const char comment_chars[] = "#;";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
-const char *md_shortopts = "";
+const char *md_shortopts = "O";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
+int Optimizing = 0;
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct d10v_fixup
{
expressionS exp;
- bfd_reloc_code_real_type reloc;
+ int operand;
+ int pcrel;
};
typedef struct _fixups
static int postfix PARAMS ((char *p));
static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
static int get_operands PARAMS ((expressionS exp[]));
+static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
offsetT value, int left));
+static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
+ struct d10v_opcode *opcode2, unsigned long insn2));
struct option md_longopts[] = {
FILE *stream;
{
fprintf(stream, "D10V options:\n\
-none yet\n");
+-O optimize. Will do some operations in parallel.\n");
}
int
int c;
char *arg;
{
- return 0;
+ switch (c)
+ {
+ case 'O':
+ /* Optimize. Will attempt to parallelize operations */
+ Optimizing = 1;
+ break;
+ default:
+ return 0;
+ }
+ return 1;
}
symbolS *
return 0;
}
+/* Turn a string in input_line_pointer into a floating point constant of type
+ type, and store the appropriate bytes in *litP. The number of LITTLENUMS
+ emitted is stored in *sizeP . An error message is returned, or NULL on OK.
+ */
char *
-md_atof (type, litp, sizep)
- int type;
-char *litp;
-int *sizep;
+md_atof (type, litP, sizeP)
+ int type;
+ char *litP;
+ int *sizeP;
{
- return "";
+ int prec;
+ LITTLENUM_TYPE words[4];
+ char *t;
+ int i;
+
+ switch (type)
+ {
+ case 'f':
+ prec = 2;
+ break;
+ case 'd':
+ prec = 4;
+ break;
+ default:
+ *sizeP = 0;
+ return "bad call to md_atof";
+ }
+
+ t = atof_ieee (input_line_pointer, type, words);
+ if (t)
+ input_line_pointer = t;
+
+ *sizeP = prec * 2;
+
+ for (i = 0; i < prec; i++)
+ {
+ md_number_to_chars (litP, (valueT) words[i], 2);
+ litP += 2;
+ }
+ return NULL;
}
void
/*
printf("need a fixup: ");
print_expr_1(stdout,&opers[i]);
- printf("\n");ddd
+ printf("\n");
*/
if (fixups->fc >= MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
fixups->fix[fixups->fc].exp = opers[i];
-
- /* put the operand number here for now. We can look up
- the reloc type and/or fixup the instruction in md_apply_fix() */
- fixups->fix[fixups->fc].reloc = opcode->operands[i];
+ fixups->fix[fixups->fc].operand = opcode->operands[i];
+ fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
(fixups->fc)++;
}
for (i=0; i < fx->fc; i++)
{
- if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]))
+ if (get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]))
{
/*
printf("fix_new_exp: where:%x size:4\n ",f - frag_now->fr_literal);
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
- 1,
- fx->fix[i].reloc|2048);
+ fx->fix[i].pcrel,
+ fx->fix[i].operand|2048);
}
}
fx->fc = 0;
char *f = frag_more(4);
int i;
- if (opcode->exec_type == PARONLY)
+ if (opcode->exec_type & PARONLY)
as_fatal ("Instruction must be executed in parallel with another instruction.");
/* the other container needs to be NOP */
for (i=0; i < fx->fc; i++)
{
bfd_reloc_code_real_type reloc;
- reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]);
+ reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
if (reloc)
{
/*
/* if it's an R reloc, we may have to switch it to L */
if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
- fx->fix[i].reloc |= 1024;
+ fx->fix[i].operand |= 1024;
fix_new_exp (frag_now,
f - frag_now->fr_literal,
4,
&(fx->fix[i].exp),
- 1,
- fx->fix[i].reloc|2048);
+ fx->fix[i].pcrel,
