--- /dev/null
+/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
+
+ Copyright (C) 2008, 2009
+ Free Software Foundation, Inc.
+
+ Contributed by Red Hat, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "defs.h"
+#include "arch-utils.h"
+#include "prologue-value.h"
+#include "target.h"
+#include "regcache.h"
+#include "opcode/rx.h"
+#include "dis-asm.h"
+#include "gdbtypes.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "value.h"
+#include "gdbcore.h"
+#include "dwarf2-frame.h"
+
+#include "elf/rx.h"
+#include "elf-bfd.h"
+
+/* Certain important register numbers. */
+enum
+{
+ RX_SP_REGNUM = 0,
+ RX_R1_REGNUM = 1,
+ RX_R4_REGNUM = 4,
+ RX_FP_REGNUM = 6,
+ RX_R15_REGNUM = 15,
+ RX_PC_REGNUM = 19,
+ RX_NUM_REGS = 25
+};
+
+/* Architecture specific data. */
+struct gdbarch_tdep
+{
+ /* The ELF header flags specify the multilib used. */
+ int elf_flags;
+};
+
+/* This structure holds the results of a prologue analysis. */
+struct rx_prologue
+{
+ /* The offset from the frame base to the stack pointer --- always
+ zero or negative.
+
+ Calling this a "size" is a bit misleading, but given that the
+ stack grows downwards, using offsets for everything keeps one
+ from going completely sign-crazy: you never change anything's
+ sign for an ADD instruction; always change the second operand's
+ sign for a SUB instruction; and everything takes care of
+ itself. */
+ int frame_size;
+
+ /* Non-zero if this function has initialized the frame pointer from
+ the stack pointer, zero otherwise. */
+ int has_frame_ptr;
+
+ /* If has_frame_ptr is non-zero, this is the offset from the frame
+ base to where the frame pointer points. This is always zero or
+ negative. */
+ int frame_ptr_offset;
+
+ /* The address of the first instruction at which the frame has been
+ set up and the arguments are where the debug info says they are
+ --- as best as we can tell. */
+ CORE_ADDR prologue_end;
+
+ /* reg_offset[R] is the offset from the CFA at which register R is
+ saved, or 1 if register R has not been saved. (Real values are
+ always zero or negative.) */
+ int reg_offset[RX_NUM_REGS];
+};
+
+/* Implement the "register_name" gdbarch method. */
+static const char *
+rx_register_name (struct gdbarch *gdbarch, int regnr)
+{
+ static const char *const reg_names[] = {
+ "r0",
+ "r1",
+ "r2",
+ "r3",
+ "r4",
+ "r5",
+ "r6",
+ "r7",
+ "r8",
+ "r9",
+ "r10",
+ "r11",
+ "r12",
+ "r13",
+ "r14",
+ "r15",
+ "isp",
+ "usp",
+ "intb",
+ "pc",
+ "psw",
+ "bpc",
+ "bpsw",
+ "vct",
+ "fpsw"
+ };
+
+ return reg_names[regnr];
+}
+
+/* Implement the "register_type" gdbarch method. */
+static struct type *
+rx_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+ if (reg_nr == RX_PC_REGNUM)
+ return builtin_type (gdbarch)->builtin_func_ptr;
+ else
+ return builtin_type (gdbarch)->builtin_unsigned_long;
+}
+
+
+/* Function for finding saved registers in a 'struct pv_area'; this
+ function is passed to pv_area_scan.
