file unconstrained_simplifier.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Clark Barrett, Tim King, Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Simplifications based on unconstrained variables
+ **
+ ** This module implements a preprocessing phase which replaces certain
+ ** "unconstrained" expressions by variables. Based on Roberto
+ ** Bruttomesso's PhD thesis.
+ **/
+
+#include "preprocessing/passes/unconstrained_simplifier.h"
+
+#include "smt/smt_statistics_registry.h"
+#include "theory/logic_info.h"
+#include "theory/rewriter.h"
+
+namespace CVC4 {
+namespace preprocessing {
+namespace passes {
+
+using namespace CVC4::theory;
+
+UnconstrainedSimplifier::UnconstrainedSimplifier(
+ PreprocessingPassContext* preprocContext)
+ : PreprocessingPass(preprocContext, "unconstrained-simplifier"),
+ d_numUnconstrainedElim("preprocessor::number of unconstrained elims", 0),
+ d_context(preprocContext->getDecisionContext()),
+ d_substitutions(preprocContext->getDecisionContext()),
+ d_logicInfo(preprocContext->getLogicInfo())
+{
+ smtStatisticsRegistry()->registerStat(&d_numUnconstrainedElim);
+}
+
+UnconstrainedSimplifier::~UnconstrainedSimplifier()
+{
+ smtStatisticsRegistry()->unregisterStat(&d_numUnconstrainedElim);
+}
+
+struct unc_preprocess_stack_element
+{
+ TNode node;
+ TNode parent;
+ unc_preprocess_stack_element(TNode n) : node(n) {}
+ unc_preprocess_stack_element(TNode n, TNode p) : node(n), parent(p) {}
+}; /* struct unc_preprocess_stack_element */
+
+void UnconstrainedSimplifier::visitAll(TNode assertion)
+{
+ // Do a topological sort of the subexpressions and substitute them
+ vector<unc_preprocess_stack_element> toVisit;
+ toVisit.push_back(assertion);
+
+ while (!toVisit.empty())
+ {
+ // The current node we are processing
+ TNode current = toVisit.back().node;
+ TNode parent = toVisit.back().parent;
+ toVisit.pop_back();
+
+ TNodeCountMap::iterator find = d_visited.find(current);
+ if (find != d_visited.end())
+ {
+ if (find->second == 1)
+ {
+ d_visitedOnce.erase(current);
+ if (current.isVar())
+ {
+ d_unconstrained.erase(current);
+ }
+ }
+ ++find->second;
+ continue;
+ }
+
+ d_visited[current] = 1;
+ d_visitedOnce[current] = parent;
+
+ if (current.getNumChildren() == 0)
+ {
+ if (current.getKind() == kind::VARIABLE
+ || current.getKind() == kind::SKOLEM)
+ {
+ d_unconstrained.insert(current);
+ }
+ }
+ else
+ {
+ for (TNode childNode : current)
+ {
+ toVisit.push_back(unc_preprocess_stack_element(childNode, current));
+ }
+ }
+ }
+}
+
+Node UnconstrainedSimplifier::newUnconstrainedVar(TypeNode t, TNode var)
+{
+ Node n = NodeManager::currentNM()->mkSkolem(
+ "unconstrained",
+ t,
+ "a new var introduced because of unconstrained variable "
+ + var.toString());
+ return n;
+}
+
+void UnconstrainedSimplifier::processUnconstrained()
+{
+ NodeManager* nm = NodeManager::currentNM();
+
+ vector<TNode> workList(d_unconstrained.begin(), d_unconstrained.end());
+ Node currentSub;
+ TNode parent;
+ bool swap;
+ bool isSigned;
+ bool strict;
+ vector<TNode> delayQueueLeft;
+ vector<Node> delayQueueRight;
+
+ TNode current = workList.back();
+ workList.pop_back();
+ for (;;)
+ {
+ Assert(d_visitedOnce.find(current) != d_visitedOnce.end());
+ parent = d_visitedOnce[current];
+ if (!parent.isNull())
+ {
+ swap = isSigned = strict = false;
+ bool checkParent = false;
+ switch (parent.getKind())
+ {
+ // If-then-else operator - any two unconstrained children makes the
+ // parent unconstrained
+ case kind::ITE:
+ {
+ Assert(parent[0] == current || parent[1] == current
+ || parent[2] == current);
+ bool uCond =
+ parent[0] == current
+ || d_unconstrained.find(parent[0]) != d_unconstrained.end();
+ bool uThen =
+ parent[1] == current
+ || d_unconstrained.find(parent[1]) != d_unconstrained.end();
+ bool uElse =
+ parent[2] == current
+ || d_unconstrained.find(parent[2]) != d_unconstrained.end();
+ if ((uCond && uThen) || (uCond && uElse) || (uThen && uElse))
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (uThen)
+ {
+ if (parent[1] != current)
+ {
+ if (parent[1].isVar())
+ {
+ currentSub = parent[1];
+ }
+ else
+ {
+ Assert(d_substitutions.hasSubstitution(parent[1]));
+ currentSub = d_substitutions.apply(parent[1]);
+ }
+ }
+ else if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ }
+ else if (parent[2] != current)
+ {
+ if (parent[2].isVar())
+ {
+ currentSub = parent[2];
+ }
+ else
+ {
+ Assert(d_substitutions.hasSubstitution(parent[2]));
+ currentSub = d_substitutions.apply(parent[2]);
+ }
+ }
+ else if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ else if (uCond)
+ {
+ Cardinality card = parent.getType().getCardinality();
+ if (card.isFinite() && !card.isLargeFinite()
+ && card.getFiniteCardinality() == 2)
+ {
+ // Special case: condition is unconstrained, then and else are
+ // different, and total cardinality of the type is 2, then the
+ // result is unconstrained
+ Node test = Rewriter::rewrite(parent[1].eqNode(parent[2]));
+ if (test == nm->mkConst<bool>(false))
+ {
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ }
+ }
+ }
+ break;
+ }
+
+ // Comparisons that return a different type - assuming domains are
+ // larger than 1, any unconstrained child makes parent unconstrained as
+ // well
+ case kind::EQUAL:
+ if (parent[0].getType() != parent[1].getType())
+ {
+ TNode other = (parent[0] == current) ? parent[1] : parent[0];
+ if (current.getType().isSubtypeOf(other.getType()))