+ fx->fix[i].operand|2048);
}
}
fx->fc = 0;
char *f;
int i,j;
- if ( (exec_type != 1) && ((opcode1->exec_type == PARONLY)
- || (opcode2->exec_type == PARONLY)))
+ if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
+ || (opcode2->exec_type & PARONLY)))
as_fatal("Instruction must be executed in parallel");
if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
as_fatal ("Long instructions may not be combined.");
- if(opcode1->exec_type == BRANCH_LINK)
+ if(opcode1->exec_type & BRANCH_LINK)
{
/* subroutines must be called from 32-bit boundaries */
/* so the return address will be correct */
switch (exec_type)
{
- case 0:
- if (opcode1->unit == IU)
+ case 0: /* order not specified */
+ if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2))
+ {
+ /* parallel */
+ if (opcode1->unit == IU)
+ insn = FM00 | (insn2 << 15) | insn1;
+ else if (opcode2->unit == MU)
+ insn = FM00 | (insn2 << 15) | insn1;
+ else
+ {
+ insn = FM00 | (insn1 << 15) | insn2;
+ fx = fx->next;
+ }
+ }
+ else if (opcode1->unit == IU)
{
/* reverse sequential */
insn = FM10 | (insn2 << 15) | insn1;
}
else
{
+ /* sequential */
insn = FM01 | (insn1 << 15) | insn2;
fx = fx->next;
}
break;
case 1: /* parallel */
- if (opcode1->exec_type == SEQ || opcode2->exec_type == SEQ)
+ if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
as_fatal ("One of these instructions may not be executed in parallel.");
if (opcode1->unit == IU)
as_fatal ("Two IU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 15) | insn1;
- fx = fx->next;
}
else if (opcode2->unit == MU)
{
as_fatal ("Two MU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 15) | insn1;
- fx = fx->next;
}
else
- insn = FM00 | (insn1 << 15) | insn2;
- fx = fx->next;
+ {
+ insn = FM00 | (insn1 << 15) | insn2;
+ fx = fx->next;
+ }
break;
case 2: /* sequential */
if (opcode1->unit == IU)
if (opcode2->unit == MU)
as_fatal ("MU instruction may not be in the right container");
insn = FM10 | (insn1 << 15) | insn2;
+ fx = fx->next;
break;
default:
as_fatal("unknown execution type passed to write_2_short()");
f = frag_more(4);
number_to_chars_bigendian (f, insn, 4);
-for (j=0; j<2; j++)
- {
- bfd_reloc_code_real_type reloc;
- for (i=0; i < fx->fc; i++)
- {
- reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].reloc]);
- if (reloc)
- {
- if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
- fx->fix[i].reloc |= 1024;
-
- /*
- printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].reloc);
- print_expr_1(stdout,&(fx->fix[i].exp));
- printf("\n");
- */
- fix_new_exp (frag_now,
- f - frag_now->fr_literal,
- 4,
- &(fx->fix[i].exp),
- 1,
- fx->fix[i].reloc|2048);
- }
- }
- fx->fc = 0;
- fx = fx->next;
- }
-
+ for (j=0; j<2; j++)
+ {
+ bfd_reloc_code_real_type reloc;
+ for (i=0; i < fx->fc; i++)
+ {
+ reloc = get_reloc((struct d10v_operand *)&d10v_operands[fx->fix[i].operand]);
+ if (reloc)
+ {
+ if ( (reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
+ fx->fix[i].operand |= 1024;
+
+ /*
+ printf("fix_new_exp: where:%x reloc:%d\n ",f - frag_now->fr_literal,fx->fix[i].operand);
+ print_expr_1(stdout,&(fx->fix[i].exp));
+ printf("\n");
+ */
+ fix_new_exp (frag_now,
+ f - frag_now->fr_literal,
+ 4,
+ &(fx->fix[i].exp),
+ fx->fix[i].pcrel,
+ fx->fix[i].operand|2048);
+ }
+ }
+ fx->fc = 0;
+ fx = fx->next;
+ }
return (0);
}
+/* Check 2 instructions and determine if they can be safely */
+/* executed in parallel. Returns 1 if they can be. */
+static int
+parallel_ok (op1, insn1, op2, insn2)
+ struct d10v_opcode *op1, *op2;
+ unsigned long insn1, insn2;
+{
+ int i, j, flags, mask, shift, regno;
+ unsigned long ins, mod[2], used[2];
