dict<int, int> ez_step_is_consistent;
pool<Cell*> cell_warn_cache;
+ SigPool undriven_signals;
- EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, int max_seq) : module(module), sigmap(module),
+ EquivInductWorker(Module *module, const pool<Cell*> &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module),
cells(module->selected_cells()), workset(unproven_equiv_cells), satgen(&ez, &sigmap), max_seq(max_seq), success_counter(0)
{
+ satgen.model_undef = model_undef;
}
void create_timestep(int step)
{
vector<int> ez_equal_terms;
+
for (auto cell : cells) {
if (!satgen.importCell(cell, step) && !cell_warn_cache.count(cell)) {
log_warning("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type));
if (bit_a != bit_b) {
int ez_a = satgen.importSigBit(bit_a, step);
int ez_b = satgen.importSigBit(bit_b, step);
- ez_equal_terms.push_back(ez.IFF(ez_a, ez_b));
+ int cond = ez.IFF(ez_a, ez_b);
+ if (satgen.model_undef)
+ cond = ez.OR(cond, satgen.importUndefSigBit(bit_a, step));
+ ez_equal_terms.push_back(cond);
}
}
}
+ if (satgen.model_undef) {
+ for (auto bit : undriven_signals.export_all())
+ ez.assume(ez.NOT(satgen.importUndefSigBit(bit, step)));
+ }
+
log_assert(!ez_step_is_consistent.count(step));
ez_step_is_consistent[step] = ez.expression(ez.OpAnd, ez_equal_terms);
}
{
log("Found %d unproven $equiv cells in module %s:\n", GetSize(workset), log_id(module));
+ if (satgen.model_undef) {
+ for (auto cell : cells)
+ if (yosys_celltypes.cell_known(cell->type))
+ for (auto &conn : cell->connections())
+ if (yosys_celltypes.cell_input(cell->type, conn.first))
+ undriven_signals.add(sigmap(conn.second));
+ for (auto cell : cells)
+ if (yosys_celltypes.cell_known(cell->type))
+ for (auto &conn : cell->connections())
+ if (yosys_celltypes.cell_output(cell->type, conn.first))
+ undriven_signals.del(sigmap(conn.second));
+ }
+
create_timestep(1);
+
+ if (satgen.model_undef) {
+ for (auto bit : satgen.initial_state.export_all())
+ ez.assume(ez.NOT(satgen.importUndefSigBit(bit, 1)));
+ log(" Undef modelling: force def on %d initial reg values and %d inputs.\n",
+ GetSize(satgen.initial_state), GetSize(undriven_signals));
+ }
+
for (int step = 1; step <= max_seq; step++)
{
ez.assume(ez_step_is_consistent[step]);
SigBit bit_a = sigmap(cell->getPort("\\A")).to_single_sigbit();
SigBit bit_b = sigmap(cell->getPort("\\B")).to_single_sigbit();
+ log(" Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort("\\Y"))));
+
int ez_a = satgen.importSigBit(bit_a, max_seq+1);
int ez_b = satgen.importSigBit(bit_b, max_seq+1);
+ int cond = ez.XOR(ez_a, ez_b);
- log(" Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort("\\Y"))));
- if (!ez.solve(ez.XOR(ez_a, ez_b))) {
+ if (satgen.model_undef)
+ cond = ez.AND(cond, ez.NOT(satgen.importUndefSigBit(bit_a, max_seq+1)));
+
+ if (!ez.solve(cond)) {
log(" success!\n");
cell->setPort("\\B", cell->getPort("\\A"));
success_counter++;
log("Only selected $equiv cells are proven and only selected cells are used to\n");
log("perform the proof.\n");
log("\n");
+ log(" -undef\n");
+ log(" enable modelling of undef states\n");
+ log("\n");
log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 4)\n");
log("\n");
virtual void execute(std::vector<std::string> args, Design *design)
{
int success_counter = 0;
+ bool model_undef = false;
int max_seq = 4;
log_header("Executing EQUIV_INDUCT pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
+ if (args[argidx] == "-undef") {
+ model_undef = true;
+ continue;
+ }
if (args[argidx] == "-seq" && argidx+1 < args.size()) {
max_seq = atoi(args[++argidx].c_str());
continue;
continue;
}
- EquivInductWorker worker(module, unproven_equiv_cells, max_seq);
+ EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq);
worker.run();
success_counter += worker.success_counter;
}