+ {
+ break;
+ }
+ }
+ if (parent[0].getType().isDatatype())
+ {
+ TypeNode tn = parent[0].getType();
+ const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
+ if (dt.isRecursiveSingleton(tn.toType()))
+ {
+ // domain size may be 1
+ break;
+ }
+ }
+ if (parent[0].getType().isBoolean())
+ {
+ checkParent = true;
+ break;
+ }
+ case kind::BITVECTOR_COMP:
+ case kind::LT:
+ case kind::LEQ:
+ case kind::GT:
+ case kind::GEQ:
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ Assert(parent[0] != parent[1]
+ && (parent[0] == current || parent[1] == current));
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ break;
+ }
+
+ // Unary operators that propagate unconstrainedness
+ case kind::NOT:
+ case kind::BITVECTOR_NOT:
+ case kind::BITVECTOR_NEG:
+ case kind::UMINUS:
+ ++d_numUnconstrainedElim;
+ Assert(parent[0] == current);
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ break;
+
+ // Unary operators that propagate unconstrainedness and return a
+ // different type
+ case kind::BITVECTOR_EXTRACT:
+ ++d_numUnconstrainedElim;
+ Assert(parent[0] == current);
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ break;
+
+ // Operators returning same type requiring all children to be
+ // unconstrained
+ case kind::AND:
+ case kind::OR:
+ case kind::IMPLIES:
+ case kind::BITVECTOR_AND:
+ case kind::BITVECTOR_OR:
+ case kind::BITVECTOR_NAND:
+ case kind::BITVECTOR_NOR:
+ {
+ bool allUnconstrained = true;
+ for (TNode child : parent)
+ {
+ if (d_unconstrained.find(child) == d_unconstrained.end())
+ {
+ allUnconstrained = false;
+ break;
+ }
+ }
+ if (allUnconstrained)
+ {
+ checkParent = true;
+ }
+ }
+ break;
+
+ // Require all children to be unconstrained and different
+ case kind::BITVECTOR_SHL:
+ case kind::BITVECTOR_LSHR:
+ case kind::BITVECTOR_ASHR:
+ case kind::BITVECTOR_UDIV_TOTAL:
+ case kind::BITVECTOR_UREM_TOTAL:
+ case kind::BITVECTOR_SDIV:
+ case kind::BITVECTOR_SREM:
+ case kind::BITVECTOR_SMOD:
+ {
+ bool allUnconstrained = true;
+ bool allDifferent = true;
+ for (TNode::iterator child_it = parent.begin();
+ child_it != parent.end();
+ ++child_it)
+ {
+ if (d_unconstrained.find(*child_it) == d_unconstrained.end())
+ {
+ allUnconstrained = false;
+ break;
+ }
+ for (TNode::iterator child_it2 = child_it + 1;
+ child_it2 != parent.end();
+ ++child_it2)
+ {
+ if (*child_it == *child_it2)
+ {
+ allDifferent = false;
+ break;
+ }
+ }
+ }
+ if (allUnconstrained && allDifferent)
+ {
+ checkParent = true;
+ }
+ break;
+ }
+
+ // Requires all children to be unconstrained and different, and returns
+ // a different type
+ case kind::BITVECTOR_CONCAT:
+ {
+ bool allUnconstrained = true;
+ bool allDifferent = true;
+ for (TNode::iterator child_it = parent.begin();
+ child_it != parent.end();
+ ++child_it)
+ {
+ if (d_unconstrained.find(*child_it) == d_unconstrained.end())
+ {
+ allUnconstrained = false;
+ break;
+ }
+ for (TNode::iterator child_it2 = child_it + 1;
+ child_it2 != parent.end();
+ ++child_it2)
+ {
+ if (*child_it == *child_it2)
+ {
+ allDifferent = false;
+ break;
+ }
+ }
+ }
+ if (allUnconstrained && allDifferent)
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ }
+ break;
+
+ // N-ary operators returning same type requiring at least one child to
+ // be unconstrained
+ case kind::PLUS:
+ case kind::MINUS:
+ if (current.getType().isInteger() && !parent.getType().isInteger())
+ {
+ break;
+ }
+ case kind::XOR:
+ case kind::BITVECTOR_XOR:
+ case kind::BITVECTOR_XNOR:
+ case kind::BITVECTOR_PLUS:
+ case kind::BITVECTOR_SUB: checkParent = true; break;
+
+ // Multiplication/division: must be non-integer and other operand must
+ // be non-zero
+ case kind::MULT:
+ case kind::DIVISION:
+ {
+ Assert(parent.getNumChildren() == 2);
+ TNode other;
+ if (parent[0] == current)
+ {
+ other = parent[1];
+ }
+ else
+ {
+ Assert(parent[1] == current);
+ other = parent[0];
+ }
+ if (d_unconstrained.find(other) != d_unconstrained.end())
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ if (current.getType().isInteger() && other.getType().isInteger())
+ {
+ Assert(parent.getKind() == kind::DIVISION
+ || parent.getType().isInteger());
+ if (parent.getKind() == kind::DIVISION)
+ {
+ break;
+ }
+ }
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ else
+ {
+ // if only the denominator of a division is unconstrained, can't
+ // set it to 0 so the result is not unconstrained
+ if (parent.getKind() == kind::DIVISION && current == parent[1])
+ {
+ break;
+ }
+ // if we are an integer, the only way we are unconstrained is if
+ // we are a MULT by -1
+ if (current.getType().isInteger())
+ {
+ // div/mult by 1 should have been simplified
+ Assert(other != nm->mkConst<Rational>(1));
+ // div by -1 should have been simplified
+ if (other != nm->mkConst<Rational>(-1))
+ {
+ break;
+ }
+ else
+ {
+ Assert(parent.getKind() == kind::MULT);
+ Assert(parent.getType().isInteger());
+ }
+ }
+ else
+ {
+ // TODO(#2377): could build ITE here
+ Node test = other.eqNode(nm->mkConst<Rational>(0));
+ if (Rewriter::rewrite(test) != nm->mkConst<bool>(false))
+ {
+ break;
+ }
+ }
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ }
+ break;
+ }
+
+ // Bitvector MULT - current must only appear once in the children:
+ // all other children must be unconstrained or odd
+ case kind::BITVECTOR_MULT:
+ {
+ bool found = false;
+ bool done = false;
+
+ for (TNode child : parent)
+ {
+ if (child == current)