+ struct d10v_opcode *op;
+
+ if (op1->exec_type & SEQ || op2->exec_type & SEQ)
+ return 0;
+
+ /* The idea here is to create two sets of bitmasks (mod and used) */
+ /* which indicate which registers are modified or used by each instruction. */
+ /* The operation can only be done in parallel if instruction 1 and instruction 2 */
+ /* modify different registers, and neither instruction modifies any registers */
+ /* the other is using. Accesses to control registers, PSW, and memory are treated */
+ /* as accesses to a single register. So if both instructions write memory or one */
+ /* instruction writes memory and the other reads, then they cannot be done in parallel. */
+ /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
+ /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
+
+ /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
+ /* r0-r15 0-15 */
+ /* a0-a1 16-17 */
+ /* cr (not psw) 18 */
+ /* psw 19 */
+ /* mem 20 */
+
+ for (j=0;j<2;j++)
+ {
+ if (j == 0)
+ {
+ op = op1;
+ ins = insn1;
+ }
+ else
+ {
+ op = op2;
+ ins = insn2;
+ }
+ mod[j] = used[j] = 0;
+ for (i = 0; op1->operands[i]; i++)
+ {
+ flags = d10v_operands[op->operands[i]].flags;
+ shift = d10v_operands[op->operands[i]].shift;
+ mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
+ if (flags & OPERAND_REG)
+ {
+ regno = (ins >> shift) & mask;
+ if (flags & OPERAND_ACC)
+ regno += 16;
+ else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
+ {
+ if (regno == 0)
+ regno = 19;
+ else
+ regno = 18;
+ }
+ else if (flags & OPERAND_FLAG)
+ regno = 19;
+
+ if ( flags & OPERAND_DEST )
+ {
+ mod[j] |= 1 << regno;
+ if (flags & OPERAND_EVEN)
+ mod[j] |= 1 << (regno + 1);
+ }
+ else
+ {
+ used[j] |= 1 << regno ;
+ if (flags & OPERAND_EVEN)
+ used[j] |= 1 << (regno + 1);
+ }
+ }
+ else if (op->exec_type & RMEM)
+ used[j] |= 1 << 20;
+ else if (op->exec_type & WMEM)
+ mod[j] |= 1 << 20;
+ else if (op->exec_type & RF0)
+ used[j] |= 1 << 19;
+ else if (op->exec_type & WF0)
+ mod[j] |= 1 << 19;
+ else if (op->exec_type & WCAR)
+ mod[j] |= 1 << 19;
+ }
+ }
+ if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
+ return 1;
+ return 0;
+}
+
+
/* This is the main entry point for the machine-dependent assembler. str points to a
machine-dependent instruction. This function is supposed to emit the frags/bytes
it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
char *str;
struct d10v_opcode **opcode;
{
- struct d10v_opcode *next_opcode;
unsigned char *op_start, *save;
unsigned char *op_end;
char name[20];
- int nlen = 0, i, match, numops;
+ int nlen = 0;
expressionS myops[6];
unsigned long insn;
save = input_line_pointer;
input_line_pointer = op_end;
+ *opcode = find_opcode (*opcode, myops);
+ if (*opcode == 0)
+ return -1;
+ input_line_pointer = save;
+
+ insn = build_insn ((*opcode), myops, 0);
+ /* printf("sub-insn = %lx\n",insn); */
+ return (insn);
+}
+
+/* find_opcode() gets a pointer to an entry in the opcode table. */
+/* It must look at all opcodes with the same name and use the operands */
+/* to choose the correct opcode. */
+
+static struct d10v_opcode *
+find_opcode (opcode, myops)
+ struct d10v_opcode *opcode;
+ expressionS myops[];
+{
+ int i, match, done, numops;
+ struct d10v_opcode *next_opcode;
/* get all the operands and save them as expressions */
numops = get_operands (myops);
/* now see if the operand is a fake. If so, find the correct size */
/* instruction, if possible */
- match = 0;
- if ((*opcode)->format == OPCODE_FAKE)
+ if (opcode->format == OPCODE_FAKE)
{
- int opnum = (*opcode)->operands[0];
- if (myops[opnum].X_op == O_constant)