+
+ If VALUE is a saved register, ADDR says it was saved at a constant
+ offset from the frame base, and SIZE indicates that the whole
+ register was saved, record its offset. */
+static void
+check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
+{
+ struct rx_prologue *result = (struct rx_prologue *) result_untyped;
+
+ if (value.kind == pvk_register
+ && value.k == 0
+ && pv_is_register (addr, RX_SP_REGNUM)
+ && size == register_size (target_gdbarch, value.reg))
+ result->reg_offset[value.reg] = addr.k;
+}
+
+/* Define a "handle" struct for fetching the next opcode. */
+struct rx_get_opcode_byte_handle
+{
+ CORE_ADDR pc;
+};
+
+/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
+ the memory address of the next byte to fetch. If successful,
+ the address in the handle is updated and the byte fetched is
+ returned as the value of the function. If not successful, -1
+ is returned. */
+static int
+rx_get_opcode_byte (void *handle)
+{
+ struct rx_get_opcode_byte_handle *opcdata = handle;
+ int status;
+ gdb_byte byte;
+
+ status = target_read_memory (opcdata->pc, &byte, 1);
+ if (status == 0)
+ {
+ opcdata->pc += 1;
+ return byte;
+ }
+ else
+ return -1;
+}
+
+/* Analyze a prologue starting at START_PC, going no further than
+ LIMIT_PC. Fill in RESULT as appropriate. */
+static void
+rx_analyze_prologue (CORE_ADDR start_pc,
+ CORE_ADDR limit_pc, struct rx_prologue *result)
+{
+ CORE_ADDR pc, next_pc;
+ int rn;
+ pv_t reg[RX_NUM_REGS];
+ struct pv_area *stack;
+ struct cleanup *back_to;
+ CORE_ADDR after_last_frame_setup_insn = start_pc;
+
+ memset (result, 0, sizeof (*result));
+
+ for (rn = 0; rn < RX_NUM_REGS; rn++)
+ {
+ reg[rn] = pv_register (rn, 0);
+ result->reg_offset[rn] = 1;
+ }
+
+ stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
+ back_to = make_cleanup_free_pv_area (stack);
+
+ /* The call instruction has saved the return address on the stack. */
+ reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
+ pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
+
+ pc = start_pc;
+ while (pc < limit_pc)
+ {
+ int bytes_read;
+ struct rx_get_opcode_byte_handle opcode_handle;
+ RX_Opcode_Decoded opc;
+
+ opcode_handle.pc = pc;
+ bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
+ &opcode_handle);
+ next_pc = pc + bytes_read;
+
+ if (opc.id == RXO_pushm /* pushm r1, r2 */
+ && opc.op[1].type == RX_Operand_Register
+ && opc.op[2].type == RX_Operand_Register)
+ {
+ int r1, r2;
+ int r;
+
+ r1 = opc.op[1].reg;
+ r2 = opc.op[2].reg;
+ for (r = r2; r >= r1; r--)
+ {
+ reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
+ pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]);
+ }
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
+ && opc.op[0].type == RX_Operand_Register
+ && opc.op[1].type == RX_Operand_Register
+ && opc.size == RX_Long)
+ {
+ int rdst, rsrc;
+
+ rdst = opc.op[0].reg;
+ rsrc = opc.op[1].reg;
+ reg[rdst] = reg[rsrc];
+ if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
+ && opc.op[0].type == RX_Operand_Predec
+ && opc.op[0].reg == RX_SP_REGNUM
+ && opc.op[1].type == RX_Operand_Register
+ && opc.size == RX_Long)
+ {
+ int rsrc;
+
+ rsrc = opc.op[1].reg;
+ reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
+ pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]);
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == RXO_add /* add #const, rsrc, rdst */
+ && opc.op[0].type == RX_Operand_Register
+ && opc.op[1].type == RX_Operand_Immediate
+ && opc.op[2].type == RX_Operand_Register)
+ {
+ int rdst = opc.op[0].reg;
+ int addend = opc.op[1].addend;
+ int rsrc = opc.op[2].reg;
+ reg[rdst] = pv_add_constant (reg[rsrc], addend);
+ /* Negative adjustments to the stack pointer or frame pointer
+ are (most likely) part of the prologue. */
+ if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
+ after_last_frame_setup_insn = next_pc;
+ }
+ else if (opc.id == RXO_mov
+ && opc.op[0].type == RX_Operand_Indirect
+ && opc.op[1].type == RX_Operand_Register
+ && opc.size == RX_Long
+ && (opc.op[0].reg == RX_SP_REGNUM
+ || opc.op[0].reg == RX_FP_REGNUM)
+ && (RX_R1_REGNUM <= opc.op[1].reg
+ && opc.op[1].reg <= RX_R4_REGNUM))
+ {
+ /* This moves an argument register to the stack. Don't
+ record it, but allow it to be a part of the prologue. */
+ }
+ else if (opc.id == RXO_branch
+ && opc.op[0].type == RX_Operand_Immediate
+ && opc.op[1].type == RX_Operand_Condition
+ && next_pc < opc.op[0].addend)
+ {
+ /* When a loop appears as the first statement of a function
+ body, gcc 4.x will use a BRA instruction to branch to the
+ loop condition checking code. This BRA instruction is
+ marked as part of the prologue. We therefore set next_pc
+ to this branch target and also stop the prologue scan.