+ {
+ if (found)
+ {
+ done = true;
+ break;
+ }
+ found = true;
+ continue;
+ }
+ else if (d_unconstrained.find(child) == d_unconstrained.end())
+ {
+ Node extractOp =
+ nm->mkConst<BitVectorExtract>(BitVectorExtract(0, 0));
+ vector<Node> children;
+ children.push_back(child);
+ Node test = nm->mkNode(extractOp, children);
+ BitVector one(1, unsigned(1));
+ test = test.eqNode(nm->mkConst<BitVector>(one));
+ if (Rewriter::rewrite(test) != nm->mkConst<bool>(true))
+ {
+ done = true;
+ break;
+ }
+ }
+ }
+ if (done)
+ {
+ break;
+ }
+ checkParent = true;
+ break;
+ }
+
+ // Uninterpreted function - if domain is infinite, no quantifiers are
+ // used, and any child is unconstrained, result is unconstrained
+ case kind::APPLY_UF:
+ if (d_logicInfo.isQuantified()
+ || !current.getType().getCardinality().isInfinite())
+ {
+ break;
+ }
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ if (parent.getType() != current.getType())
+ {
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ }
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ break;
+
+ // Array select - if array is unconstrained, so is result
+ case kind::SELECT:
+ if (parent[0] == current)
+ {
+ ++d_numUnconstrainedElim;
+ Assert(current.getType().isArray());
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(
+ current.getType().getArrayConstituentType(), currentSub);
+ current = parent;
+ }
+ break;
+
+ // Array store - if both store and value are unconstrained, so is
+ // resulting store
+ case kind::STORE:
+ if (((parent[0] == current
+ && d_unconstrained.find(parent[2]) != d_unconstrained.end())
+ || (parent[2] == current
+ && d_unconstrained.find(parent[0])
+ != d_unconstrained.end())))
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (parent[0] != current)
+ {
+ if (parent[0].isVar())
+ {
+ currentSub = parent[0];
+ }
+ else
+ {
+ Assert(d_substitutions.hasSubstitution(parent[0]));
+ currentSub = d_substitutions.apply(parent[0]);
+ }
+ }
+ else if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ break;
+
+ // Bit-vector comparisons: replace with new Boolean variable, but have
+ // to also conjoin with a side condition as there is always one case
+ // when the comparison is forced to be false
+ case kind::BITVECTOR_ULT:
+ case kind::BITVECTOR_UGE:
+ case kind::BITVECTOR_UGT:
+ case kind::BITVECTOR_ULE:
+ case kind::BITVECTOR_SLT:
+ case kind::BITVECTOR_SGE:
+ case kind::BITVECTOR_SGT:
+ case kind::BITVECTOR_SLE:
+ {
+ // Tuples over (signed, swap, strict).
+ switch (parent.getKind())
+ {
+ case kind::BITVECTOR_UGE: break;
+ case kind::BITVECTOR_ULT: strict = true; break;
+ case kind::BITVECTOR_ULE: swap = true; break;
+ case kind::BITVECTOR_UGT:
+ swap = true;
+ strict = true;
+ break;
+ case kind::BITVECTOR_SGE: isSigned = true; break;
+ case kind::BITVECTOR_SLT:
+ isSigned = true;
+ strict = true;
+ break;
+ case kind::BITVECTOR_SLE:
+ isSigned = true;
+ swap = true;
+ break;
+ case kind::BITVECTOR_SGT:
+ isSigned = true;
+ swap = true;
+ strict = true;
+ break;
+ default: Unreachable();
+ }
+ TNode other;
+ bool left = false;
+ if (parent[0] == current)
+ {
+ other = parent[1];
+ left = true;
+ }
+ else
+ {
+ Assert(parent[1] == current);
+ other = parent[0];
+ }
+ if (d_unconstrained.find(other) != d_unconstrained.end())
+ {
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ else
+ {
+ unsigned size = current.getType().getBitVectorSize();
+ BitVector bv =
+ isSigned ? BitVector(size, Integer(1).multiplyByPow2(size - 1))
+ : BitVector(size, unsigned(0));
+ if (swap == left)
+ {
+ bv = ~bv;
+ }
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ currentSub = newUnconstrainedVar(parent.getType(), currentSub);
+ current = parent;
+ Node test =
+ Rewriter::rewrite(other.eqNode(nm->mkConst<BitVector>(bv)));
+ if (test == nm->mkConst<bool>(false))
+ {
+ break;
+ }
+ currentSub = strict ? currentSub.andNode(test.notNode())
+ : currentSub.orNode(test);
+ // Delay adding this substitution - see comment at end of function
+ delayQueueLeft.push_back(current);
+ delayQueueRight.push_back(currentSub);
+ currentSub = Node();
+ parent = TNode();
+ }
+ break;
+ }
+
+ // Do nothing
+ case kind::BITVECTOR_SIGN_EXTEND:
+ case kind::BITVECTOR_ZERO_EXTEND:
+ case kind::BITVECTOR_REPEAT:
+ case kind::BITVECTOR_ROTATE_LEFT:
+ case kind::BITVECTOR_ROTATE_RIGHT:
+
+ default: break;
+ }
+ if (checkParent)
+ {
+ // run for various cases from above
+ if (d_unconstrained.find(parent) == d_unconstrained.end()
+ && !d_substitutions.hasSubstitution(parent))
+ {
+ ++d_numUnconstrainedElim;
+ if (currentSub.isNull())
+ {
+ currentSub = current;
+ }
+ current = parent;
+ }
+ else
+ {
+ currentSub = Node();
+ }
+ }
+ if (current == parent && d_visited[parent] == 1)
+ {
+ d_unconstrained.insert(parent);
+ continue;
+ }
+ }
+ if (!currentSub.isNull())
+ {
+ Assert(currentSub.isVar());
+ d_substitutions.addSubstitution(current, currentSub, false);
+ }
+ if (workList.empty())
+ {
+ break;
+ }
+ current = workList.back();
+ currentSub = Node();
+ workList.pop_back();
+ }
+ TNode left;
+ Node right;
+ // All substitutions except those arising from bitvector comparisons are
+ // substitutions t -> x where x is a variable. This allows us to build the
+ // substitution very quickly (never invalidating the substitution cache).
+ // Bitvector comparisons are more complicated and may require
+ // back-substitution and cache-invalidation. So we do these last.