+ int opnum = opcode->operands[0];
+
+ if (myops[opnum].X_op == O_register)
{
- next_opcode=(*opcode)+1;
- for (i=0; (*opcode)->operands[i+1]; i++)
+ myops[opnum].X_op = O_symbol;
+ myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
+ myops[opnum].X_add_number = 0;
+ myops[opnum].X_op_symbol = NULL;
+ }
+
+ if (myops[opnum].X_op == O_constant || S_IS_DEFINED(myops[opnum].X_add_symbol))
+ {
+ next_opcode=opcode+1;
+ for (i=0; opcode->operands[i+1]; i++)
{
int bits = d10v_operands[next_opcode->operands[opnum]].bits;
int flags = d10v_operands[next_opcode->operands[opnum]].flags;
if (!check_range (myops[opnum].X_add_number, bits, flags))
- {
- match = 1;
- break;
- }
+ return next_opcode;
next_opcode++;
}
+ as_fatal ("value out of range");
}
else
{
- /* not a constant, so use a long instruction */
- next_opcode = (*opcode)+2;
- match = 1;
+ /* not a constant, so use a long instruction */
+ return opcode+2;
}
- if (match)
- *opcode = next_opcode;
- else
- as_fatal ("value out of range");
}
else
{
+ match = 0;
/* now search the opcode table table for one with operands */
/* that matches what we've got */
while (!match)
{
match = 1;
- for (i = 0; (*opcode)->operands[i]; i++)
+ for (i = 0; opcode->operands[i]; i++)
{
- int flags = d10v_operands[(*opcode)->operands[i]].flags;
+ int flags = d10v_operands[opcode->operands[i]].flags;
int X_op = myops[i].X_op;
int num = myops[i].X_add_number;
{
match=0;
break;
- }
-
+ }
}
- /* we're only done if the operands matched AND there
+ /* we're only done if the operands matched so far AND there
are no more to check */
if (match && myops[i].X_op==0)
break;
- next_opcode = (*opcode)+1;
+ next_opcode = opcode+1;
if (next_opcode->opcode == 0)
break;
- if (strcmp(next_opcode->name, (*opcode)->name))
+ if (strcmp(next_opcode->name, opcode->name))
break;
- (*opcode) = next_opcode;
+ opcode = next_opcode;
}
}
/* Check that all registers that are required to be even are. */
/* Also, if any operands were marked as registers, but were really symbols */
/* fix that here. */
- for (i=0; (*opcode)->operands[i]; i++)
+ for (i=0; opcode->operands[i]; i++)
{
- if ((d10v_operands[(*opcode)->operands[i]].flags & OPERAND_EVEN) &&
+ if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
(myops[i].X_add_number & 1))
as_fatal("Register number must be EVEN");
if (myops[i].X_op == O_register)
{
- if (!(d10v_operands[(*opcode)->operands[i]].flags & OPERAND_REG))
+ if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
{
myops[i].X_op = O_symbol;
myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
}
}
}
-
- input_line_pointer = save;
-
- /* at this point, we have "opcode" pointing to the opcode entry in the
- d10v opcode table, with myops filled out with the operands. */
- insn = build_insn ((*opcode), myops, 0);
- /* printf("sub-insn = %lx\n",insn); */
-
- return (insn);
+ return opcode;
}
-
/* if while processing a fixup, a reloc really needs to be created */
/* then it is done here */
fixS *fixp;
segT sec;
{
+ if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
return 0;
- /* return fixp->fx_frag->fr_address + fixp->fx_where; */
+ /* printf("pcrel_from_section: %x\n", fixp->fx_frag->fr_address + fixp->fx_where); */
+ return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
case BFD_RELOC_D10V_10_PCREL_L:
case BFD_RELOC_D10V_10_PCREL_R:
case BFD_RELOC_D10V_18_PCREL:
- /* instruction addresses are always right-shifted by 2
- and pc-relative */
- if (!fixp->fx_pcrel)
- value -= fixp->fx_where;
+ /* instruction addresses are always right-shifted by 2 */
value >>= 2;
break;
case BFD_RELOC_32: