--- /dev/null
+# Copyright 2014-2015 Robert Jordens <jordens@gmail.com>
+#
+# This file is part of redpid.
+#
+# redpid is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# redpid is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with redpid. If not, see <http://www.gnu.org/licenses/>.
+
+from math import atan, atanh, log, sqrt, pi
+
+from litex.gen import *
+
+
+class TwoQuadrantCordic(Module):
+ """Coordinate rotation digital computer
+
+ Trigonometric, and arithmetic functions implemented using
+ additions/subtractions and shifts.
+
+ http://eprints.soton.ac.uk/267873/1/tcas1_cordic_review.pdf
+
+ http://www.andraka.com/files/crdcsrvy.pdf
+
+ http://zatto.free.fr/manual/Volder_CORDIC.pdf
+
+ The way the CORDIC is executed is controlled by `eval_mode`.
+ If `"iterative"` the stages are iteratively evaluated, one per clock
+ cycle. This mode uses the least amount of registers, but has the
+ lowest throughput and highest latency. If `"pipelined"` all stages
+ are executed in every clock cycle but separated by registers. This
+ mode has full throughput but uses many registers and has large
+ latency. If `"combinatorial"`, there are no registers, throughput is
+ maximal and latency is zero. `"pipelined"` and `"combinatorial"` use
+ the same number of shifters and adders.
+
+ The type of trigonometric/arithmetic function is determined by
+ `cordic_mode` and `func_mode`. :math:`g` is the gain of the CORDIC.
+
+ * rotate-circular: rotate the vector `(xi, yi)` by an angle `zi`.
+ Used to calculate trigonometric functions, `sin(), cos(),
+ tan() = sin()/cos()`, or to perform polar-to-cartesian coordinate
+ transformation:
+
+ .. math::
+ x_o = g \\cos(z_i) x_i - g \\sin(z_i) y_i
+
+ y_o = g \\sin(z_i) x_i + g \\cos(z_i) y_i
+
+ * vector-circular: determine length and angle of the vector
+ `(xi, yi)`. Used to calculate `arctan(), sqrt()` or
+ to perform cartesian-to-polar transformation:
+
+ .. math::
+ x_o = g\\sqrt{x_i^2 + y_i^2}
+
+ z_o = z_i + \\tan^{-1}(y_i/x_i)
+
+ * rotate-hyperbolic: hyperbolic functions of `zi`. Used to
+ calculate hyperbolic functions, `sinh, cosh, tanh = cosh/sinh,
+ exp = cosh + sinh`:
+
+ .. math::
+ x_o = g \\cosh(z_i) x_i + g \\sinh(z_i) y_i
+
+ y_o = g \\sinh(z_i) x_i + g \\cosh(z_i) z_i
+
+ * vector-hyperbolic: natural logarithm `ln(), arctanh()`, and
+ `sqrt()`. Use `x_i = a + b` and `y_i = a - b` to obtain `2*
+ sqrt(a*b)` and `ln(a/b)/2`:
+
+ .. math::
+ x_o = g\\sqrt{x_i^2 - y_i^2}
+
+ z_o = z_i + \\tanh^{-1}(y_i/x_i)
+
+ * rotate-linear: multiply and accumulate (not a very good
+ multiplier implementation):
+
+ .. math::
+ y_o = g(y_i + x_i z_i)
+
+ * vector-linear: divide and accumulate:
+
+ .. math::
+ z_o = g(z_i + y_i/x_i)
+
+ Parameters
+ ----------
+ width : int
+ Bit width of the input and output signals. Defaults to 16. Input
+ and output signals are signed.
+ widthz : int
+ Bit with of `zi` and `zo`. Defaults to the `width`.
+ stages : int or None
+ Number of CORDIC incremental rotation stages. Defaults to
+ `width + min(1, guard)`.
+ guard : int or None
+ Add guard bits to the intermediate signals. If `None`,
+ defaults to `guard = log2(width)` which guarantees accuracy
+ to `width` bits.
+ eval_mode : str, {"iterative", "pipelined", "combinatorial"}
+ cordic_mode : str, {"rotate", "vector"}
+ func_mode : str, {"circular", "linear", "hyperbolic"}
+ Evaluation and arithmetic mode. See above.
+
+ Attributes
+ ----------
+ xi, yi, zi : Signal(width), in
+ Input values, signed.
+ xo, yo, zo : Signal(width), out
+ Output values, signed.
+ new_out : Signal(1), out
+ Asserted if output values are freshly updated in the current
+ cycle.
+ new_in : Signal(1), out
+ Asserted if new input values are being read in the next cycle.
+ zmax : float
+ `zi` and `zo` normalization factor. Floating point `zmax`
+ corresponds to `1<<(widthz - 1)`. `x` and `y` are scaled such
+ that floating point `1` corresponds to `1<<(width - 1)`.
+ gain : float
+ Cumulative, intrinsic gain and scaling factor. In circular mode
+ `sqrt(xi**2 + yi**2)` should be no larger than `2**(width - 1)/gain`
+ to prevent overflow. Additionally, in hyperbolic and linear mode,
+ the operation itself can cause overflow.
+ interval : int
+ Output interval in clock cycles. Inverse throughput.
+ latency : int
+ Input-to-output latency. The result corresponding to the inputs
+ appears at the outputs `latency` cycles later.
+
+ Notes
+ -----
+
+ Each stage `i` in the CORDIC performs the following operation:
+
+ .. math::
+ x_{i+1} = x_i - m d_i y_i r^{-s_{m,i}},
+
+ y_{i+1} = y_i + d_i x_i r^{-s_{m,i}},
+
+ z_{i+1} = z_i - d_i a_{m,i},
+
+ where:
+
+ * :math:`d_i`: clockwise or counterclockwise, determined by
+ `sign(z_i)` in rotate mode or `sign(-y_i)` in vector mode.
+
+ * :math:`r`: radix of the number system (2)
+
+ * :math:`m`: 1: circular, 0: linear, -1: hyperbolic
+
+ * :math:`s_{m,i}`: non decreasing integer shift sequence
+
+ * :math:`a_{m,i}`: elemetary rotation angle: :math:`a_{m,i} =
+ \\tan^{-1}(\\sqrt{m} s_{m,i})/\\sqrt{m}`.
+ """
+ def __init__(self, width=16, widthz=None, stages=None, guard=0,
+ eval_mode="iterative", cordic_mode="rotate",
+ func_mode="circular"):
+ # validate parameters
+ assert eval_mode in ("combinatorial", "pipelined", "iterative")
+ assert cordic_mode in ("rotate", "vector")
+ assert func_mode in ("circular", "linear", "hyperbolic")
+ self.cordic_mode = cordic_mode
+ self.func_mode = func_mode
+ if guard is None:
+ # guard bits to guarantee "width" accuracy
+ guard = int(log(width)/log(2))
+ if widthz is None:
+ widthz = width
+ if stages is None:
+ stages = width + min(1, guard) # cuts error below LSB
+
+ # input output interface
+ self.xi = Signal((width, True))
+ self.yi = Signal((width, True))
+ self.zi = Signal((widthz, True))
+ self.xo = Signal((width, True))
+ self.yo = Signal((width, True))
+ self.zo = Signal((widthz, True))
+ self.new_in = Signal()
+ self.new_out = Signal()
+
+ ###
+
+ a, s, self.zmax, self.gain = self._constants(stages, widthz + guard)
+ stages = len(a) # may have increased due to repetitions
+
+ if eval_mode == "iterative":
+ num_sig = 3
+ self.interval = stages + 1
+ self.latency = stages + 2
+ else:
+ num_sig = stages + 1
+ self.interval = 1
+ if eval_mode == "pipelined":
+ self.latency = stages
+ else: # combinatorial
+ self.latency = 0
+
+ # inter-stage signals
+ x = [Signal((width + guard, True), reset_less=True)
+ for i in range(num_sig)]
+ y = [Signal((width + guard, True), reset_less=True)
+ for i in range(num_sig)]
+ z = [Signal((widthz + guard, True), reset_less=True)
+ for i in range(num_sig)]
+
+ # hook up inputs and outputs to the first and last inter-stage
+ # signals
+ self.comb += [
+ x[0].eq(self.xi << guard),
+ y[0].eq(self.yi << guard),
+ z[0].eq(self.zi << guard),
+ self.xo.eq(x[-1] >> guard),
+ self.yo.eq(y[-1] >> guard),
+ self.zo.eq(z[-1] >> guard),
+ ]
+
+ if eval_mode == "iterative":
+ # We afford one additional iteration for in/out.
+ i = Signal(max=stages + 1)
+ self.comb += [
+ self.new_in.eq(i == stages),
+ self.new_out.eq(i == 1),
+ ]
+ ai = Signal((widthz + guard, True), reset_less=True)
+ self.sync += ai.eq(Array(a)[i])
+ if range(stages) == s:
+ si = i - 1 # shortcut if no stage repetitions
+ else:
+ si = Signal(max=stages + 1, reset_less=True)
+ self.sync += si.eq(Array(s)[i])
+ xi, yi, zi = x[1], y[1], z[1]
+ self.sync += [
+ self._stage(xi, yi, zi, xi, yi, zi, si, ai),
+ i.eq(i + 1),
+ If(i == stages,
+ i.eq(0),
+ ),
+ If(i == 0,
+ x[2].eq(xi), y[2].eq(yi), z[2].eq(zi),
+ xi.eq(x[0]), yi.eq(y[0]), zi.eq(z[0]),
+ )
+ ]
+ else:
+ self.comb += [
+ self.new_out.eq(1),
+ self.new_in.eq(1),
+ ]
+ for i, si in enumerate(s):
+ stmt = self._stage(x[i], y[i], z[i],
+ x[i + 1], y[i + 1], z[i + 1],
+ si, a[i])
+ if eval_mode == "pipelined":
+ self.sync += stmt
+ else: # combinatorial
+ self.comb += stmt
+
+ def _constants(self, stages, bits):
+ if self.func_mode == "circular":
+ s = range(stages)
+ a = [atan(2**-i) for i in s]
+ g = [sqrt(1 + 2**(-2*i)) for i in s]
+ #zmax = sum(a)
+ # use pi anyway as the input z can cause overflow
+ # and we need the range for quadrant mapping
+ zmax = pi
+ elif self.func_mode == "linear":
+ s = range(stages)
+ a = [2**-i for i in s]
+ g = [1 for i in s]
+ #zmax = sum(a)
+ # use 2 anyway as this simplifies a and scaling
+ zmax = 2.
+ else: # hyperbolic
+ s = []
+ # need to repeat some stages:
+ j = 4
+ for i in range(stages):
+ if i == j:
+ s.append(j)
+ j = 3*j + 1
+ s.append(i + 1)
+ a = [atanh(2**-i) for i in s]
+ g = [sqrt(1 - 2**(-2*i)) for i in s]
+ zmax = sum(a)*2
+ # round here helps the width=2**i - 1 case but hurts the
+ # important width=2**i case
+ cast = int
+ if log(bits)/log(2) % 1:
+ cast = round
+ a = [cast(ai*2**(bits - 1)/zmax) for ai in a]
+ gain = 1.
+ for gi in g:
+ gain *= gi
+ return a, s, zmax, gain
+
+ def _stage(self, xi, yi, zi, xo, yo, zo, i, ai):
+ dir = Signal()
+ if self.cordic_mode == "rotate":
+ self.comb += dir.eq(zi < 0)
+ else: # vector
+ self.comb += dir.eq(yi >= 0)
+ dx = yi >> i
+ dy = xi >> i
+ dz = ai
+ if self.func_mode == "linear":
+ dx = 0
+ elif self.func_mode == "hyperbolic":
+ dx = -dx
+ stmt = [
+ xo.eq(xi + Mux(dir, dx, -dx)),
+ yo.eq(yi + Mux(dir, -dy, dy)),
+ zo.eq(zi + Mux(dir, dz, -dz))
+ ]
+ return stmt
+
+
+class Cordic(TwoQuadrantCordic):
+ """Four-quadrant CORDIC
+
+ Same as :class:`TwoQuadrantCordic` but with support and convergence
+ for `abs(zi) > pi/2 in circular rotate mode or `xi < 0` in circular
+ vector mode.
+ """
+ def __init__(self, **kwargs):
+ TwoQuadrantCordic.__init__(self, **kwargs)
+ if self.func_mode != "circular":
+ return # no need to remap quadrants
+
+ cxi, cyi, czi = self.xi, self.yi, self.zi
+ self.xi = xi = Signal.like(cxi)
+ self.yi = yi = Signal.like(cyi)
+ self.zi = zi = Signal.like(czi)
+
+ ###
+
+ q = Signal()
+ if self.cordic_mode == "rotate":
+ self.comb += q.eq(zi[-2] ^ zi[-1])
+ else: # vector
+ self.comb += q.eq(xi < 0)
+ self.comb += [
+ If(q,
+ Cat(cxi, cyi, czi).eq(
+ Cat(-xi, -yi, zi + (1 << len(zi) - 1)))
+ ).Else(
+ Cat(cxi, cyi, czi).eq(Cat(xi, yi, zi))
+ )
+ ]