+ while (!delayQueueLeft.empty())
+ {
+ left = delayQueueLeft.back();
+ if (!d_substitutions.hasSubstitution(left))
+ {
+ right = d_substitutions.apply(delayQueueRight.back());
+ d_substitutions.addSubstitution(delayQueueLeft.back(), right);
+ }
+ delayQueueLeft.pop_back();
+ delayQueueRight.pop_back();
+ }
+}
+
+PreprocessingPassResult UnconstrainedSimplifier::applyInternal(
+ AssertionPipeline* assertionsToPreprocess)
+{
+ d_preprocContext->spendResource(options::preprocessStep());
+
+ std::vector<Node>& assertions = assertionsToPreprocess->ref();
+
+ d_context->push();
+
+ for (const Node& assertion : assertions)
+ {
+ visitAll(assertion);
+ }
+
+ if (!d_unconstrained.empty())
+ {
+ processUnconstrained();
+ // d_substitutions.print(Message.getStream());
+ for (Node& assertion : assertions)
+ {
+ assertion = Rewriter::rewrite(d_substitutions.apply(assertion));
+ }
+ }
+
+ // to clear substitutions map
+ d_context->pop();
+
+ d_visited.clear();
+ d_visitedOnce.clear();
+ d_unconstrained.clear();
+
+ return PreprocessingPassResult::NO_CONFLICT;
+}
+
+} // namespace passes
+} // namespace preprocessing
+} // namespace CVC4
--- /dev/null
+/********************* */
+/*! \file unconstrained_simplifier.h
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Clark Barrett, Tim King
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Simplifications based on unconstrained variables
+ **
+ ** This module implements a preprocessing phase which replaces certain
+ ** "unconstrained" expressions by variables. Based on Roberto
+ ** Bruttomesso's PhD thesis.
+ **/
+
+#include "cvc4_private.h"
+
+#ifndef __CVC4__PREPROCESSING_PASSES_UNCONSTRAINED_SIMPLIFIER_H
+#define __CVC4__PREPROCESSING_PASSES_UNCONSTRAINED_SIMPLIFIER_H
+
+#include <unordered_map>
+#include <unordered_set>
+#include <vector>
+
+#include "context/context.h"
+#include "expr/node.h"
+#include "preprocessing/preprocessing_pass.h"
+#include "preprocessing/preprocessing_pass_context.h"
+#include "theory/logic_info.h"
+#include "theory/substitutions.h"
+#include "util/statistics_registry.h"
+
+namespace CVC4 {
+namespace preprocessing {
+namespace passes {
+
+class UnconstrainedSimplifier : public PreprocessingPass
+{
+ public:
+ UnconstrainedSimplifier(PreprocessingPassContext* preprocContext);
+ ~UnconstrainedSimplifier() override;
+
+ PreprocessingPassResult applyInternal(
+ AssertionPipeline* assertionsToPreprocess) override;
+
+ private:
+ /** number of expressions eliminated due to unconstrained simplification */
+ IntStat d_numUnconstrainedElim;
+
+ using TNodeCountMap = std::unordered_map<TNode, unsigned, TNodeHashFunction>;
+ using TNodeMap = std::unordered_map<TNode, TNode, TNodeHashFunction>;
+ using TNodeSet = std::unordered_set<TNode, TNodeHashFunction>;
+
+ TNodeCountMap d_visited;
+ TNodeMap d_visitedOnce;
+ TNodeSet d_unconstrained;
+
+ context::Context* d_context;
+ theory::SubstitutionMap d_substitutions;
+
+ const LogicInfo& d_logicInfo;
+
+ void visitAll(TNode assertion);
+ Node newUnconstrainedVar(TypeNode t, TNode var);
+ void processUnconstrained();
+};
+
+} // namespace passes
+} // namespace preprocessing
+} // namespace CVC4
+
+#endif
#include "preprocessing/preprocessing_pass_context.h"
#include "smt/smt_engine_scope.h"
#include "smt/term_formula_removal.h"
+#include "theory/logic_info.h"
#include "theory/substitutions.h"
namespace CVC4 {
DecisionEngine* getDecisionEngine() { return d_smt->d_decisionEngine; }
prop::PropEngine* getPropEngine() { return d_smt->d_propEngine; }
context::Context* getUserContext() { return d_smt->d_userContext; }
+ context::Context* getDecisionContext() { return d_smt->d_context; }
RemoveTermFormulas* getIteRemover() { return d_iteRemover; }
void spendResource(unsigned amount)
d_resourceManager->spendResource(amount);
}
+ const LogicInfo& getLogicInfo() { return d_smt->d_logic; }
+
/* Widen the logic to include the given theory. */
void widenLogic(theory::TheoryId id);
#include "preprocessing/passes/symmetry_breaker.h"
#include "preprocessing/passes/symmetry_detect.h"
#include "preprocessing/passes/synth_rew_rules.h"
+#include "preprocessing/passes/unconstrained_simplifier.h"
#include "preprocessing/preprocessing_pass.h"
#include "preprocessing/preprocessing_pass_context.h"
#include "preprocessing/preprocessing_pass_registry.h"
IntStat d_numMiplibAssertionsRemoved;
/** number of constant propagations found during nonclausal simp */
IntStat d_numConstantProps;
- /** time spent in simplifying ITEs */
- TimerStat d_unconstrainedSimpTime;
/** time spent in theory preprocessing */
TimerStat d_theoryPreprocessTime;
/** time spent converting to CNF */
d_miplibPassTime("smt::SmtEngine::miplibPassTime"),
d_numMiplibAssertionsRemoved("smt::SmtEngine::numMiplibAssertionsRemoved", 0),
d_numConstantProps("smt::SmtEngine::numConstantProps", 0),
- d_unconstrainedSimpTime("smt::SmtEngine::unconstrainedSimpTime"),
d_theoryPreprocessTime("smt::SmtEngine::theoryPreprocessTime"),
d_cnfConversionTime("smt::SmtEngine::cnfConversionTime"),
d_numAssertionsPre("smt::SmtEngine::numAssertionsPreITERemoval", 0),
smtStatisticsRegistry()->registerStat(&d_miplibPassTime);
smtStatisticsRegistry()->registerStat(&d_numMiplibAssertionsRemoved);
smtStatisticsRegistry()->registerStat(&d_numConstantProps);
- smtStatisticsRegistry()->registerStat(&d_unconstrainedSimpTime);
smtStatisticsRegistry()->registerStat(&d_theoryPreprocessTime);
smtStatisticsRegistry()->registerStat(&d_cnfConversionTime);
smtStatisticsRegistry()->registerStat(&d_numAssertionsPre);
smtStatisticsRegistry()->unregisterStat(&d_miplibPassTime);
smtStatisticsRegistry()->unregisterStat(&d_numMiplibAssertionsRemoved);
smtStatisticsRegistry()->unregisterStat(&d_numConstantProps);
- smtStatisticsRegistry()->unregisterStat(&d_unconstrainedSimpTime);
smtStatisticsRegistry()->unregisterStat(&d_theoryPreprocessTime);
smtStatisticsRegistry()->unregisterStat(&d_cnfConversionTime);
smtStatisticsRegistry()->unregisterStat(&d_numAssertionsPre);
*/
bool checkForBadSkolems(TNode n, TNode skolem, NodeToBoolHashMap& cache);
- // Simplify based on unconstrained values
- void unconstrainedSimp();
-
/**
* Trace nodes back to their assertions using CircuitPropagator's
* BackEdgesMap.