+ The instructions at and beyond the branch target should
+ no longer be associated with the prologue.
+
+ Note that we only consider forward branches here. We
+ presume that a forward branch is being used to skip over
+ a loop body.
+
+ A backwards branch is covered by the default case below.
+ If we were to encounter a backwards branch, that would
+ most likely mean that we've scanned through a loop body.
+ We definitely want to stop the prologue scan when this
+ happens and that is precisely what is done by the default
+ case below. */
+
+ after_last_frame_setup_insn = opc.op[0].addend;
+ break; /* Scan no further if we hit this case. */
+ }
+ else
+ {
+ /* Terminate the prologue scan. */
+ break;
+ }
+
+ pc = next_pc;
+ }
+
+ /* Is the frame size (offset, really) a known constant? */
+ if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
+ result->frame_size = reg[RX_SP_REGNUM].k;
+
+ /* Was the frame pointer initialized? */
+ if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
+ {
+ result->has_frame_ptr = 1;
+ result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
+ }
+
+ /* Record where all the registers were saved. */
+ pv_area_scan (stack, check_for_saved, (void *) result);
+
+ result->prologue_end = after_last_frame_setup_insn;
+
+ do_cleanups (back_to);
+}
+
+
+/* Implement the "skip_prologue" gdbarch method. */
+static CORE_ADDR
+rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ char *name;
+ CORE_ADDR func_addr, func_end;
+ struct rx_prologue p;
+
+ /* Try to find the extent of the function that contains PC. */
+ if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
+ return pc;
+
+ rx_analyze_prologue (pc, func_end, &p);
+ return p.prologue_end;
+}
+
+/* Given a frame described by THIS_FRAME, decode the prologue of its
+ associated function if there is not cache entry as specified by
+ THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
+ return that struct as the value of this function. */
+static struct rx_prologue *
+rx_analyze_frame_prologue (struct frame_info *this_frame,
+ void **this_prologue_cache)
+{
+ if (!*this_prologue_cache)
+ {
+ CORE_ADDR func_start, stop_addr;
+
+ *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
+
+ func_start = get_frame_func (this_frame);
+ stop_addr = get_frame_pc (this_frame);
+
+ /* If we couldn't find any function containing the PC, then
+ just initialize the prologue cache, but don't do anything. */
+ if (!func_start)
+ stop_addr = func_start;
+
+ rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
+ }
+
+ return *this_prologue_cache;
+}
+
+/* Given the next frame and a prologue cache, return this frame's
+ base. */
+static CORE_ADDR
+rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
+{
+ struct rx_prologue *p
+ = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
+
+ /* In functions that use alloca, the distance between the stack
+ pointer and the frame base varies dynamically, so we can't use
+ the SP plus static information like prologue analysis to find the
+ frame base. However, such functions must have a frame pointer,
+ to be able to restore the SP on exit. So whenever we do have a
+ frame pointer, use that to find the base. */
+ if (p->has_frame_ptr)
+ {
+ CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
+ return fp - p->frame_ptr_offset;
+ }
+ else
+ {
+ CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
+ return sp - p->frame_size;
+ }
+}
+
+/* Implement the "frame_this_id" method for unwinding frames. */
+static void
+rx_frame_this_id (struct frame_info *this_frame,
+ void **this_prologue_cache, struct frame_id *this_id)
+{
+ *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache),
+ get_frame_func (this_frame));
+}
+
+/* Implement the "frame_prev_register" method for unwinding frames. */
+static struct value *
+rx_frame_prev_register (struct frame_info *this_frame,
+ void **this_prologue_cache, int regnum)
+{
+ struct rx_prologue *p
+ = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
+ CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache);
+ int reg_size = register_size (get_frame_arch (this_frame), regnum);
+
+ if (regnum == RX_SP_REGNUM)
+ return frame_unwind_got_constant (this_frame, regnum, frame_base);
+
+ /* If prologue analysis says we saved this register somewhere,
+ return a description of the stack slot holding it. */
+ else if (p->reg_offset[regnum] != 1)
+ return frame_unwind_got_memory (this_frame, regnum,
+ frame_base + p->reg_offset[regnum]);
+
+ /* Otherwise, presume we haven't changed the value of this
+ register, and get it from the next frame. */
+ else
+ return frame_unwind_got_register (this_frame, regnum, regnum);
+}
+
+static const struct frame_unwind rx_frame_unwind = {
+ NORMAL_FRAME,
+ rx_frame_this_id,
+ rx_frame_prev_register,
+ NULL,
+ default_frame_sniffer
+};
+
+/* Implement the "unwind_pc" gdbarch method. */
+static CORE_ADDR
+rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ ULONGEST pc;
+
+ pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
+ return pc;
+}
+
+/* Implement the "unwind_sp" gdbarch method. */
+static CORE_ADDR
+rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ ULONGEST sp;
+
+ sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
+ return sp;
+}
+
+/* Implement the "dummy_id" gdbarch method. */
+static struct frame_id
+rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ return
+ frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
+ get_frame_pc (this_frame));
+}
+
+/* Implement the "push_dummy_call" gdbarch method. */
+static CORE_ADDR
+rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return,
+ CORE_ADDR struct_addr)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int write_pass;
+ int sp_off = 0;
+ CORE_ADDR cfa;
+ int num_register_candidate_args;
+
+ struct type *func_type = value_type (function);
+
+ /* Dereference function pointer types. */
+ while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
+ func_type = TYPE_TARGET_TYPE (func_type);
+
+ /* The end result had better be a function or a method. */
+ gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
+ || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
+
+ /* Functions with a variable number of arguments have all of their
+ variable arguments and the last non-variable argument passed
+ on the stack.
+
+ Otherwise, we can pass up to four arguments on the stack.
+
+ Once computed, we leave this value alone. I.e. we don't update
+ it in case of a struct return going in a register or an argument
+ requiring multiple registers, etc. We rely instead on the value
+ of the ``arg_reg'' variable to get these other details correct. */
+
+ if (TYPE_VARARGS (func_type))
+ num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
+ else
+ num_register_candidate_args = 4;
+
+ /* We make two passes; the first does the stack allocation,
+ the second actually stores the arguments. */
+ for (write_pass = 0; write_pass <= 1; write_pass++)
+ {
+ int i;
+ int arg_reg = RX_R1_REGNUM;
+
+ if (write_pass)
+ sp = align_down (sp - sp_off, 4);
+ sp_off = 0;
+
+ if (struct_return)
+ {
+ struct type *return_type = TYPE_TARGET_TYPE (func_type);
+
+ gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (func_type) == TYPE_CODE_UNION);
+
+ if (TYPE_LENGTH (return_type) > 16
+ || TYPE_LENGTH (return_type) % 4 != 0)
+ {
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
+ struct_addr);
+ }
+ }
+
+ /* Push the arguments. */
+ for (i = 0; i < nargs; i++)
+ {
+ struct value *arg = args[i];
+ const gdb_byte *arg_bits = value_contents_all (arg);
+ struct type *arg_type = check_typedef (value_type (arg));
+ ULONGEST arg_size = TYPE_LENGTH (arg_type);
+
+ if (i == 0 && struct_addr != 0 && !struct_return
+ && TYPE_CODE (arg_type) == TYPE_CODE_PTR
+ && extract_unsigned_integer (arg_bits, 4,
+ byte_order) == struct_addr)
+ {
+ /* This argument represents the address at which C++ (and
+ possibly other languages) store their return value.
+ Put this value in R15. */
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
+ struct_addr);
+ }
+ else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
+ && TYPE_CODE (arg_type) != TYPE_CODE_UNION)
+ {
+ /* Argument is a scalar. */
+ if (arg_size == 8)
+ {
+ if (i < num_register_candidate_args
+ && arg_reg <= RX_R4_REGNUM - 1)
+ {
+ /* If argument registers are going to be used to pass
+ an 8 byte scalar, the ABI specifies that two registers
+ must be available. */
+ if (write_pass)
+ {
+ regcache_cooked_write_unsigned (regcache, arg_reg,
+ extract_unsigned_integer
+ (arg_bits, 4,
+ byte_order));
+ regcache_cooked_write_unsigned (regcache,
+ arg_reg + 1,
+ extract_unsigned_integer
+ (arg_bits + 4, 4,
+ byte_order));
+ }
+ arg_reg += 2;
+ }
+ else
+ {
+ sp_off = align_up (sp_off, 4);
+ /* Otherwise, pass the 8 byte scalar on the stack. */
+ if (write_pass)
+ write_memory (sp + sp_off, arg_bits, 8);
+ sp_off += 8;
+ }
+ }
+ else
+ {
+ ULONGEST u;
+
+ gdb_assert (arg_size <= 4);
+
+ u =
+ extract_unsigned_integer (arg_bits, arg_size, byte_order);
+
+ if (i < num_register_candidate_args
+ && arg_reg <= RX_R4_REGNUM)
+ {
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, arg_reg, u);
+ arg_reg += 1;
+ }
+ else
+ {
+ int p_arg_size = 4;
+
+ if (TYPE_PROTOTYPED (func_type)
+ && i < TYPE_NFIELDS (func_type))
+ {
+ struct type *p_arg_type =
+ TYPE_FIELD_TYPE (func_type, i);
+ p_arg_size = TYPE_LENGTH (p_arg_type);
+ }
+
+ sp_off = align_up (sp_off, p_arg_size);
+
+ if (write_pass)
+ write_memory_unsigned_integer (sp + sp_off,
+ p_arg_size, byte_order,
+ u);
+ sp_off += p_arg_size;
+ }
+ }
+ }
+ else
+ {
+ /* Argument is a struct or union. Pass as much of the struct
+ in registers, if possible. Pass the rest on the stack. */
+ while (arg_size > 0)
+ {
+ if (i < num_register_candidate_args
+ && arg_reg <= RX_R4_REGNUM
+ && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
+ && arg_size % 4 == 0)
+ {
+ int len = min (arg_size, 4);
+
+ if (write_pass)
+ regcache_cooked_write_unsigned (regcache, arg_reg,
+ extract_unsigned_integer
+ (arg_bits, len,
+ byte_order));
+ arg_bits += len;
+ arg_size -= len;
+ arg_reg++;
+ }
+ else
+ {
+ sp_off = align_up (sp_off, 4);
+ if (write_pass)
+ write_memory (sp + sp_off, arg_bits, arg_size);
+ sp_off += align_up (arg_size, 4);
+ arg_size = 0;
+ }
+ }
+ }
+ }
+ }
+
+ /* Keep track of the stack address prior to pushing the return address.
+ This is the value that we'll return. */
+ cfa = sp;
+
+ /* Push the return address. */
+ sp = sp - 4;
+ write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
+
+ /* Update the stack pointer. */
+ regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
+
+ return cfa;
+}
+
+/* Implement the "return_value" gdbarch method. */
+static enum return_value_convention
+rx_return_value (struct gdbarch *gdbarch,
+ struct type *func_type,
+ struct type *valtype,
+ struct regcache *regcache,
+ gdb_byte *readbuf, const gdb_byte *writebuf)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ ULONGEST valtype_len = TYPE_LENGTH (valtype);
+
+ if (TYPE_LENGTH (valtype) > 16
+ || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+ || TYPE_CODE (valtype) == TYPE_CODE_UNION)
+ && TYPE_LENGTH (valtype) % 4 != 0))
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ if (readbuf)
+ {
+ ULONGEST u;
+ int argreg = RX_R1_REGNUM;
+ int offset = 0;
+
+ while (valtype_len > 0)
+ {
+ int len = min (valtype_len, 4);
+
+ regcache_cooked_read_unsigned (regcache, argreg, &u);
+ store_unsigned_integer (readbuf + offset, len, byte_order, u);
+ valtype_len -= len;
+ offset += len;
+ argreg++;
+ }
+ }
+
+ if (writebuf)
+ {
+ ULONGEST u;
+ int argreg = RX_R1_REGNUM;
+ int offset = 0;
+
+ while (valtype_len > 0)
+ {
+ int len = min (valtype_len, 4);
+
+ u = extract_unsigned_integer (writebuf + offset, len, byte_order);
+ regcache_cooked_write_unsigned (regcache, argreg, u);
+ valtype_len -= len;
+ offset += len;
+ argreg++;
+ }
+ }
+
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+/* Implement the "breakpoint_from_pc" gdbarch method. */
+const gdb_byte *
+rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
+{
+ static gdb_byte breakpoint[] = { 0x00 };
+ *lenptr = sizeof breakpoint;
+ return breakpoint;
+}
+
+/* Allocate and initialize a gdbarch object. */
+static struct gdbarch *
+rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+ int elf_flags;
+
+ /* Extract the elf_flags if available. */
+ if (info.abfd != NULL
+ && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
+ elf_flags = elf_elfheader (info.abfd)->e_flags;
+ else
+ elf_flags = 0;
+
+
+ /* Try to find the architecture in the list of already defined
+ architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
+ continue;
+
+ return arches->gdbarch;
+ }
+
+ /* None found, create a new architecture from the information
+ provided. */
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+ tdep->elf_flags = elf_flags;
+
+ set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
+ set_gdbarch_num_pseudo_regs (gdbarch, 0);
+ set_gdbarch_register_name (gdbarch, rx_register_name);
+ set_gdbarch_register_type (gdbarch, rx_register_type);
+ set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
+ set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_decr_pc_after_break (gdbarch, 1);
+ set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc);
+ set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
+
+ set_gdbarch_print_insn (gdbarch, print_insn_rx);
+
+ set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
+
+ /* Target builtin data types. */
+ set_gdbarch_char_signed (gdbarch, 0);
+ set_gdbarch_short_bit (gdbarch, 16);
+ set_gdbarch_int_bit (gdbarch, 32);
+ set_gdbarch_long_bit (gdbarch, 32);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 32);
+ set_gdbarch_float_bit (gdbarch, 32);
+ set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
+ if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
+ {
+ set_gdbarch_double_bit (gdbarch, 64);
+ set_gdbarch_long_double_bit (gdbarch, 64);
+ set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
+ }
+ else
+ {
+ set_gdbarch_double_bit (gdbarch, 32);
+ set_gdbarch_long_double_bit (gdbarch, 32);
+ set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
+ }
+
+ /* Frame unwinding. */
+#if 0
+ /* Note: The test results are better with the dwarf2 unwinder disabled,
+ so it's turned off for now. */
+ dwarf2_append_unwinders (gdbarch);
+#endif
+ frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
+
+ /* Methods for saving / extracting a dummy frame's ID.
+ The ID's stack address must match the SP value returned by
+ PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
+ set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
+ set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
+ set_gdbarch_return_value (gdbarch, rx_return_value);
+
+ /* Virtual tables. */
+ set_gdbarch_vbit_in_delta (gdbarch, 1);
+
+ return gdbarch;
+}
+
+/* Register the above initialization routine. */
+void
+_initialize_rx_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
+}