new SynthRewRulesPass(d_preprocessingPassContext.get()));
std::unique_ptr<SepSkolemEmp> sepSkolemEmp(
new SepSkolemEmp(d_preprocessingPassContext.get()));
+ std::unique_ptr<UnconstrainedSimplifier> unconstrainedSimplifier(
+ new UnconstrainedSimplifier(d_preprocessingPassContext.get()));
d_preprocessingPassRegistry.registerPass("apply-substs",
std::move(applySubsts));
d_preprocessingPassRegistry.registerPass("apply-to-const",
d_preprocessingPassRegistry.registerPass("synth-rr", std::move(srrProc));
d_preprocessingPassRegistry.registerPass("quantifier-macros",
std::move(quantifierMacros));
+ d_preprocessingPassRegistry.registerPass("unconstrained-simplifier",
+ std::move(unconstrainedSimplifier));
}
Node SmtEnginePrivate::expandDefinitions(TNode n, unordered_map<Node, Node, NodeHashFunction>& cache, bool expandOnly)
return true;
}
-void SmtEnginePrivate::unconstrainedSimp() {
- TimerStat::CodeTimer unconstrainedSimpTimer(d_smt.d_stats->d_unconstrainedSimpTime);
- spendResource(options::preprocessStep());
- Trace("simplify") << "SmtEnginePrivate::unconstrainedSimp()" << endl;
- d_smt.d_theoryEngine->ppUnconstrainedSimp(d_assertions.ref());
-}
-
void SmtEnginePrivate::traceBackToAssertions(const std::vector<Node>& nodes, std::vector<TNode>& assertions) {
const booleans::CircuitPropagator::BackEdgesMap& backEdges = d_propagator.getBackEdges();
for(vector<Node>::const_iterator i = nodes.begin(); i != nodes.end(); ++i) {
// Unconstrained simplification
if(options::unconstrainedSimp()) {
- Chat() << "...doing unconstrained simplification..." << endl;
- unconstrainedSimp();
+ d_preprocessingPassRegistry.getPass("unconstrained-simplifier")
+ ->apply(&d_assertions);
}
- dumpAssertions("post-unconstrained", d_assertions);
- Trace("smt") << "POST unconstrainedSimp" << endl;
- Debug("smt") << " d_assertions : " << d_assertions.size() << endl;
-
if(options::repeatSimp() && options::simplificationMode() != SIMPLIFICATION_MODE_NONE) {
Chat() << "...doing another round of nonclausal simplification..." << endl;
Trace("simplify") << "SmtEnginePrivate::simplify(): "
// Unconstrained simplification
if(options::unconstrainedSimp()) {
- Trace("smt-proc") << "SmtEnginePrivate::processAssertions() : pre-unconstrained-simp" << endl;
- dumpAssertions("pre-unconstrained-simp", d_assertions);
d_preprocessingPassRegistry.getPass("rewrite")->apply(&d_assertions);
- unconstrainedSimp();
- Trace("smt-proc") << "SmtEnginePrivate::processAssertions() : post-unconstrained-simp" << endl;
- dumpAssertions("post-unconstrained-simp", d_assertions);
+ d_preprocessingPassRegistry.getPass("unconstrained-simplifier")
+ ->apply(&d_assertions);
}
if(options::bvIntroducePow2())
#include "theory/theory_model.h"
#include "theory/theory_traits.h"
#include "theory/uf/equality_engine.h"
-#include "theory/unconstrained_simplifier.h"
#include "util/resource_manager.h"
using namespace std;
d_factsAsserted(context, false),
d_preRegistrationVisitor(this, context),
d_sharedTermsVisitor(d_sharedTerms),
- d_unconstrainedSimp(new UnconstrainedSimplifier(context, logicInfo)),
d_theoryAlternatives(),
d_attr_handle(),
d_arithSubstitutionsAdded("theory::arith::zzz::arith::substitutions", 0)
delete d_masterEqualityEngine;
smtStatisticsRegistry()->unregisterStat(&d_combineTheoriesTime);
-
- delete d_unconstrainedSimp;
-
smtStatisticsRegistry()->unregisterStat(&d_arithSubstitutionsAdded);
}
});
}
-void TheoryEngine::ppUnconstrainedSimp(vector<Node>& assertions)
-{
- d_unconstrainedSimp->processAssertions(assertions);
-}
-
void TheoryEngine::setUserAttribute(const std::string& attr,
Node n,
const std::vector<Node>& node_values,
class DecisionEngine;
class RemoveTermFormulas;
-class UnconstrainedSimplifier;
/**
* This is essentially an abstraction for a collection of theories. A
/** Dump the assertions to the dump */
void dumpAssertions(const char* tag);
- /** For preprocessing pass simplifying unconstrained expressions */
- UnconstrainedSimplifier* d_unconstrainedSimp;
-
/** For preprocessing pass lifting bit-vectors of size 1 to booleans */
public:
void staticInitializeBVOptions(const std::vector<Node>& assertions);
/** Returns false if an assertion simplified to false. */
bool donePPSimpITE(std::vector<Node>& assertions);
- void ppUnconstrainedSimp(std::vector<Node>& assertions);
-
SharedTermsDatabase* getSharedTermsDatabase() { return &d_sharedTerms; }
theory::eq::EqualityEngine* getMasterEqualityEngine() { return d_masterEqualityEngine; }
+++ /dev/null
-/********************* */
-/*! \file unconstrained_simplifier.cpp
- ** \verbatim
- ** Top contributors (to current version):
- ** Clark Barrett, Tim King, Andrew Reynolds
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
- ** in the top-level source directory) and their institutional affiliations.
- ** All rights reserved. See the file COPYING in the top-level source
- ** directory for licensing information.\endverbatim
- **
- ** \brief Simplifications based on unconstrained variables
- **
- ** This module implements a preprocessing phase which replaces certain "unconstrained" expressions
- ** by variables. Based on Roberto Bruttomesso's PhD thesis.
- **/
-
-
-#include "theory/unconstrained_simplifier.h"
-
-#include "theory/rewriter.h"
-#include "theory/logic_info.h"
-#include "smt/smt_statistics_registry.h"
-
-using namespace std;
-using namespace CVC4;
-using namespace theory;
-
-
-UnconstrainedSimplifier::UnconstrainedSimplifier(context::Context* context,
- const LogicInfo& logicInfo)
- : d_numUnconstrainedElim("preprocessor::number of unconstrained elims", 0),
- d_context(context), d_substitutions(context), d_logicInfo(logicInfo)
-{
- smtStatisticsRegistry()->registerStat(&d_numUnconstrainedElim);
-}
-
-
-UnconstrainedSimplifier::~UnconstrainedSimplifier()
-{
- smtStatisticsRegistry()->unregisterStat(&d_numUnconstrainedElim);
-}
-
-
-struct unc_preprocess_stack_element {
- TNode node;
- TNode parent;
- unc_preprocess_stack_element(TNode n) : node(n) {}
- unc_preprocess_stack_element(TNode n, TNode p) : node(n), parent(p) {}
-};/* struct unc_preprocess_stack_element */
-
-
-void UnconstrainedSimplifier::visitAll(TNode assertion)
-{
- // Do a topological sort of the subexpressions and substitute them
- vector<unc_preprocess_stack_element> toVisit;
- toVisit.push_back(assertion);
-
- while (!toVisit.empty())
- {
- // The current node we are processing
- TNode current = toVisit.back().node;
- TNode parent = toVisit.back().parent;
- toVisit.pop_back();
-
- TNodeCountMap::iterator find = d_visited.find(current);
- if (find != d_visited.end()) {
- if (find->second == 1) {
- d_visitedOnce.erase(current);
- if (current.isVar()) {
- d_unconstrained.erase(current);
- }
- }
- ++find->second;
- continue;
- }
-
- d_visited[current] = 1;
- d_visitedOnce[current] = parent;
-
- if (current.getNumChildren() == 0) {
- if (current.getKind()==kind::VARIABLE || current.getKind()==kind::SKOLEM) {
- d_unconstrained.insert(current);
- }
- }
- else {
- for(TNode::iterator child_it = current.begin(); child_it != current.end(); ++ child_it) {
- TNode childNode = *child_it;
- toVisit.push_back(unc_preprocess_stack_element(childNode, current));
- }
- }
- }
-}
-
-Node UnconstrainedSimplifier::newUnconstrainedVar(TypeNode t, TNode var)
-{
- Node n = NodeManager::currentNM()->mkSkolem("unconstrained", t, "a new var introduced because of unconstrained variable " + var.toString());
- return n;
-}
-
-
-void UnconstrainedSimplifier::processUnconstrained()
-{
- TNodeSet::iterator it = d_unconstrained.begin(), iend = d_unconstrained.end();
- vector<TNode> workList;
- for ( ; it != iend; ++it) {
- workList.push_back(*it);
- }
- Node currentSub;
- TNode parent;
- bool swap;
- bool isSigned;
- bool strict;
- vector<TNode> delayQueueLeft;
- vector<Node> delayQueueRight;
-
- TNode current = workList.back();
- workList.pop_back();
- for (;;) {
- Assert(d_visitedOnce.find(current) != d_visitedOnce.end());
- parent = d_visitedOnce[current];
- if (!parent.isNull()) {
- swap = isSigned = strict = false;
- bool checkParent = false;
- switch (parent.getKind()) {
-
- // If-then-else operator - any two unconstrained children makes the parent unconstrained
- case kind::ITE: {
- Assert(parent[0] == current || parent[1] == current || parent[2] == current);
- bool uCond = parent[0] == current || d_unconstrained.find(parent[0]) != d_unconstrained.end();
- bool uThen = parent[1] == current || d_unconstrained.find(parent[1]) != d_unconstrained.end();
- bool uElse = parent[2] == current || d_unconstrained.find(parent[2]) != d_unconstrained.end();
- if ((uCond && uThen) || (uCond && uElse) || (uThen && uElse)) {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (uThen) {
- if (parent[1] != current) {
- if (parent[1].isVar()) {
- currentSub = parent[1];
- }
- else {
- Assert(d_substitutions.hasSubstitution(parent[1]));
- currentSub = d_substitutions.apply(parent[1]);
- }
- }
- else if (currentSub.isNull()) {
- currentSub = current;
- }
- }
- else if (parent[2] != current) {
- if (parent[2].isVar()) {
- currentSub = parent[2];
- }
- else {
- Assert(d_substitutions.hasSubstitution(parent[2]));
- currentSub = d_substitutions.apply(parent[2]);
- }
- }
- else if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- }
- else {
- currentSub = Node();
- }
- }
- else if (uCond) {
- Cardinality card = parent.getType().getCardinality();
- if (card.isFinite() && !card.isLargeFinite() && card.getFiniteCardinality() == 2) {
- // Special case: condition is unconstrained, then and else are different, and total cardinality of the type is 2, then the result
- // is unconstrained
- Node test = Rewriter::rewrite(parent[1].eqNode(parent[2]));
- if (test == NodeManager::currentNM()->mkConst<bool>(false)) {
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- }
- }
- }
- break;
- }
-
- // Comparisons that return a different type - assuming domains are larger than 1, any
- // unconstrained child makes parent unconstrained as well
- case kind::EQUAL:
- if (parent[0].getType() != parent[1].getType()) {
- TNode other = (parent[0] == current) ? parent[1] : parent[0];
- if (current.getType().isSubtypeOf(other.getType())) {
- break;
- }
- }
- if( parent[0].getType().isDatatype() ){
- TypeNode tn = parent[0].getType();
- const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
- if( dt.isRecursiveSingleton( tn.toType() ) ){
- //domain size may be 1
- break;
- }
- }
- if( parent[0].getType().isBoolean() ){
- checkParent = true;
- break;
- }
- case kind::BITVECTOR_COMP:
- case kind::LT:
- case kind::LEQ:
- case kind::GT:
- case kind::GEQ:
- {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- Assert(parent[0] != parent[1] &&
- (parent[0] == current || parent[1] == current));
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- }
- else {
- currentSub = Node();
- }
- break;
- }
-
- // Unary operators that propagate unconstrainedness
- case kind::NOT:
- case kind::BITVECTOR_NOT:
- case kind::BITVECTOR_NEG:
- case kind::UMINUS:
- ++d_numUnconstrainedElim;
- Assert(parent[0] == current);
- if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- break;
-
- // Unary operators that propagate unconstrainedness and return a different type
- case kind::BITVECTOR_EXTRACT:
- ++d_numUnconstrainedElim;
- Assert(parent[0] == current);
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- break;
-
- // Operators returning same type requiring all children to be unconstrained
- case kind::AND:
- case kind::OR:
- case kind::IMPLIES:
- case kind::BITVECTOR_AND:
- case kind::BITVECTOR_OR:
- case kind::BITVECTOR_NAND:
- case kind::BITVECTOR_NOR:
- {
- bool allUnconstrained = true;
- for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
- if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
- allUnconstrained = false;
- break;
- }
- }
- if (allUnconstrained) {
- checkParent = true;
- }
- }
- break;
-
- // Require all children to be unconstrained and different
- case kind::BITVECTOR_SHL:
- case kind::BITVECTOR_LSHR:
- case kind::BITVECTOR_ASHR:
- case kind::BITVECTOR_UDIV_TOTAL:
- case kind::BITVECTOR_UREM_TOTAL:
- case kind::BITVECTOR_SDIV:
- case kind::BITVECTOR_SREM:
- case kind::BITVECTOR_SMOD: {
- bool allUnconstrained = true;
- bool allDifferent = true;
- for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
- if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
- allUnconstrained = false;
- break;
- }
- for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
- if (*child_it == *child_it2) {
- allDifferent = false;
- break;
- }
- }
- }
- if (allUnconstrained && allDifferent) {
- checkParent = true;
- }
- break;
- }
-
- // Requires all children to be unconstrained and different, and returns a different type
- case kind::BITVECTOR_CONCAT:
- {
- bool allUnconstrained = true;
- bool allDifferent = true;
- for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
- if (d_unconstrained.find(*child_it) == d_unconstrained.end()) {
- allUnconstrained = false;
- break;
- }
- for(TNode::iterator child_it2 = child_it + 1; child_it2 != parent.end(); ++child_it2) {
- if (*child_it == *child_it2) {
- allDifferent = false;
- break;
- }
- }
- }
- if (allUnconstrained && allDifferent) {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- }
- else {
- currentSub = Node();
- }
- }
- }
- break;
-
- // N-ary operators returning same type requiring at least one child to be unconstrained
- case kind::PLUS:
- case kind::MINUS:
- if (current.getType().isInteger() &&
- !parent.getType().isInteger()) {
- break;
- }
- case kind::XOR:
- case kind::BITVECTOR_XOR:
- case kind::BITVECTOR_XNOR:
- case kind::BITVECTOR_PLUS:
- case kind::BITVECTOR_SUB:
- checkParent = true;
- break;
-
- // Multiplication/division: must be non-integer and other operand must be non-zero
- case kind::MULT: {
- case kind::DIVISION:
- Assert(parent.getNumChildren() == 2);
- TNode other;
- if (parent[0] == current) {
- other = parent[1];
- }
- else {
- Assert(parent[1] == current);
- other = parent[0];
- }
- if (d_unconstrained.find(other) != d_unconstrained.end()) {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- if (current.getType().isInteger() && other.getType().isInteger()) {
- Assert(parent.getKind() == kind::DIVISION || parent.getType().isInteger());
- if (parent.getKind() == kind::DIVISION) {
- break;
- }
- }
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- }
- else {
- currentSub = Node();
- }
- }
- else {
- // if only the denominator of a division is unconstrained, can't set it to 0 so the result is not unconstrained
- if (parent.getKind() == kind::DIVISION && current == parent[1]) {
- break;
- }
- NodeManager* nm = NodeManager::currentNM();
- // if we are an integer, the only way we are unconstrained is if we are a MULT by -1
- if (current.getType().isInteger()) {
- // div/mult by 1 should have been simplified
- Assert(other != nm->mkConst<Rational>(1));
- if (other == nm->mkConst<Rational>(-1)) {
- // div by -1 should have been simplified
- Assert(parent.getKind() == kind::MULT);
- Assert(parent.getType().isInteger());
- }
- else {
- break;
- }
- }
- else {
- // TODO: could build ITE here
- Node test = other.eqNode(nm->mkConst<Rational>(0));
- if (Rewriter::rewrite(test) != nm->mkConst<bool>(false)) {
- break;
- }
- }
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- }
- break;
- }
-
- // Bitvector MULT - current must only appear once in the children:
- // all other children must be unconstrained or odd
- case kind::BITVECTOR_MULT:
- {
- bool found = false;
- bool done = false;
- for(TNode::iterator child_it = parent.begin(); child_it != parent.end(); ++child_it) {
- if ((*child_it) == current) {
- if (found) {
- done = true;
- break;
- }
- found = true;
- continue;
- }
- else if (d_unconstrained.find(*child_it) != d_unconstrained.end()) {
- continue;
- }
- else {
- NodeManager* nm = NodeManager::currentNM();
- Node extractOp = nm->mkConst<BitVectorExtract>(BitVectorExtract(0,0));
- vector<Node> children;
- children.push_back(*child_it);
- Node test = nm->mkNode(extractOp, children);
- BitVector one(1,unsigned(1));
- test = test.eqNode(nm->mkConst<BitVector>(one));
- if (Rewriter::rewrite(test) != nm->mkConst<bool>(true)) {
- done = true;
- break;
- }
- }
- }
- if (done) {
- break;
- }
- checkParent = true;
- break;
- }
-
- // Uninterpreted function - if domain is infinite, no quantifiers are used, and any child is unconstrained, result is unconstrained
- case kind::APPLY_UF:
- if (d_logicInfo.isQuantified() || !current.getType().getCardinality().isInfinite()) {
- break;
- }
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- if (parent.getType() != current.getType()) {
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- }
- current = parent;
- }
- else {
- currentSub = Node();
- }
- break;
-
- // Array select - if array is unconstrained, so is result
- case kind::SELECT:
- if (parent[0] == current) {
- ++d_numUnconstrainedElim;
- Assert(current.getType().isArray());
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(current.getType().getArrayConstituentType(), currentSub);
- current = parent;
- }
- break;
-
- // Array store - if both store and value are unconstrained, so is resulting store
- case kind::STORE:
- if (((parent[0] == current &&
- d_unconstrained.find(parent[2]) != d_unconstrained.end()) ||
- (parent[2] == current &&
- d_unconstrained.find(parent[0]) != d_unconstrained.end()))) {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (parent[0] != current) {
- if (parent[0].isVar()) {
- currentSub = parent[0];
- }
- else {
- Assert(d_substitutions.hasSubstitution(parent[0]));
- currentSub = d_substitutions.apply(parent[0]);
- }
- }
- else if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- }
- else {
- currentSub = Node();
- }
- }
- break;
-
- // Bit-vector comparisons: replace with new Boolean variable, but have
- // to also conjoin with a side condition as there is always one case
- // when the comparison is forced to be false
- case kind::BITVECTOR_ULT:
- case kind::BITVECTOR_UGE:
- case kind::BITVECTOR_UGT:
- case kind::BITVECTOR_ULE:
- case kind::BITVECTOR_SLT:
- case kind::BITVECTOR_SGE:
- case kind::BITVECTOR_SGT:
- case kind::BITVECTOR_SLE: {
- // Tuples over (signed, swap, strict).
- switch (parent.getKind()) {
- case kind::BITVECTOR_UGE:
- break;
- case kind::BITVECTOR_ULT:
- strict = true;
- break;
- case kind::BITVECTOR_ULE:
- swap = true;
- break;
- case kind::BITVECTOR_UGT:
- swap = true;
- strict = true;
- break;
- case kind::BITVECTOR_SGE:
- isSigned = true;
- break;
- case kind::BITVECTOR_SLT:
- isSigned = true;
- strict = true;
- break;
- case kind::BITVECTOR_SLE:
- isSigned = true;
- swap = true;
- break;
- case kind::BITVECTOR_SGT:
- isSigned = true;
- swap = true;
- strict = true;
- break;
- default:
- Unreachable();
- }
- TNode other;
- bool left = false;
- if (parent[0] == current) {
- other = parent[1];
- left = true;
- } else {
- Assert(parent[1] == current);
- other = parent[0];
- }
- if (d_unconstrained.find(other) != d_unconstrained.end()) {
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- } else {
- currentSub = Node();
- }
- } else {
- unsigned size = current.getType().getBitVectorSize();
- BitVector bv =
- isSigned ? BitVector(size, Integer(1).multiplyByPow2(size - 1))
- : BitVector(size, unsigned(0));
- if (swap == left) {
- bv = ~bv;
- }
- if (currentSub.isNull()) {
- currentSub = current;
- }
- currentSub = newUnconstrainedVar(parent.getType(), currentSub);
- current = parent;
- NodeManager* nm = NodeManager::currentNM();
- Node test =
- Rewriter::rewrite(other.eqNode(nm->mkConst<BitVector>(bv)));
- if (test == nm->mkConst<bool>(false)) {
- break;
- }
- if (strict) {
- currentSub = currentSub.andNode(test.notNode());
- } else {
- currentSub = currentSub.orNode(test);
- }
- // Delay adding this substitution - see comment at end of function
- delayQueueLeft.push_back(current);
- delayQueueRight.push_back(currentSub);
- currentSub = Node();
- parent = TNode();
- }
- break;
- }
-
- // Do nothing
- case kind::BITVECTOR_SIGN_EXTEND:
- case kind::BITVECTOR_ZERO_EXTEND:
- case kind::BITVECTOR_REPEAT:
- case kind::BITVECTOR_ROTATE_LEFT:
- case kind::BITVECTOR_ROTATE_RIGHT:
-
- default:
- break;
- }
- if( checkParent ){
- //run for various cases from above
- if (d_unconstrained.find(parent) == d_unconstrained.end() &&
- !d_substitutions.hasSubstitution(parent)) {
- ++d_numUnconstrainedElim;
- if (currentSub.isNull()) {
- currentSub = current;
- }
- current = parent;
- }
- else {
- currentSub = Node();
- }
- }
- if (current == parent && d_visited[parent] == 1) {
- d_unconstrained.insert(parent);
- continue;
- }
- }
- if (!currentSub.isNull()) {
- Assert(currentSub.isVar());
- d_substitutions.addSubstitution(current, currentSub, false);
- }
- if (workList.empty()) {
- break;
- }
- current = workList.back();
- currentSub = Node();
- workList.pop_back();
- }
- TNode left;
- Node right;
- // All substitutions except those arising from bitvector comparisons are
- // substitutions t -> x where x is a variable. This allows us to build the
- // substitution very quickly (never invalidating the substitution cache).
- // Bitvector comparisons are more complicated and may require
- // back-substitution and cache-invalidation. So we do these last.
- while (!delayQueueLeft.empty()) {
- left = delayQueueLeft.back();
- if (!d_substitutions.hasSubstitution(left)) {
- right = d_substitutions.apply(delayQueueRight.back());
- d_substitutions.addSubstitution(delayQueueLeft.back(), right);
- }
- delayQueueLeft.pop_back();
- delayQueueRight.pop_back();
- }
-}
-
-
-void UnconstrainedSimplifier::processAssertions(vector<Node>& assertions)
-{
- d_context->push();
-
- vector<Node>::iterator it = assertions.begin(), iend = assertions.end();
- for (; it != iend; ++it) {
- visitAll(*it);
- }
-
- if (!d_unconstrained.empty()) {
- processUnconstrained();
- // d_substitutions.print(Message.getStream());
- for (it = assertions.begin(); it != iend; ++it) {
- (*it) = Rewriter::rewrite(d_substitutions.apply(*it));
- }
- }
-
- // to clear substitutions map
- d_context->pop();
-
- d_visited.clear();
- d_visitedOnce.clear();
- d_unconstrained.clear();
-}
+++ /dev/null
-/********************* */
-/*! \file unconstrained_simplifier.h
- ** \verbatim
- ** Top contributors (to current version):
- ** Clark Barrett, Tim King
- ** This file is part of the CVC4 project.
- ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
- ** in the top-level source directory) and their institutional affiliations.
- ** All rights reserved. See the file COPYING in the top-level source
- ** directory for licensing information.\endverbatim
- **
- ** \brief Simplifications based on unconstrained variables
- **
- ** This module implements a preprocessing phase which replaces certain "unconstrained" expressions
- ** by variables. Based on Roberto Bruttomesso's PhD thesis.
- **/
-
-#include "cvc4_private.h"
-
-#ifndef __CVC4__UNCONSTRAINED_SIMPLIFIER_H
-#define __CVC4__UNCONSTRAINED_SIMPLIFIER_H
-
-#include <unordered_map>
-#include <unordered_set>
-#include <utility>
-#include <vector>
-
-#include "expr/node.h"
-#include "theory/substitutions.h"
-#include "util/statistics_registry.h"
-
-namespace CVC4 {
-
-/* Forward Declarations */
-class LogicInfo;
-
-class UnconstrainedSimplifier {
-
- /** number of expressions eliminated due to unconstrained simplification */
- IntStat d_numUnconstrainedElim;
-
- typedef std::unordered_map<TNode, unsigned, TNodeHashFunction> TNodeCountMap;
- typedef std::unordered_map<TNode, TNode, TNodeHashFunction> TNodeMap;
- typedef std::unordered_set<TNode, TNodeHashFunction> TNodeSet;
-
- TNodeCountMap d_visited;
- TNodeMap d_visitedOnce;
- TNodeSet d_unconstrained;
-
- context::Context* d_context;
- theory::SubstitutionMap d_substitutions;
-
- const LogicInfo& d_logicInfo;
-
- void visitAll(TNode assertion);
- Node newUnconstrainedVar(TypeNode t, TNode var);
- void processUnconstrained();
-
-public:
- UnconstrainedSimplifier(context::Context* context, const LogicInfo& logicInfo);
- ~UnconstrainedSimplifier();
- void processAssertions(std::vector<Node>& assertions);
-};
-
-}
-
-#endif