--- /dev/null
+/*
+ Copyright (c) Microsoft Corporation
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+ associated documentation files (the "Software"), to deal in the Software without restriction,
+ including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
+ subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in all copies or substantial
+ portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+ NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+#include "tessellator.hpp"
+#if defined(__MINGW32__) || defined(__MINGW64__)
+#include <cmath>
+#elif defined(_WIN32) || defined(_WIN64)
+#include <math.h> // ceil
+#else
+#include <cmath>
+#endif
+//#include <windows.h> // Just used for some commented out debug stat printing.
+//#include <strsafe.h> // Ditto.
+#define min(x,y) (x < y ? x : y)
+#define max(x,y) (x > y ? x : y)
+
+//=================================================================================================================================
+// Some D3D Compliant Float Math (reference rasterizer implements these in RefALU class)
+//=================================================================================================================================
+//
+//---------------------------------------------------------------------------------------------------------------------------------
+// isNaN
+//---------------------------------------------------------------------------------------------------------------------------------
+
+union fiu {
+ float f;
+ int i;
+};
+
+bool isNaN( float a )
+{
+ static const int exponentMask = 0x7f800000;
+ static const int mantissaMask = 0x007fffff;
+ union fiu fiu;
+ fiu.f = a;
+ return ( ( ( fiu.i & exponentMask ) == exponentMask ) && ( fiu.i & mantissaMask ) ); // NaN
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// flush (denorm)
+//---------------------------------------------------------------------------------------------------------------------------------
+float flush( float a )
+{
+ static const int minNormalizedFloat = 0x00800000;
+ static const int signBit = 0x80000000;
+ static const int signBitComplement = 0x7fffffff;
+ union fiu fiu, uif;
+ fiu.f = a;
+ int b = fiu.i & signBitComplement; // fabs()
+ if( b < minNormalizedFloat ) // UINT comparison. NaN/INF do test false here
+ {
+ b = signBit & (fiu.i);
+ uif.i = b;
+ return uif.f;
+ }
+ return a;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// IEEE754R min
+//---------------------------------------------------------------------------------------------------------------------------------
+float fmin( float a, float b )
+{
+ float _a = flush( a );
+ float _b = flush( b );
+ if( isNaN( _b ) )
+ {
+ return a;
+ }
+ else if( ( _a == 0 ) && ( _b == 0 ) )
+ {
+ union fiu fiu;
+ fiu.f = _a;
+ return ( fiu.i & 0x80000000 ) ? a : b;
+ }
+ return _a < _b ? a : b;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// IEEE754R max
+//---------------------------------------------------------------------------------------------------------------------------------
+float fmax( float a, float b )
+{
+ float _a = flush( a );
+ float _b = flush( b );
+
+ if( isNaN( _b ) )
+ {
+ return a;
+ }
+ else if( ( _a == 0 ) && ( _b == 0 ) )
+ {
+ union fiu fiu;
+ fiu.f = _b;
+ return ( fiu.i & 0x80000000 ) ? a : b;
+ }
+ return _a >= _b ? a : b;
+}
+
+//=================================================================================================================================
+// Fixed Point Math
+//=================================================================================================================================
+
+//-----------------------------------------------------------------------------------------------------------------------------
+// floatToFixedPoint
+//
+// Convert 32-bit float to 32-bit fixed point integer, using only
+// integer arithmetic + bitwise operations.
+//
+// c_uIBits: UINT8 : Width of i (aka. integer bits)
+// c_uFBits: UINT8 : Width of f (aka. fractional bits)
+// c_bSigned: bool : Whether the integer bits are a 2's complement signed value
+// input: float : All values valid.
+// output: INT32 : At most 24 bits from LSB are meaningful, depending
+// on the fixed point bit representation chosen (see
+// below). Extra bits are sign extended from the most
+// meaningful bit.
+//
+//-----------------------------------------------------------------------------------------------------------------------------
+
+typedef unsigned char UINT8;
+typedef int INT32;
+template< const UINT8 c_uIBits, const UINT8 c_uFBits, const bool c_bSigned >
+INT32 floatToIDotF( const float& input )
+{
+ // ------------------------------------------------------------------------
+ // output fixed point format
+ // 32-bit result:
+ //
+ // [sign-extend]i.f
+ // | |
+ // MSB(31)...LSB(0)
+ //
+ // f fractional part of the number, an unsigned
+ // value with _fxpFracBitCount bits (defined below)
+ //
+ // . implied decimal
+ //
+ // i integer part of the number, a 2's complement
+ // value with _fxpIntBitCount bits (defined below)
+ //
+ // [sign-extend] MSB of i conditionally replicated
+ //
+ // ------------------------------------------------------------------------
+ // Define fixed point bit counts
+ //
+
+ // Commenting out C_ASSERT below to minimise #includes:
+ // C_ASSERT( 2 <= c_uIBits && c_uIBits <= 32 && c_uFBits <= 32 && c_uIBits + c_uFBits <= 32 );
+
+ // Define most negative and most positive fixed point values
+ const INT32 c_iMinResult = (c_bSigned ? INT32( -1 ) << (c_uIBits + c_uFBits - 1) : 0);
+ const INT32 c_iMaxResult = ~c_iMinResult;
+
+ // ------------------------------------------------------------------------
+ // constant float properties
+ // ------------------------------------------------------------------------
+ const UINT8 _fltMantissaBitCount = 23;
+ const UINT8 _fltExponentBitCount = 8;
+ const INT32 _fltExponentBias = (INT32( 1 ) << (_fltExponentBitCount - 1)) - 1;
+ const INT32 _fltHiddenBit = INT32( 1 ) << _fltMantissaBitCount;
+ const INT32 _fltMantissaMask = _fltHiddenBit - 1;
+ const INT32 _fltExponentMask = ((INT32( 1 ) << _fltExponentBitCount) - 1) << _fltMantissaBitCount;
+ const INT32 _fltSignBit = INT32( 1 ) << (_fltExponentBitCount + _fltMantissaBitCount);
+
+ // ------------------------------------------------------------------------
+ // define min and max values as floats (clamp to these bounds)
+ // ------------------------------------------------------------------------
+ INT32 _fxpMaxPosValueFloat;
+ INT32 _fxpMaxNegValueFloat;
+
+ if (c_bSigned)
+ {
+ // The maximum positive fixed point value is 2^(i-1) - 2^(-f).
+ // The following constructs the floating point bit pattern for this value,
+ // as long as i >= 2.
+ _fxpMaxPosValueFloat = (_fltExponentBias + c_uIBits - 1) <<_fltMantissaBitCount;
+ const INT32 iShift = _fltMantissaBitCount + 2 - c_uIBits - c_uFBits;
+ if (iShift >= 0)
+ {
+// assert( iShift < 32 );
+#if defined(_WIN32) || defined(_WIN64)
+#pragma warning( suppress : 4293 )
+#endif
+ _fxpMaxPosValueFloat -= INT32( 1 ) << iShift;
+ }
+
+ // The maximum negative fixed point value is -2^(i-1).
+ // The following constructs the floating point bit pattern for this value,
+ // as long as i >= 2.
+ // We need this number without the sign bit
+ _fxpMaxNegValueFloat = (_fltExponentBias + c_uIBits - 1) << _fltMantissaBitCount;
+ }
+ else
+ {
+ // The maximum positive fixed point value is 2^(i) - 2^(-f).
+ // The following constructs the floating point bit pattern for this value,
+ // as long as i >= 2.
+ _fxpMaxPosValueFloat = (_fltExponentBias + c_uIBits) <<_fltMantissaBitCount;
+ const INT32 iShift = _fltMantissaBitCount + 1 - c_uIBits - c_uFBits;
+ if (iShift >= 0)
+ {
+// assert( iShift < 32 );
+#if defined(_WIN32) || defined(_WIN64)
+#pragma warning( suppress : 4293 )
+#endif
+ _fxpMaxPosValueFloat -= INT32( 1 ) << iShift;
+ }
+
+ // The maximum negative fixed point value is 0.
+ _fxpMaxNegValueFloat = 0;
+ }
+
+ // ------------------------------------------------------------------------
+ // float -> fixed conversion
+ // ------------------------------------------------------------------------
+
+ // ------------------------------------------------------------------------
+ // examine input float
+ // ------------------------------------------------------------------------
+ INT32 output = *(INT32*)&input;
+ INT32 unbiasedExponent = ((output & _fltExponentMask) >> _fltMantissaBitCount) - _fltExponentBias;
+ INT32 isNegative = output & _fltSignBit;
+
+ // ------------------------------------------------------------------------
+ // nan
+ // ------------------------------------------------------------------------
+ if (unbiasedExponent == (_fltExponentBias + 1) && (output & _fltMantissaMask))
+ {
+ // nan converts to 0
+ output = 0;
+ }
+ // ------------------------------------------------------------------------
+ // too large positive
+ // ------------------------------------------------------------------------
+ else if (!isNegative && output >= _fxpMaxPosValueFloat) // integer compare
+ {
+ output = c_iMaxResult;
+ }
+ // ------------------------------------------------------------------------
+ // too large negative
+ // ------------------------------------------------------------------------
+ // integer compare
+ else if (isNegative && (output & ~_fltSignBit) >= _fxpMaxNegValueFloat)
+ {
+ output = c_iMinResult;
+ }
+ // ------------------------------------------------------------------------
+ // too small
+ // ------------------------------------------------------------------------
+ else if (unbiasedExponent < -c_uFBits - 1)
+ {
+ // clamp to 0
+ output = 0;
+ }
+ // ------------------------------------------------------------------------
+ // within range
+ // ------------------------------------------------------------------------
+ else
+ {
+ // copy mantissa, add hidden bit
+ output = (output & _fltMantissaMask) | _fltHiddenBit;
+
+ INT32 extraBits = _fltMantissaBitCount - c_uFBits - unbiasedExponent;
+ if (extraBits >= 0)
+ {
+ // 2's complement if negative
+ if (isNegative)
+ {
+ output = ~output + 1;
+ }
+
+ // From the range checks that led here, it is known that
+ // unbiasedExponent < c_uIBits. So, at most:
+ // (a) unbiasedExponent == c_uIBits - 1.
+ //
+ // From compile validation above, it is known that
+ // c_uIBits + c_uFBits <= _fltMantissaBitCount + 1).
+ // So, at minimum:
+ // (b) _fltMantissaBitCount == _fxtIntBitCount + c_uFBits - 1
+ //
+ // Substituting (a) and (b) into extraBits calculation above:
+ // extraBits >= (_fxtIntBitCount + c_uFBits - 1)
+ // - c_uFBits - (c_uIBits - 1)
+ // extraBits >= 0
+ //
+ // Thus we only have to worry about shifting right by 0 or more
+ // bits to get the decimal to the right place, and never have
+ // to shift left.
+
+ INT32 LSB = 1 << extraBits; // last bit being kept
+ INT32 extraBitsMask = LSB - 1;
+ INT32 half = LSB >> 1; // round bias
+
+ // round to nearest-even at LSB
+ if ((output & LSB) || (output & extraBitsMask) > half)
+ {
+ output += half;
+ }
+
+ // shift off the extra bits (sign extending)
+ output >>= extraBits;
+ }
+ else
+ {
+ output <<= -extraBits;
+
+ // 2's complement if negative
+ if (isNegative)
+ {
+ output = ~output + 1;
+ }
+ }
+ }
+ return output;
+}
+//-----------------------------------------------------------------------------------------------------------------------------
+
+#define FXP_INTEGER_BITS 15
+#define FXP_FRACTION_BITS 16
+#define FXP_FRACTION_MASK 0x0000ffff
+#define FXP_INTEGER_MASK 0x7fff0000
+#define FXP_THREE (3<<FXP_FRACTION_BITS)
+#define FXP_ONE (1<<FXP_FRACTION_BITS)
+#define FXP_ONE_THIRD 0x00005555
+#define FXP_TWO_THIRDS 0x0000aaaa
+#define FXP_ONE_HALF 0x00008000
+
+#define FXP_MAX_INPUT_TESS_FACTOR_BEFORE_TRIPLE_AVERAGE 0x55540000 // 1/3 of max fixed point number - 1. Numbers less than
+ // or equal to this allows avg. reduction on a tri patch
+ // including rounding.
+
+#define FXP_MAX_INPUT_TESS_FACTOR_BEFORE_PAIR_AVERAGE 0x7FFF0000 // 1/2 of max fixed point number - 1. Numbers less than
+ // or equal to this allows avg. reduction on a quad patch
+ // including rounding.
+
+static const FXP s_fixedReciprocal[D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR+1] =
+{
+ 0xffffffff, // 1/0 is the first entry (unused)
+ 0x10000, 0x8000, 0x5555, 0x4000,
+ 0x3333, 0x2aab, 0x2492, 0x2000,
+ 0x1c72, 0x199a, 0x1746, 0x1555,
+ 0x13b1, 0x1249, 0x1111, 0x1000,
+ 0xf0f, 0xe39, 0xd79, 0xccd,
+ 0xc31, 0xba3, 0xb21, 0xaab,
+ 0xa3d, 0x9d9, 0x97b, 0x925,
+ 0x8d4, 0x889, 0x842, 0x800,
+ 0x7c2, 0x788, 0x750, 0x71c,
+ 0x6eb, 0x6bd, 0x690, 0x666,
+ 0x63e, 0x618, 0x5f4, 0x5d1,
+ 0x5b0, 0x591, 0x572, 0x555,
+ 0x539, 0x51f, 0x505, 0x4ec,
+ 0x4d5, 0x4be, 0x4a8, 0x492,
+ 0x47e, 0x46a, 0x457, 0x444,
+ 0x432, 0x421, 0x410, 0x400, // 1/64 is the last entry
+};
+
+#define FLOAT_THREE 3.0f
+#define FLOAT_ONE 1.0f
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// floatToFixed
+//---------------------------------------------------------------------------------------------------------------------------------
+FXP floatToFixed(const float& input)
+{
+ return floatToIDotF< FXP_INTEGER_BITS, FXP_FRACTION_BITS, /*bSigned*/false >( input );
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// fixedToFloat
+//---------------------------------------------------------------------------------------------------------------------------------
+float fixedToFloat(const FXP& input)
+{
+ // not worrying about denorm flushing the float operations (the DX spec behavior for div), since the numbers will not be that small during tessellation.
+ return ((float)(input>>FXP_FRACTION_BITS) + (float)(input&FXP_FRACTION_MASK)/(1<<FXP_FRACTION_BITS));
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// isEven
+//---------------------------------------------------------------------------------------------------------------------------------
+bool isEven(const float& input)
+{
+ return (((int)input) & 1) ? false : true;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// fxpCeil
+//---------------------------------------------------------------------------------------------------------------------------------
+FXP fxpCeil(const FXP& input)
+{
+ if( input & FXP_FRACTION_MASK )
+ {
+ return (input & FXP_INTEGER_MASK) + FXP_ONE;
+ }
+ return input;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// fxpFloor
+//---------------------------------------------------------------------------------------------------------------------------------
+FXP fxpFloor(const FXP& input)
+{
+ return (input & FXP_INTEGER_MASK);
+}
+
+//=================================================================================================================================
+// CHWTessellator
+//=================================================================================================================================
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::CHWTessellator
+//---------------------------------------------------------------------------------------------------------------------------------
+CHWTessellator::CHWTessellator()
+{
+ m_Point = 0;
+ m_Index = 0;
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+ m_bUsingPatchedIndices = false;
+ m_bUsingPatchedIndices2 = false;
+#ifdef ALLOW_XBOX_360_COMPARISON
+ m_bXBox360Mode = false;
+#endif
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::~CHWTessellator
+//---------------------------------------------------------------------------------------------------------------------------------
+CHWTessellator::~CHWTessellator()
+{
+ delete [] m_Point;
+ delete [] m_Index;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::Init
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::Init(
+ D3D11_TESSELLATOR_PARTITIONING partitioning,
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive)
+{
+ if( 0 == m_Point )
+ {
+ m_Point = new DOMAIN_POINT[MAX_POINT_COUNT];
+ }
+ if( 0 == m_Index )
+ {
+ m_Index = new int[MAX_INDEX_COUNT];
+ }
+ m_partitioning = partitioning;
+ m_originalPartitioning = partitioning;
+ switch( partitioning )
+ {
+ case D3D11_TESSELLATOR_PARTITIONING_INTEGER:
+ default:
+ break;
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD:
+ m_parity = TESSELLATOR_PARITY_ODD;
+ break;
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN:
+ m_parity = TESSELLATOR_PARITY_EVEN;
+ break;
+ }
+ m_originalParity = m_parity;
+ m_outputPrimitive = outputPrimitive;
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TessellateQuadDomain
+// User calls this
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TessellateQuadDomain( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
+ float insideTessFactor_U, float insideTessFactor_V )
+{
+ PROCESSED_TESS_FACTORS_QUAD processedTessFactors;
+ QuadProcessTessFactors(tessFactor_Ueq0,tessFactor_Veq0,tessFactor_Ueq1,tessFactor_Veq1,insideTessFactor_U,insideTessFactor_V,processedTessFactors);
+
+ if( processedTessFactors.bPatchCulled )
+ {
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+ return;
+ }
+ else if( processedTessFactors.bJustDoMinimumTessFactor )
+ {
+ DefinePoint(/*U*/0,/*V*/0,/*pointStorageOffset*/0);
+ DefinePoint(/*U*/FXP_ONE,/*V*/0,/*pointStorageOffset*/1);
+ DefinePoint(/*U*/FXP_ONE,/*V*/FXP_ONE,/*pointStorageOffset*/2);
+ DefinePoint(/*U*/0,/*V*/FXP_ONE,/*pointStorageOffset*/3);
+ m_NumPoints = 4;
+
+ switch(m_outputPrimitive)
+ {
+ case D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CW:
+ case D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CCW:
+ // function orients them CCW if needed
+ DefineClockwiseTriangle(0,1,3,/*indexStorageOffset*/0);
+ DefineClockwiseTriangle(1,2,3,/*indexStorageOffset*/3);
+ m_NumIndices = 6;
+ break;
+ case D3D11_TESSELLATOR_OUTPUT_POINT:
+ DumpAllPoints();
+ break;
+ case D3D11_TESSELLATOR_OUTPUT_LINE:
+ DumpAllPointsAsInOrderLineList();
+ break;
+ }
+ return;
+ }
+
+ QuadGeneratePoints(processedTessFactors);
+
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_POINT )
+ {
+ DumpAllPoints();
+ return;
+ }
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_LINE )
+ {
+ DumpAllPointsAsInOrderLineList();
+ return;
+ }
+
+ QuadGenerateConnectivity(processedTessFactors); // can be done in parallel to QuadGeneratePoints()
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::QuadProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::QuadProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
+ float insideTessFactor_U, float insideTessFactor_V, PROCESSED_TESS_FACTORS_QUAD& processedTessFactors )
+{
+ // Is the patch culled?
+ if( !(tessFactor_Ueq0 > 0) || // NaN will pass
+ !(tessFactor_Veq0 > 0) ||
+ !(tessFactor_Ueq1 > 0) ||
+ !(tessFactor_Veq1 > 0) )
+ {
+ processedTessFactors.bPatchCulled = true;
+ return;
+ }
+ else
+ {
+ processedTessFactors.bPatchCulled = false;
+ }
+
+ // Clamp edge TessFactors
+ float lowerBound = 0.0, upperBound = 0.0;
+ switch(m_originalPartitioning)
+ {
+ case D3D11_TESSELLATOR_PARTITIONING_INTEGER:
+ case D3D11_TESSELLATOR_PARTITIONING_POW2: // don�t care about pow2 distinction for validation, just treat as integer
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN:
+ lowerBound = D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD:
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR;
+ break;
+ }
+
+ tessFactor_Ueq0 = fmin( upperBound, fmax( lowerBound, tessFactor_Ueq0 ) );
+ tessFactor_Veq0 = fmin( upperBound, fmax( lowerBound, tessFactor_Veq0 ) );
+ tessFactor_Ueq1 = fmin( upperBound, fmax( lowerBound, tessFactor_Ueq1 ) );
+ tessFactor_Veq1 = fmin( upperBound, fmax( lowerBound, tessFactor_Veq1 ) );
+
+ if( HWIntegerPartitioning()) // pow2 or integer, round to next int (hw doesn't care about pow2 distinction)
+ {
+ tessFactor_Ueq0 = ceil(tessFactor_Ueq0);
+ tessFactor_Veq0 = ceil(tessFactor_Veq0);
+ tessFactor_Ueq1 = ceil(tessFactor_Ueq1);
+ tessFactor_Veq1 = ceil(tessFactor_Veq1);
+ }
+
+ // Clamp inside TessFactors
+ if(D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD == m_originalPartitioning)
+ {
+#define EPSILON 0.0000152587890625f // 2^(-16), min positive fixed point fraction
+#define MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON (D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR + EPSILON/2)
+ // If any TessFactor will end up > 1 after floatToFixed conversion later,
+ // then force the inside TessFactors to be > 1 so there is a picture frame.
+ if( (tessFactor_Ueq0 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (tessFactor_Veq0 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (tessFactor_Ueq1 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (tessFactor_Veq1 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (insideTessFactor_U > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (insideTessFactor_V > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) )
+ {
+ // Force picture frame
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR + EPSILON;
+ }
+ }
+
+ insideTessFactor_U = fmin( upperBound, fmax( lowerBound, insideTessFactor_U ) );
+ insideTessFactor_V = fmin( upperBound, fmax( lowerBound, insideTessFactor_V ) );
+ // Note the above clamps map NaN to lowerBound
+
+
+ if( HWIntegerPartitioning()) // pow2 or integer, round to next int (hw doesn't care about pow2 distinction)
+ {
+ insideTessFactor_U = ceil(insideTessFactor_U);
+ insideTessFactor_V = ceil(insideTessFactor_V);
+ }
+
+ // Reset our vertex and index buffers. We have enough storage for the max tessFactor.
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+
+ // Process tessFactors
+ float outsideTessFactor[QUAD_EDGES] = {tessFactor_Ueq0, tessFactor_Veq0, tessFactor_Ueq1, tessFactor_Veq1};
+ float insideTessFactor[QUAD_AXES] = {insideTessFactor_U,insideTessFactor_V};
+ int edge, axis;
+ if( HWIntegerPartitioning() )
+ {
+ for( edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ int edgeEven = isEven(outsideTessFactor[edge]);
+ processedTessFactors.outsideTessFactorParity[edge] = edgeEven ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ for( axis = 0; axis < QUAD_AXES; axis++ )
+ {
+ processedTessFactors.insideTessFactorParity[axis] =
+ (isEven(insideTessFactor[axis]) || (FLOAT_ONE == insideTessFactor[axis]) )
+ ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ }
+ else
+ {
+ for( edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ processedTessFactors.outsideTessFactorParity[edge] = m_originalParity;
+ }
+ processedTessFactors.insideTessFactorParity[U] = processedTessFactors.insideTessFactorParity[V] = m_originalParity;
+ }
+
+ // Save fixed point TessFactors
+ for( edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ processedTessFactors.outsideTessFactor[edge] = floatToFixed(outsideTessFactor[edge]);
+ }
+ for( axis = 0; axis < QUAD_AXES; axis++ )
+ {
+ processedTessFactors.insideTessFactor[axis] = floatToFixed(insideTessFactor[axis]);
+ }
+
+ if( HWIntegerPartitioning() || Odd() )
+ {
+ // Special case if all TessFactors are 1
+ if( (FXP_ONE == processedTessFactors.insideTessFactor[U]) &&
+ (FXP_ONE == processedTessFactors.insideTessFactor[V]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Ueq0]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Veq0]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Ueq1]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Veq1]) )
+ {
+ processedTessFactors.bJustDoMinimumTessFactor = true;
+ return;
+ }
+ }
+ processedTessFactors.bJustDoMinimumTessFactor = false;
+
+ // Compute TessFactor-specific metadata
+ for(int edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ ComputeTessFactorContext(processedTessFactors.outsideTessFactor[edge], processedTessFactors.outsideTessFactorCtx[edge]);
+ }
+
+ for(int axis = 0; axis < QUAD_AXES; axis++)
+ {
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[axis]);
+ ComputeTessFactorContext(processedTessFactors.insideTessFactor[axis], processedTessFactors.insideTessFactorCtx[axis]);
+ }
+
+ // Compute some initial data.
+
+ // outside edge offsets and storage
+ for(int edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ processedTessFactors.numPointsForOutsideEdge[edge] = NumPointsForTessFactor(processedTessFactors.outsideTessFactor[edge]);
+ m_NumPoints += processedTessFactors.numPointsForOutsideEdge[edge];
+ }
+ m_NumPoints -= 4;
+
+ // inside edge offsets
+ for(int axis = 0; axis < QUAD_AXES; axis++)
+ {
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[axis]);
+ processedTessFactors.numPointsForInsideTessFactor[axis] = NumPointsForTessFactor(processedTessFactors.insideTessFactor[axis]);
+ int pointCountMin = ( TESSELLATOR_PARITY_ODD == processedTessFactors.insideTessFactorParity[axis] ) ? 4 : 3;
+ // max() allows degenerate transition regions when inside TessFactor == 1
+ processedTessFactors.numPointsForInsideTessFactor[axis] = max(pointCountMin,processedTessFactors.numPointsForInsideTessFactor[axis]);
+ }
+
+ processedTessFactors.insideEdgePointBaseOffset = m_NumPoints;
+
+ // inside storage, including interior edges above
+ int numInteriorPoints = (processedTessFactors.numPointsForInsideTessFactor[U] - 2)*(processedTessFactors.numPointsForInsideTessFactor[V]-2);
+ m_NumPoints += numInteriorPoints;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::QuadGeneratePoints
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::QuadGeneratePoints( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors )
+{
+ // Generate exterior ring edge points, clockwise from top-left
+ int pointOffset = 0;
+ int edge;
+ for(edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ int parity = edge&0x1;
+ int startPoint = 0;
+ int endPoint = processedTessFactors.numPointsForOutsideEdge[edge] - 1;
+ for(int p = startPoint; p < endPoint; p++,pointOffset++) // don't include end, since next edge starts with it.
+ {
+ FXP fxpParam;
+ int q = ((edge==1)||(edge==2)) ? p : endPoint - p; // reverse order
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ PlacePointIn1D(processedTessFactors.outsideTessFactorCtx[edge],q,fxpParam);
+ if( parity )
+ {
+ DefinePoint(/*U*/fxpParam,
+ /*V*/(edge == 3) ? FXP_ONE : 0,
+ /*pointStorageOffset*/pointOffset);
+ }
+ else
+ {
+ DefinePoint(/*U*/(edge == 2) ? FXP_ONE : 0,
+ /*V*/fxpParam,
+ /*pointStorageOffset*/pointOffset);
+ }
+ }
+ }
+
+ // Generate interior ring points, clockwise from (U==0,V==1) (bottom-left) spiralling toward center
+ static const int startRing = 1;
+ int minNumPointsForTessFactor = min(processedTessFactors.numPointsForInsideTessFactor[U],processedTessFactors.numPointsForInsideTessFactor[V]);
+ int numRings = (minNumPointsForTessFactor >> 1); // note for even tess we aren't counting center point here.
+ for(int ring = startRing; ring < numRings; ring++)
+ {
+ int startPoint = ring;
+ int endPoint[QUAD_AXES] = {processedTessFactors.numPointsForInsideTessFactor[U] - 1 - startPoint,
+ processedTessFactors.numPointsForInsideTessFactor[V] - 1 - startPoint};
+
+ for(edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ int parity[QUAD_AXES] = {edge&0x1,((edge+1)&0x1)};
+ int perpendicularAxisPoint = (edge < 2) ? startPoint : endPoint[parity[0]];
+ FXP fxpPerpParam;
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[parity[0]]);
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx[parity[0]],perpendicularAxisPoint,fxpPerpParam);
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[parity[1]]);
+ for(int p = startPoint; p < endPoint[parity[1]]; p++, pointOffset++) // don't include end: next edge starts with it.
+ {
+ FXP fxpParam;
+ int q = ((edge == 1)||(edge==2)) ? p : endPoint[parity[1]] - (p - startPoint);
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx[parity[1]],q,fxpParam);
+ if( parity[1] )
+ {
+ DefinePoint(/*U*/fxpPerpParam,
+ /*V*/fxpParam,
+ /*pointStorageOffset*/pointOffset);
+ }
+ else
+ {
+ DefinePoint(/*U*/fxpParam,
+ /*V*/fxpPerpParam,
+ /*pointStorageOffset*/pointOffset);
+ }
+ }
+ }
+ }
+ // For even tessellation, the inner "ring" is degenerate - a row of points
+ if( (processedTessFactors.numPointsForInsideTessFactor[U] > processedTessFactors.numPointsForInsideTessFactor[V]) &&
+ (TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[V]) )
+ {
+ int startPoint = numRings;
+ int endPoint = processedTessFactors.numPointsForInsideTessFactor[U] - 1 - startPoint;
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[U]);
+ for( int p = startPoint; p <= endPoint; p++, pointOffset++ )
+ {
+ FXP fxpParam;
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx[U],p,fxpParam);
+ DefinePoint(/*U*/fxpParam,
+ /*V*/FXP_ONE_HALF, // middle
+ /*pointStorageOffset*/pointOffset);
+ }
+ }
+ else if( (processedTessFactors.numPointsForInsideTessFactor[V] >= processedTessFactors.numPointsForInsideTessFactor[U]) &&
+ (TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[U]) )
+ {
+ int startPoint = numRings;
+ int endPoint;
+ FXP fxpParam;
+ endPoint = processedTessFactors.numPointsForInsideTessFactor[V] - 1 - startPoint;
+ SetTessellationParity(processedTessFactors.insideTessFactorParity[V]);
+ for( int p = endPoint; p >= startPoint; p--, pointOffset++ )
+ {
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx[V],p,fxpParam);
+ DefinePoint(/*U*/FXP_ONE_HALF, // middle
+ /*V*/fxpParam,
+ /*pointStorageOffset*/pointOffset);
+ }
+ }
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::QuadGenerateConnectivity
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::QuadGenerateConnectivity( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors )
+{
+ // Generate primitives for all the concentric rings, one side at a time for each ring
+ static const int startRing = 1;
+ int numPointRowsToCenter[QUAD_AXES] = {((processedTessFactors.numPointsForInsideTessFactor[U]+1) >> 1),
+ ((processedTessFactors.numPointsForInsideTessFactor[V]+1) >> 1)}; // +1 is so even tess includes the center point
+ int numRings = min(numPointRowsToCenter[U],numPointRowsToCenter[V]);
+ int degeneratePointRing[QUAD_AXES] = { // Even partitioning causes degenerate row of points,
+ // which results in exceptions to the point ordering conventions
+ // when travelling around the rings counterclockwise.
+ (TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[V]) ? numPointRowsToCenter[V] - 1 : -1,
+ (TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[U]) ? numPointRowsToCenter[U] - 1 : -1 };
+
+ const TESS_FACTOR_CONTEXT* outsideTessFactorCtx[QUAD_EDGES] = {&processedTessFactors.outsideTessFactorCtx[Ueq0],
+ &processedTessFactors.outsideTessFactorCtx[Veq0],
+ &processedTessFactors.outsideTessFactorCtx[Ueq1],
+ &processedTessFactors.outsideTessFactorCtx[Veq1]};
+ TESSELLATOR_PARITY outsideTessFactorParity[QUAD_EDGES] = {processedTessFactors.outsideTessFactorParity[Ueq0],
+ processedTessFactors.outsideTessFactorParity[Veq0],
+ processedTessFactors.outsideTessFactorParity[Ueq1],
+ processedTessFactors.outsideTessFactorParity[Veq1]};
+ int numPointsForOutsideEdge[QUAD_EDGES] = {processedTessFactors.numPointsForOutsideEdge[Ueq0],
+ processedTessFactors.numPointsForOutsideEdge[Veq0],
+ processedTessFactors.numPointsForOutsideEdge[Ueq1],
+ processedTessFactors.numPointsForOutsideEdge[Veq1]};
+
+ int insideEdgePointBaseOffset = processedTessFactors.insideEdgePointBaseOffset;
+ int outsideEdgePointBaseOffset = 0;
+ int edge;
+ for(int ring = startRing; ring < numRings; ring++)
+ {
+ int numPointsForInsideEdge[QUAD_AXES] = {processedTessFactors.numPointsForInsideTessFactor[U] - 2*ring,
+ processedTessFactors.numPointsForInsideTessFactor[V] - 2*ring};
+
+ int edge0InsidePointBaseOffset = insideEdgePointBaseOffset;
+ int edge0OutsidePointBaseOffset = outsideEdgePointBaseOffset;
+
+ for(edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ int parity = (edge+1)&0x1;
+
+ int numTriangles = numPointsForInsideEdge[parity] + numPointsForOutsideEdge[edge] - 2;
+ int insideBaseOffset;
+ int outsideBaseOffset;
+ if( edge == 3 ) // We need to patch the indexing so Stitch() can think it sees
+ // 2 sequentially increasing rows of points, even though we have wrapped around
+ // to the end of the inner and outer ring's points, so the last point is really
+ // the first point for the ring.
+ // We make it so that when Stitch() calls AddIndex(), that function
+ // will do any necessary index adjustment.
+ {
+ if( ring == degeneratePointRing[parity] )
+ {
+ m_IndexPatchContext2.baseIndexToInvert = insideEdgePointBaseOffset + 1;
+ m_IndexPatchContext2.cornerCaseBadValue = outsideEdgePointBaseOffset + numPointsForOutsideEdge[edge] - 1;
+ m_IndexPatchContext2.cornerCaseReplacementValue = edge0OutsidePointBaseOffset;
+ m_IndexPatchContext2.indexInversionEndPoint = (m_IndexPatchContext2.baseIndexToInvert << 1) - 1;
+ insideBaseOffset = m_IndexPatchContext2.baseIndexToInvert;
+ outsideBaseOffset = outsideEdgePointBaseOffset;
+ SetUsingPatchedIndices2(true);
+ }
+ else
+ {
+ m_IndexPatchContext.insidePointIndexDeltaToRealValue = insideEdgePointBaseOffset;
+ m_IndexPatchContext.insidePointIndexBadValue = numPointsForInsideEdge[parity] - 1;
+ m_IndexPatchContext.insidePointIndexReplacementValue = edge0InsidePointBaseOffset;
+ m_IndexPatchContext.outsidePointIndexPatchBase = m_IndexPatchContext.insidePointIndexBadValue+1; // past inside patched index range
+ m_IndexPatchContext.outsidePointIndexDeltaToRealValue = outsideEdgePointBaseOffset
+ - m_IndexPatchContext.outsidePointIndexPatchBase;
+ m_IndexPatchContext.outsidePointIndexBadValue = m_IndexPatchContext.outsidePointIndexPatchBase
+ + numPointsForOutsideEdge[edge] - 1;
+ m_IndexPatchContext.outsidePointIndexReplacementValue = edge0OutsidePointBaseOffset;
+
+ insideBaseOffset = 0;
+ outsideBaseOffset = m_IndexPatchContext.outsidePointIndexPatchBase;
+ SetUsingPatchedIndices(true);
+ }
+ }
+ else if( (edge == 2) && (ring == degeneratePointRing[parity]) )
+ {
+ m_IndexPatchContext2.baseIndexToInvert = insideEdgePointBaseOffset;
+ m_IndexPatchContext2.cornerCaseBadValue = -1; // unused
+ m_IndexPatchContext2.cornerCaseReplacementValue = -1; // unused
+ m_IndexPatchContext2.indexInversionEndPoint = m_IndexPatchContext2.baseIndexToInvert << 1;
+ insideBaseOffset = m_IndexPatchContext2.baseIndexToInvert;
+ outsideBaseOffset = outsideEdgePointBaseOffset;
+ SetUsingPatchedIndices2(true);
+ }
+ else
+ {
+ insideBaseOffset = insideEdgePointBaseOffset;
+ outsideBaseOffset = outsideEdgePointBaseOffset;
+ }
+ if( ring == startRing )
+ {
+ StitchTransition(/*baseIndexOffset: */m_NumIndices,
+ insideBaseOffset,processedTessFactors.insideTessFactorCtx[parity].numHalfTessFactorPoints,processedTessFactors.insideTessFactorParity[parity],
+ outsideBaseOffset,outsideTessFactorCtx[edge]->numHalfTessFactorPoints,outsideTessFactorParity[edge]);
+ }
+ else
+ {
+ StitchRegular(/*bTrapezoid*/true, DIAGONALS_MIRRORED,
+ /*baseIndexOffset: */m_NumIndices,
+ numPointsForInsideEdge[parity],
+ insideBaseOffset,outsideBaseOffset);
+ }
+ SetUsingPatchedIndices(false);
+ SetUsingPatchedIndices2(false);
+ m_NumIndices += numTriangles*3;
+ outsideEdgePointBaseOffset += numPointsForOutsideEdge[edge] - 1;
+ if( (edge == 2) && (ring == degeneratePointRing[parity]) )
+ {
+ insideEdgePointBaseOffset -= numPointsForInsideEdge[parity] - 1;
+ }
+ else
+ {
+ insideEdgePointBaseOffset += numPointsForInsideEdge[parity] - 1;
+ }
+ numPointsForOutsideEdge[edge] = numPointsForInsideEdge[parity];
+ }
+ if( startRing == ring )
+ {
+ for(edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ outsideTessFactorCtx[edge] = &processedTessFactors.insideTessFactorCtx[edge&1];
+ outsideTessFactorParity[edge] = processedTessFactors.insideTessFactorParity[edge&1];
+ }
+ }
+ }
+
+ // Triangulate center - a row of quads if odd
+ // This triangulation may be producing diagonals that are asymmetric about
+ // the center of the patch in this region.
+ if( (processedTessFactors.numPointsForInsideTessFactor[U] > processedTessFactors.numPointsForInsideTessFactor[V]) &&
+ (TESSELLATOR_PARITY_ODD == processedTessFactors.insideTessFactorParity[V] ) )
+ {
+ SetUsingPatchedIndices2(true);
+ int stripNumQuads = (((processedTessFactors.numPointsForInsideTessFactor[U]>>1) - (processedTessFactors.numPointsForInsideTessFactor[V]>>1))<<1)+
+ ((TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[U] ) ? 2 : 1);
+ m_IndexPatchContext2.baseIndexToInvert = outsideEdgePointBaseOffset + stripNumQuads + 2;
+ m_IndexPatchContext2.cornerCaseBadValue = m_IndexPatchContext2.baseIndexToInvert;
+ m_IndexPatchContext2.cornerCaseReplacementValue = outsideEdgePointBaseOffset;
+ m_IndexPatchContext2.indexInversionEndPoint = m_IndexPatchContext2.baseIndexToInvert +
+ m_IndexPatchContext2.baseIndexToInvert + stripNumQuads;
+ StitchRegular(/*bTrapezoid*/false,DIAGONALS_INSIDE_TO_OUTSIDE,
+ /*baseIndexOffset: */m_NumIndices, /*numInsideEdgePoints:*/stripNumQuads+1,
+ /*insideEdgePointBaseOffset*/m_IndexPatchContext2.baseIndexToInvert,
+ outsideEdgePointBaseOffset+1);
+ SetUsingPatchedIndices2(false);
+ m_NumIndices += stripNumQuads*6;
+ }
+ else if((processedTessFactors.numPointsForInsideTessFactor[V] >= processedTessFactors.numPointsForInsideTessFactor[U]) &&
+ (TESSELLATOR_PARITY_ODD == processedTessFactors.insideTessFactorParity[U]) )
+ {
+ SetUsingPatchedIndices2(true);
+ int stripNumQuads = (((processedTessFactors.numPointsForInsideTessFactor[V]>>1) - (processedTessFactors.numPointsForInsideTessFactor[U]>>1))<<1)+
+ ((TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[V] ) ? 2 : 1);
+ m_IndexPatchContext2.baseIndexToInvert = outsideEdgePointBaseOffset + stripNumQuads + 1;
+ m_IndexPatchContext2.cornerCaseBadValue = -1; // unused
+ m_IndexPatchContext2.indexInversionEndPoint = m_IndexPatchContext2.baseIndexToInvert +
+ m_IndexPatchContext2.baseIndexToInvert + stripNumQuads;
+ DIAGONALS diag = (TESSELLATOR_PARITY_EVEN == processedTessFactors.insideTessFactorParity[V]) ?
+ DIAGONALS_INSIDE_TO_OUTSIDE : DIAGONALS_INSIDE_TO_OUTSIDE_EXCEPT_MIDDLE;
+ StitchRegular(/*bTrapezoid*/false,diag,
+ /*baseIndexOffset: */m_NumIndices, /*numInsideEdgePoints:*/stripNumQuads+1,
+ /*insideEdgePointBaseOffset*/m_IndexPatchContext2.baseIndexToInvert,
+ outsideEdgePointBaseOffset);
+ SetUsingPatchedIndices2(false);
+ m_NumIndices += stripNumQuads*6;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TessellateTriDomain
+// User calls this
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TessellateTriDomain( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Weq0,
+ float insideTessFactor )
+{
+ PROCESSED_TESS_FACTORS_TRI processedTessFactors;
+ TriProcessTessFactors(tessFactor_Ueq0,tessFactor_Veq0,tessFactor_Weq0,insideTessFactor,processedTessFactors);
+
+ if( processedTessFactors.bPatchCulled )
+ {
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+ return;
+ }
+ else if( processedTessFactors.bJustDoMinimumTessFactor )
+ {
+ DefinePoint(/*U*/0,/*V*/FXP_ONE,/*pointStorageOffset*/0); //V=1 (beginning of Ueq0 edge VW)
+ DefinePoint(/*U*/0,/*V*/0,/*pointStorageOffset*/1); //W=1 (beginning of Veq0 edge WU)
+ DefinePoint(/*U*/FXP_ONE,/*V*/0,/*pointStorageOffset*/2); //U=1 (beginning of Weq0 edge UV)
+ m_NumPoints = 3;
+
+ switch(m_outputPrimitive)
+ {
+ case D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CW:
+ case D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CCW:
+ // function orients them CCW if needed
+ DefineClockwiseTriangle(0,1,2,/*indexStorageBaseOffset*/m_NumIndices);
+ m_NumIndices = 3;
+ break;
+ case D3D11_TESSELLATOR_OUTPUT_POINT:
+ DumpAllPoints();
+ break;
+ case D3D11_TESSELLATOR_OUTPUT_LINE:
+ DumpAllPointsAsInOrderLineList();
+ break;
+ }
+ return;
+ }
+
+ TriGeneratePoints(processedTessFactors);
+
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_POINT )
+ {
+ DumpAllPoints();
+ return;
+ }
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_LINE )
+ {
+ DumpAllPointsAsInOrderLineList();
+ return;
+ }
+
+ TriGenerateConnectivity(processedTessFactors); // can be done in parallel to TriGeneratePoints()
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TriProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TriProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Weq0,
+ float insideTessFactor, PROCESSED_TESS_FACTORS_TRI& processedTessFactors )
+{
+ // Is the patch culled?
+ if( !(tessFactor_Ueq0 > 0) || // NaN will pass
+ !(tessFactor_Veq0 > 0) ||
+ !(tessFactor_Weq0 > 0) )
+ {
+ processedTessFactors.bPatchCulled = true;
+ return;
+ }
+ else
+ {
+ processedTessFactors.bPatchCulled = false;
+ }
+
+ // Clamp edge TessFactors
+ float lowerBound = 0.0, upperBound = 0.0;
+ switch(m_originalPartitioning)
+ {
+ case D3D11_TESSELLATOR_PARTITIONING_INTEGER:
+ case D3D11_TESSELLATOR_PARTITIONING_POW2: // don�t care about pow2 distinction for validation, just treat as integer
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN:
+ lowerBound = D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD:
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR;
+ break;
+ }
+
+ tessFactor_Ueq0 = fmin( upperBound, fmax( lowerBound, tessFactor_Ueq0 ) );
+ tessFactor_Veq0 = fmin( upperBound, fmax( lowerBound, tessFactor_Veq0 ) );
+ tessFactor_Weq0 = fmin( upperBound, fmax( lowerBound, tessFactor_Weq0 ) );
+
+ if( HWIntegerPartitioning()) // pow2 or integer, round to next int (hw doesn't care about pow2 distinction)
+ {
+ tessFactor_Ueq0 = ceil(tessFactor_Ueq0);
+ tessFactor_Veq0 = ceil(tessFactor_Veq0);
+ tessFactor_Weq0 = ceil(tessFactor_Weq0);
+ }
+
+ // Clamp inside TessFactors
+ if(D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD == m_originalPartitioning)
+ {
+ if( (tessFactor_Ueq0 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (tessFactor_Veq0 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON) ||
+ (tessFactor_Weq0 > MIN_ODD_TESSFACTOR_PLUS_HALF_EPSILON))
+ // Don't need the same check for insideTessFactor for tri patches,
+ // since there is only one insideTessFactor, as opposed to quad
+ // patches which have 2 insideTessFactors.
+ {
+ // Force picture frame
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR + EPSILON;
+ }
+ }
+
+ insideTessFactor = fmin( upperBound, fmax( lowerBound, insideTessFactor ) );
+ // Note the above clamps map NaN to lowerBound
+
+ if( HWIntegerPartitioning()) // pow2 or integer, round to next int (hw doesn't care about pow2 distinction)
+ {
+ insideTessFactor = ceil(insideTessFactor);
+ }
+
+ // Reset our vertex and index buffers. We have enough storage for the max tessFactor.
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+
+ // Process tessFactors
+ float outsideTessFactor[TRI_EDGES] = {tessFactor_Ueq0, tessFactor_Veq0, tessFactor_Weq0};
+ int edge;
+ if( HWIntegerPartitioning() )
+ {
+ for( edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ int edgeEven = isEven(outsideTessFactor[edge]);
+ processedTessFactors.outsideTessFactorParity[edge] = edgeEven ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ processedTessFactors.insideTessFactorParity = (isEven(insideTessFactor) || (FLOAT_ONE == insideTessFactor))
+ ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ else
+ {
+ for( edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ processedTessFactors.outsideTessFactorParity[edge] = m_originalParity;
+ }
+ processedTessFactors.insideTessFactorParity = m_originalParity;
+ }
+
+ // Save fixed point TessFactors
+ for( edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ processedTessFactors.outsideTessFactor[edge] = floatToFixed(outsideTessFactor[edge]);
+ }
+ processedTessFactors.insideTessFactor = floatToFixed(insideTessFactor);
+
+ if( HWIntegerPartitioning() || Odd() )
+ {
+ // Special case if all TessFactors are 1
+ if( (FXP_ONE == processedTessFactors.insideTessFactor) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Ueq0]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Veq0]) &&
+ (FXP_ONE == processedTessFactors.outsideTessFactor[Weq0]) )
+ {
+ processedTessFactors.bJustDoMinimumTessFactor = true;
+ return;
+ }
+ }
+ processedTessFactors.bJustDoMinimumTessFactor = false;
+
+ // Compute per-TessFactor metadata
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ ComputeTessFactorContext(processedTessFactors.outsideTessFactor[edge], processedTessFactors.outsideTessFactorCtx[edge]);
+ }
+ SetTessellationParity(processedTessFactors.insideTessFactorParity);
+ ComputeTessFactorContext(processedTessFactors.insideTessFactor, processedTessFactors.insideTessFactorCtx);
+
+ // Compute some initial data.
+
+ // outside edge offsets and storage
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ processedTessFactors.numPointsForOutsideEdge[edge] = NumPointsForTessFactor(processedTessFactors.outsideTessFactor[edge]);
+ m_NumPoints += processedTessFactors.numPointsForOutsideEdge[edge];
+ }
+ m_NumPoints -= 3;
+
+ // inside edge offsets
+ SetTessellationParity(processedTessFactors.insideTessFactorParity);
+ processedTessFactors.numPointsForInsideTessFactor = NumPointsForTessFactor(processedTessFactors.insideTessFactor);
+ {
+ int pointCountMin = Odd() ? 4 : 3;
+ // max() allows degenerate transition regions when inside TessFactor == 1
+ processedTessFactors.numPointsForInsideTessFactor = max(pointCountMin,processedTessFactors.numPointsForInsideTessFactor);
+ }
+
+ processedTessFactors.insideEdgePointBaseOffset = m_NumPoints;
+
+ // inside storage, including interior edges above
+ {
+ int numInteriorRings = (processedTessFactors.numPointsForInsideTessFactor >> 1) - 1;
+ int numInteriorPoints;
+ if( Odd() )
+ {
+ numInteriorPoints = TRI_EDGES*(numInteriorRings*(numInteriorRings+1) - numInteriorRings);
+ }
+ else
+ {
+ numInteriorPoints = TRI_EDGES*(numInteriorRings*(numInteriorRings+1)) + 1;
+ }
+ m_NumPoints += numInteriorPoints;
+ }
+
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TriGeneratePoints
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TriGeneratePoints( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors )
+{
+ // Generate exterior ring edge points, clockwise starting from point V (VW, the U==0 edge)
+ int pointOffset = 0;
+ int edge;
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ int parity = edge&0x1;
+ int startPoint = 0;
+ int endPoint = processedTessFactors.numPointsForOutsideEdge[edge] - 1;
+ for(int p = startPoint; p < endPoint; p++, pointOffset++) // don't include end, since next edge starts with it.
+ {
+ FXP fxpParam;
+ int q = (parity) ? p : endPoint - p; // whether to reverse point order given we are defining V or U (W implicit):
+ // edge0, VW, has V decreasing, so reverse 1D points below
+ // edge1, WU, has U increasing, so don't reverse 1D points below
+ // edge2, UV, has U decreasing, so reverse 1D points below
+ SetTessellationParity(processedTessFactors.outsideTessFactorParity[edge]);
+ PlacePointIn1D(processedTessFactors.outsideTessFactorCtx[edge],q,fxpParam);
+ if( edge == 0 )
+ {
+ DefinePoint(/*U*/0,
+ /*V*/fxpParam,
+ /*pointStorageOffset*/pointOffset);
+ }
+ else
+ {
+ DefinePoint(/*U*/fxpParam,
+ /*V*/(edge == 2) ? FXP_ONE - fxpParam : 0,
+ /*pointStorageOffset*/pointOffset);
+ }
+ }
+ }
+
+ // Generate interior ring points, clockwise spiralling in
+ SetTessellationParity(processedTessFactors.insideTessFactorParity);
+ static const int startRing = 1;
+ int numRings = (processedTessFactors.numPointsForInsideTessFactor >> 1);
+ for(int ring = startRing; ring < numRings; ring++)
+ {
+ int startPoint = ring;
+ int endPoint = processedTessFactors.numPointsForInsideTessFactor - 1 - startPoint;
+
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ int parity = edge&0x1;
+ int perpendicularAxisPoint = startPoint;
+ FXP fxpPerpParam;
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx,perpendicularAxisPoint,fxpPerpParam);
+ fxpPerpParam *= FXP_TWO_THIRDS; // Map location to the right size in barycentric space.
+ // I (amarp) can draw a picture to explain.
+ // We know this fixed point math won't over/underflow
+ fxpPerpParam = (fxpPerpParam+FXP_ONE_HALF/*round*/)>>FXP_FRACTION_BITS; // get back to n.16
+ for(int p = startPoint; p < endPoint; p++, pointOffset++) // don't include end: next edge starts with it.
+ {
+ FXP fxpParam;
+ int q = (parity) ? p : endPoint - (p - startPoint); // whether to reverse point given we are defining V or U (W implicit):
+ // edge0, VW, has V decreasing, so reverse 1D points below
+ // edge1, WU, has U increasing, so don't reverse 1D points below
+ // edge2, UV, has U decreasing, so reverse 1D points below
+ PlacePointIn1D(processedTessFactors.insideTessFactorCtx,q,fxpParam);
+ // edge0 VW, has perpendicular parameter U constant
+ // edge1 WU, has perpendicular parameter V constant
+ // edge2 UV, has perpendicular parameter W constant
+ const unsigned int deriv = 2; // reciprocal is the rate of change of edge-parallel parameters as they are pushed into the triangle
+ switch(edge)
+ {
+ case 0:
+ DefinePoint(/*U*/fxpPerpParam,
+ /*V*/fxpParam - (fxpPerpParam+1/*round*/)/deriv, // we know this fixed point math won't over/underflow
+ /*pointStorageOffset*/pointOffset);
+ break;
+ case 1:
+ DefinePoint(/*U*/fxpParam - (fxpPerpParam+1/*round*/)/deriv,// we know this fixed point math won't over/underflow
+ /*V*/fxpPerpParam,
+ /*pointStorageOffset*/pointOffset);
+ break;
+ case 2:
+ DefinePoint(/*U*/fxpParam - (fxpPerpParam+1/*round*/)/deriv,// we know this fixed point math won't over/underflow
+ /*V*/FXP_ONE - (fxpParam - (fxpPerpParam+1/*round*/)/deriv) - fxpPerpParam,// we know this fixed point math won't over/underflow
+ /*pointStorageOffset*/pointOffset);
+ break;
+ }
+ }
+ }
+ }
+ if( !Odd() )
+ {
+ // Last point is the point at the center.
+ DefinePoint(/*U*/FXP_ONE_THIRD,
+ /*V*/FXP_ONE_THIRD,
+ /*pointStorageOffset*/pointOffset);
+ }
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TriGenerateConnectivity
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TriGenerateConnectivity( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors )
+{
+ // Generate primitives for all the concentric rings, one side at a time for each ring
+ static const int startRing = 1;
+ int numRings = ((processedTessFactors.numPointsForInsideTessFactor+1) >> 1); // +1 is so even tess includes the center point, which we want to now
+ const TESS_FACTOR_CONTEXT* outsideTessFactorCtx[TRI_EDGES] = {&processedTessFactors.outsideTessFactorCtx[Ueq0],
+ &processedTessFactors.outsideTessFactorCtx[Veq0],
+ &processedTessFactors.outsideTessFactorCtx[Weq0]};
+ TESSELLATOR_PARITY outsideTessFactorParity[TRI_EDGES] = {processedTessFactors.outsideTessFactorParity[Ueq0],
+ processedTessFactors.outsideTessFactorParity[Veq0],
+ processedTessFactors.outsideTessFactorParity[Weq0]};
+ int numPointsForOutsideEdge[TRI_EDGES] = {processedTessFactors.numPointsForOutsideEdge[Ueq0],
+ processedTessFactors.numPointsForOutsideEdge[Veq0],
+ processedTessFactors.numPointsForOutsideEdge[Weq0]};
+
+ int insideEdgePointBaseOffset = processedTessFactors.insideEdgePointBaseOffset;
+ int outsideEdgePointBaseOffset = 0;
+ int edge;
+ for(int ring = startRing; ring < numRings; ring++)
+ {
+ int numPointsForInsideEdge = processedTessFactors.numPointsForInsideTessFactor - 2*ring;
+ int edge0InsidePointBaseOffset = insideEdgePointBaseOffset;
+ int edge0OutsidePointBaseOffset = outsideEdgePointBaseOffset;
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ int numTriangles = numPointsForInsideEdge + numPointsForOutsideEdge[edge] - 2;
+
+ int insideBaseOffset;
+ int outsideBaseOffset;
+ if( edge == 2 )
+ {
+ m_IndexPatchContext.insidePointIndexDeltaToRealValue = insideEdgePointBaseOffset;
+ m_IndexPatchContext.insidePointIndexBadValue = numPointsForInsideEdge - 1;
+ m_IndexPatchContext.insidePointIndexReplacementValue = edge0InsidePointBaseOffset;
+ m_IndexPatchContext.outsidePointIndexPatchBase = m_IndexPatchContext.insidePointIndexBadValue+1; // past inside patched index range
+ m_IndexPatchContext.outsidePointIndexDeltaToRealValue = outsideEdgePointBaseOffset
+ - m_IndexPatchContext.outsidePointIndexPatchBase;
+ m_IndexPatchContext.outsidePointIndexBadValue = m_IndexPatchContext.outsidePointIndexPatchBase
+ + numPointsForOutsideEdge[edge] - 1;
+ m_IndexPatchContext.outsidePointIndexReplacementValue = edge0OutsidePointBaseOffset;
+ SetUsingPatchedIndices(true);
+ insideBaseOffset = 0;
+ outsideBaseOffset = m_IndexPatchContext.outsidePointIndexPatchBase;
+ }
+ else
+ {
+ insideBaseOffset = insideEdgePointBaseOffset;
+ outsideBaseOffset = outsideEdgePointBaseOffset;
+ }
+ if( ring == startRing )
+ {
+ StitchTransition(/*baseIndexOffset: */m_NumIndices,
+ insideBaseOffset,processedTessFactors.insideTessFactorCtx.numHalfTessFactorPoints,processedTessFactors.insideTessFactorParity,
+ outsideBaseOffset,outsideTessFactorCtx[edge]->numHalfTessFactorPoints,outsideTessFactorParity[edge]);
+ }
+ else
+ {
+ StitchRegular(/*bTrapezoid*/true, DIAGONALS_MIRRORED,
+ /*baseIndexOffset: */m_NumIndices,
+ numPointsForInsideEdge,
+ insideBaseOffset,outsideBaseOffset);
+ }
+ if( 2 == edge )
+ {
+ SetUsingPatchedIndices(false);
+ }
+ m_NumIndices += numTriangles*3;
+ outsideEdgePointBaseOffset += numPointsForOutsideEdge[edge] - 1;
+ insideEdgePointBaseOffset += numPointsForInsideEdge - 1;
+ numPointsForOutsideEdge[edge] = numPointsForInsideEdge;
+ }
+ if( startRing == ring )
+ {
+ for(edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ outsideTessFactorCtx[edge] = &processedTessFactors.insideTessFactorCtx;
+ outsideTessFactorParity[edge] = processedTessFactors.insideTessFactorParity;
+ }
+ }
+ }
+ if( Odd() )
+ {
+ // Triangulate center (a single triangle)
+ DefineClockwiseTriangle(outsideEdgePointBaseOffset, outsideEdgePointBaseOffset+1, outsideEdgePointBaseOffset+2,
+ m_NumIndices);
+ m_NumIndices += 3;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::TessellateIsoLineDomain
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::TessellateIsoLineDomain( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail )
+{
+ PROCESSED_TESS_FACTORS_ISOLINE processedTessFactors;
+ IsoLineProcessTessFactors(TessFactor_V_LineDensity,TessFactor_U_LineDetail,processedTessFactors);
+ if( processedTessFactors.bPatchCulled )
+ {
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+ return;
+ }
+ IsoLineGeneratePoints(processedTessFactors);
+ IsoLineGenerateConnectivity(processedTessFactors); // can be done in parallel to IsoLineGeneratePoints
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::IsoLineProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::IsoLineProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail,
+ PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors )
+{
+ // Is the patch culled?
+ if( !(TessFactor_V_LineDensity > 0) || // NaN will pass
+ !(TessFactor_U_LineDetail > 0) )
+ {
+ processedTessFactors.bPatchCulled = true;
+ return;
+ }
+ else
+ {
+ processedTessFactors.bPatchCulled = false;
+ }
+
+ // Clamp edge TessFactors
+ float lowerBound = 0.0, upperBound = 0.0;
+ switch(m_originalPartitioning)
+ {
+ case D3D11_TESSELLATOR_PARTITIONING_INTEGER:
+ case D3D11_TESSELLATOR_PARTITIONING_POW2: // don�t care about pow2 distinction for validation, just treat as integer
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN:
+ lowerBound = D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR;
+ break;
+
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD:
+ lowerBound = D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR;
+ upperBound = D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR;
+ break;
+ }
+
+ TessFactor_V_LineDensity = fmin( D3D11_TESSELLATOR_MAX_ISOLINE_DENSITY_TESSELLATION_FACTOR,
+ fmax( D3D11_TESSELLATOR_MIN_ISOLINE_DENSITY_TESSELLATION_FACTOR, TessFactor_V_LineDensity ) );
+ TessFactor_U_LineDetail = fmin( upperBound, fmax( lowerBound, TessFactor_U_LineDetail ) );
+
+ // Reset our vertex and index buffers. We have enough storage for the max tessFactor.
+ m_NumPoints = 0;
+ m_NumIndices = 0;
+
+ // Process tessFactors
+ if( HWIntegerPartitioning() )
+ {
+ TessFactor_U_LineDetail = ceil(TessFactor_U_LineDetail);
+ processedTessFactors.lineDetailParity = isEven(TessFactor_U_LineDetail) ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ else
+ {
+ processedTessFactors.lineDetailParity = m_originalParity;
+ }
+
+ FXP fxpTessFactor_U_LineDetail = floatToFixed(TessFactor_U_LineDetail);
+
+ SetTessellationParity(processedTessFactors.lineDetailParity);
+
+ ComputeTessFactorContext(fxpTessFactor_U_LineDetail, processedTessFactors.lineDetailTessFactorCtx);
+ processedTessFactors.numPointsPerLine = NumPointsForTessFactor(fxpTessFactor_U_LineDetail);
+
+ OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING_INTEGER);
+
+ TessFactor_V_LineDensity = ceil(TessFactor_V_LineDensity);
+ processedTessFactors.lineDensityParity = isEven(TessFactor_V_LineDensity) ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ SetTessellationParity(processedTessFactors.lineDensityParity);
+ FXP fxpTessFactor_V_LineDensity = floatToFixed(TessFactor_V_LineDensity);
+ ComputeTessFactorContext(fxpTessFactor_V_LineDensity, processedTessFactors.lineDensityTessFactorCtx);
+
+ processedTessFactors.numLines = NumPointsForTessFactor(fxpTessFactor_V_LineDensity) - 1; // don't draw last line at V == 1.
+
+ RestorePartitioning();
+
+ // Compute some initial data.
+
+ // outside edge offsets
+ m_NumPoints = processedTessFactors.numPointsPerLine * processedTessFactors.numLines;
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_POINT )
+ {
+ m_NumIndices = m_NumPoints;
+ }
+ else // line
+ {
+ m_NumIndices = processedTessFactors.numLines*(processedTessFactors.numPointsPerLine-1)*2;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::IsoLineGeneratePoints
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::IsoLineGeneratePoints( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors )
+{
+ int line, pointOffset;
+ for(line = 0, pointOffset = 0; line < processedTessFactors.numLines; line++)
+ {
+ for(int point = 0; point < processedTessFactors.numPointsPerLine; point++)
+ {
+ FXP fxpU,fxpV;
+ SetTessellationParity(processedTessFactors.lineDensityParity);
+ PlacePointIn1D(processedTessFactors.lineDensityTessFactorCtx,line,fxpV);
+
+ SetTessellationParity(processedTessFactors.lineDetailParity);
+ PlacePointIn1D(processedTessFactors.lineDetailTessFactorCtx,point,fxpU);
+
+ DefinePoint(fxpU,fxpV,pointOffset++);
+ }
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::IsoLineGenerateConnectivity
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::IsoLineGenerateConnectivity( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors )
+{
+ int line, pointOffset, indexOffset;
+ if( m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_POINT )
+ {
+ for(line = 0, pointOffset = 0, indexOffset = 0; line < processedTessFactors.numLines; line++)
+ {
+ for(int point = 0; point < processedTessFactors.numPointsPerLine; point++)
+ {
+ DefineIndex(pointOffset++,indexOffset++);
+ }
+ }
+ }
+ else // line
+ {
+ for(line = 0, pointOffset = 0, indexOffset = 0; line < processedTessFactors.numLines; line++)
+ {
+ for(int point = 0; point < processedTessFactors.numPointsPerLine; point++)
+ {
+ if( point > 0 )
+ {
+ DefineIndex(pointOffset-1,indexOffset++);
+ DefineIndex(pointOffset,indexOffset++);
+ }
+ pointOffset++;
+ }
+ }
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::GetPointCount
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+int CHWTessellator::GetPointCount()
+{
+ return m_NumPoints;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::GetIndexCount()
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+int CHWTessellator::GetIndexCount()
+{
+ return m_NumIndices;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::GetPoints()
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+DOMAIN_POINT* CHWTessellator::GetPoints()
+{
+ return m_Point;
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::GetIndices()
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+int* CHWTessellator::GetIndices()
+{
+ return m_Index;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::DefinePoint()
+//---------------------------------------------------------------------------------------------------------------------------------
+int CHWTessellator::DefinePoint(FXP fxpU, FXP fxpV, int pointStorageOffset)
+{
+// WCHAR foo[80];
+// StringCchPrintf(foo,80,L"off:%d, uv=(%f,%f)\n",pointStorageOffset,fixedToFloat(fxpU),fixedToFloat(fxpV));
+// OutputDebugString(foo);
+ m_Point[pointStorageOffset].u = fixedToFloat(fxpU);
+ m_Point[pointStorageOffset].v = fixedToFloat(fxpV);
+ return pointStorageOffset;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::DefineIndex()
+//--------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::DefineIndex(int index, int indexStorageOffset)
+{
+ index = PatchIndexValue(index);
+// WCHAR foo[80];
+// StringCchPrintf(foo,80,L"off:%d, idx=%d, uv=(%f,%f)\n",indexStorageOffset,index,m_Point[index].u,m_Point[index].v);
+// OutputDebugString(foo);
+ m_Index[indexStorageOffset] = index;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::DefineClockwiseTriangle()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::DefineClockwiseTriangle(int index0, int index1, int index2, int indexStorageBaseOffset)
+{
+ // inputs a clockwise triangle, stores a CW or CCW triangle depending on the state
+ DefineIndex(index0,indexStorageBaseOffset);
+ bool bWantClockwise = (m_outputPrimitive == D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CW) ? true : false;
+ if( bWantClockwise )
+ {
+ DefineIndex(index1,indexStorageBaseOffset+1);
+ DefineIndex(index2,indexStorageBaseOffset+2);
+ }
+ else
+ {
+ DefineIndex(index2,indexStorageBaseOffset+1);
+ DefineIndex(index1,indexStorageBaseOffset+2);
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::DumpAllPoints()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::DumpAllPoints()
+{
+ for( int p = 0; p < m_NumPoints; p++ )
+ {
+ DefineIndex(p,m_NumIndices++);
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::DumpAllPointsAsInOrderLineList()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::DumpAllPointsAsInOrderLineList()
+{
+ for( int p = 1; p < m_NumPoints; p++ )
+ {
+ DefineIndex(p-1,m_NumIndices++);
+ DefineIndex(p,m_NumIndices++);
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// RemoveMSB
+//---------------------------------------------------------------------------------------------------------------------------------
+int RemoveMSB(int val)
+{
+ int check;
+ if( val <= 0x0000ffff ) { check = ( val <= 0x000000ff ) ? 0x00000080 : 0x00008000; }
+ else { check = ( val <= 0x00ffffff ) ? 0x00800000 : 0x80000000; }
+ for( int i = 0; i < 8; i++, check >>= 1 ) { if( val & check ) return (val & ~check); }
+ return 0;
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// GetMSB
+//---------------------------------------------------------------------------------------------------------------------------------
+int GetMSB(int val)
+{
+ int check;
+ if( val <= 0x0000ffff ) { check = ( val <= 0x000000ff ) ? 0x00000080 : 0x00008000; }
+ else { check = ( val <= 0x00ffffff ) ? 0x00800000 : 0x80000000; }
+ for( int i = 0; i < 8; i++, check >>= 1 ) { if( val & check ) return check; }
+ return 0;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::CleanseParameter()
+//---------------------------------------------------------------------------------------------------------------------------------
+/* NOTHING TO DO FOR FIXED POINT ARITHMETIC!
+void CHWTessellator::CleanseParameter(float& parameter)
+{
+ // Clean up [0..1] parameter to guarantee that (1 - (1 - parameter)) == parameter.
+ parameter = 1.0f - parameter;
+ parameter = 1.0f - parameter;
+
+}
+*/
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::NumPointsForTessFactor()
+//---------------------------------------------------------------------------------------------------------------------------------
+int CHWTessellator::NumPointsForTessFactor( FXP fxpTessFactor )
+{
+ int numPoints;
+ if( Odd() )
+ {
+ numPoints = (fxpCeil(FXP_ONE_HALF + (fxpTessFactor+1/*round*/)/2)*2)>>FXP_FRACTION_BITS;
+ }
+ else
+ {
+ numPoints = ((fxpCeil((fxpTessFactor+1/*round*/)/2)*2)>>FXP_FRACTION_BITS)+1;
+ }
+ return numPoints;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::ComputeTessFactorContext()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::ComputeTessFactorContext( FXP fxpTessFactor, TESS_FACTOR_CONTEXT& TessFactorCtx )
+{
+ FXP fxpHalfTessFactor = (fxpTessFactor+1/*round*/)/2;
+ if( Odd() || (fxpHalfTessFactor == FXP_ONE_HALF)) // fxpHalfTessFactor == 1/2 if TessFactor is 1, but we're pretending we are even.
+ {
+ fxpHalfTessFactor += FXP_ONE_HALF;
+ }
+ FXP fxpFloorHalfTessFactor = fxpFloor(fxpHalfTessFactor);
+ FXP fxpCeilHalfTessFactor = fxpCeil(fxpHalfTessFactor);
+ TessFactorCtx.fxpHalfTessFactorFraction = fxpHalfTessFactor - fxpFloorHalfTessFactor;
+ //CleanseParameter(TessFactorCtx.fxpHalfTessFactorFraction);
+ TessFactorCtx.numHalfTessFactorPoints = (fxpCeilHalfTessFactor>>FXP_FRACTION_BITS); // for EVEN, we don't include the point always fixed at the midpoint of the TessFactor
+ if( fxpCeilHalfTessFactor == fxpFloorHalfTessFactor )
+ {
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = /*pick value to cause this to be ignored*/ TessFactorCtx.numHalfTessFactorPoints+1;
+ }
+ else if( Odd() )
+ {
+ if( fxpFloorHalfTessFactor == FXP_ONE )
+ {
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = 0;
+ }
+ else
+ {
+#ifdef ALLOW_XBOX_360_COMPARISON
+ if( m_bXBox360Mode )
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = TessFactorCtx.numHalfTessFactorPoints-2;
+ else
+#endif
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = (RemoveMSB((fxpFloorHalfTessFactor>>FXP_FRACTION_BITS)-1)<<1) + 1;
+ }
+ }
+ else
+ {
+#ifdef ALLOW_XBOX_360_COMPARISON
+ if( m_bXBox360Mode )
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = TessFactorCtx.numHalfTessFactorPoints-1;
+ else
+#endif
+ TessFactorCtx.splitPointOnFloorHalfTessFactor = (RemoveMSB(fxpFloorHalfTessFactor>>FXP_FRACTION_BITS)<<1) + 1;
+ }
+ int numFloorSegments = (fxpFloorHalfTessFactor * 2)>>FXP_FRACTION_BITS;
+ int numCeilSegments = (fxpCeilHalfTessFactor * 2)>>FXP_FRACTION_BITS;
+ if( Odd() )
+ {
+ numFloorSegments -= 1;
+ numCeilSegments -= 1;
+ }
+ TessFactorCtx.fxpInvNumSegmentsOnFloorTessFactor = s_fixedReciprocal[numFloorSegments];
+ TessFactorCtx.fxpInvNumSegmentsOnCeilTessFactor = s_fixedReciprocal[numCeilSegments];
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::PlacePointIn1D()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::PlacePointIn1D( const TESS_FACTOR_CONTEXT& TessFactorCtx, int point, FXP& fxpLocation )
+{
+ bool bFlip;
+ if( point >= TessFactorCtx.numHalfTessFactorPoints )
+ {
+ point = (TessFactorCtx.numHalfTessFactorPoints << 1) - point;
+ if( Odd() )
+ {
+ point -= 1;
+ }
+ bFlip = true;
+ }
+ else
+ {
+ bFlip = false;
+ }
+ if( point == TessFactorCtx.numHalfTessFactorPoints )
+ {
+ fxpLocation = FXP_ONE_HALF; // special casing middle since 16 bit fixed math below can't reproduce 0.5 exactly
+ return;
+ }
+ unsigned int indexOnCeilHalfTessFactor = point;
+ unsigned int indexOnFloorHalfTessFactor = indexOnCeilHalfTessFactor;
+ if( point > TessFactorCtx.splitPointOnFloorHalfTessFactor )
+ {
+ indexOnFloorHalfTessFactor -= 1;
+ }
+ // For the fixed point multiplies below, we know the results are <= 16 bits because
+ // the locations on the halfTessFactor are <= half the number of segments for the total TessFactor.
+ // So a number divided by a number that is at least twice as big will give
+ // a result no bigger than 0.5 (which in fixed point is 16 bits in our case)
+ FXP fxpLocationOnFloorHalfTessFactor = indexOnFloorHalfTessFactor * TessFactorCtx.fxpInvNumSegmentsOnFloorTessFactor;
+ FXP fxpLocationOnCeilHalfTessFactor = indexOnCeilHalfTessFactor * TessFactorCtx.fxpInvNumSegmentsOnCeilTessFactor;
+
+ // Since we know the numbers calculated above are <= fixed point 0.5, and the equation
+ // below is just lerping between two values <= fixed point 0.5 (0x00008000), then we know
+ // that the final result before shifting by 16 bits is no larger than 0x80000000. Once we
+ // shift that down by 16, we get the result of lerping 2 numbers <= 0.5, which is obviously
+ // at most 0.5 (0x00008000)
+ fxpLocation = fxpLocationOnFloorHalfTessFactor * (FXP_ONE - TessFactorCtx.fxpHalfTessFactorFraction) +
+ fxpLocationOnCeilHalfTessFactor * (TessFactorCtx.fxpHalfTessFactorFraction);
+ fxpLocation = (fxpLocation + FXP_ONE_HALF/*round*/) >> FXP_FRACTION_BITS; // get back to n.16
+ /* Commenting out floating point version. Note the parameter cleansing it does is not needed in fixed point.
+ if( bFlip )
+ location = 1.0f - location; // complement produces cleansed result.
+ else
+ CleanseParameter(location);
+ */
+ if( bFlip )
+ {
+ fxpLocation = FXP_ONE - fxpLocation;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::StitchRegular
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::StitchRegular(bool bTrapezoid,DIAGONALS diagonals,
+ int baseIndexOffset, int numInsideEdgePoints,
+ int insideEdgePointBaseOffset, int outsideEdgePointBaseOffset)
+{
+ int insidePoint = insideEdgePointBaseOffset;
+ int outsidePoint = outsideEdgePointBaseOffset;
+ if( bTrapezoid )
+ {
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3; outsidePoint++;
+ }
+ int p;
+ switch( diagonals )
+ {
+ case DIAGONALS_INSIDE_TO_OUTSIDE:
+ // Diagonals pointing from inside edge forward towards outside edge
+ for( p = 0; p < numInsideEdgePoints-1; p++ )
+ {
+ DefineClockwiseTriangle(insidePoint,outsidePoint,outsidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+
+ DefineClockwiseTriangle(insidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++;
+ }
+ break;
+ case DIAGONALS_INSIDE_TO_OUTSIDE_EXCEPT_MIDDLE: // Assumes ODD tessellation
+ // Diagonals pointing from outside edge forward towards inside edge
+
+ // First half
+ for( p = 0; p < numInsideEdgePoints/2-1; p++ )
+ {
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(insidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++;
+ }
+
+ // Middle
+ DefineClockwiseTriangle(outsidePoint,insidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++; p+=2;
+
+ // Second half
+ for( ; p < numInsideEdgePoints; p++ )
+ {
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(insidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++;
+ }
+ break;
+ case DIAGONALS_MIRRORED:
+ // First half, diagonals pointing from outside of outside edge to inside of inside edge
+ for( p = 0; p < numInsideEdgePoints/2; p++ )
+ {
+ DefineClockwiseTriangle(outsidePoint,insidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++;
+ }
+ // Second half, diagonals pointing from inside of inside edge to outside of outside edge
+ for( ; p < numInsideEdgePoints-1; p++ )
+ {
+ DefineClockwiseTriangle(insidePoint,outsidePoint,outsidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(insidePoint,outsidePoint+1,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++; outsidePoint++;
+ }
+ break;
+ }
+ if( bTrapezoid )
+ {
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::StitchTransition()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHWTessellator::StitchTransition(int baseIndexOffset,
+ int insideEdgePointBaseOffset, int insideNumHalfTessFactorPoints,
+ TESSELLATOR_PARITY insideEdgeTessFactorParity,
+ int outsideEdgePointBaseOffset, int outsideNumHalfTessFactorPoints,
+ TESSELLATOR_PARITY outsideTessFactorParity
+)
+{
+
+#ifdef ALLOW_XBOX_360_COMPARISON
+ // Tables to assist in the stitching of 2 rows of points having arbitrary TessFactors.
+ // The stitching order is governed by Ruler Function vertex split ordering (see external documentation).
+ //
+ // The contents of the finalPointPositionTable are where vertex i [0..32] ends up on the half-edge
+ // at the max tessellation amount given ruler-function split order.
+ // Recall the other half of an edge is mirrored, so we only need to deal with one half.
+ // This table is used to decide when to advance a point on the interior or exterior.
+ // It supports odd TessFactor up to 65 and even TessFactor up to 64.
+ static const int _finalPointPositionTable[33] =
+ { 0, 32, 16, 8, 17, 4, 18, 9, 19, 2, 20, 10, 21, 5, 22, 11, 23,
+ 1, 24, 12, 25, 6, 26, 13, 27, 3, 28, 14, 29, 7, 30, 15, 31 };
+ // The loopStart and loopEnd tables below just provide optimal loop bounds for the
+ // stitching algorithm further below, for any given halfTssFactor.
+ // There is probably a better way to encode this...
+
+ // loopStart[halfTessFactor] encodes the FIRST entry other that [0] in finalPointPositionTable[] above which is
+ // less than halfTessFactor. Exceptions are entry 0 and 1, which are set up to skip the loop.
+ static const int _loopStart[33] =
+ {1,1,17,9,9,5,5,5,5,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2};
+ // loopStart[halfTessFactor] encodes the LAST entry in finalPointPositionTable[] above which is
+ // less than halfTessFactor. Exceptions are entry 0 and 1, which are set up to skip the loop.
+ static const int _loopEnd[33] =
+ {0,0,17,17,25,25,25,25,29,29,29,29,29,29,29,29,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,32};
+ const int* finalPointPositionTable;
+ const int* loopStart;
+ const int* loopEnd;
+ if( m_bXBox360Mode )
+ {
+ // The XBox360 vertex introduction order is always from the center of the edge.
+ // So the final positions of points on the half-edge are this trivial table.
+ static const int XBOXfinalPointPositionTable[33] =
+ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 };
+ // loopStart and loopEnd (meaning described above) also become trivial for XBox360 splitting.
+ static const int XBOXloopStart[33] =
+ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
+ static const int XBOXloopEnd[33] =
+ {0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
+
+ finalPointPositionTable = XBOXfinalPointPositionTable;
+ loopStart = XBOXloopStart;
+ loopEnd = XBOXloopEnd;
+ }
+ else
+ {
+ finalPointPositionTable = _finalPointPositionTable;
+ loopStart = _loopStart;
+ loopEnd =_loopEnd;
+ }
+#else
+ // Tables to assist in the stitching of 2 rows of points having arbitrary TessFactors.
+ // The stitching order is governed by Ruler Function vertex split ordering (see external documentation).
+ //
+ // The contents of the finalPointPositionTable are where vertex i [0..33] ends up on the half-edge
+ // at the max tessellation amount given ruler-function split order.
+ // Recall the other half of an edge is mirrored, so we only need to deal with one half.
+ // This table is used to decide when to advance a point on the interior or exterior.
+ // It supports odd TessFactor up to 65 and even TessFactor up to 64.
+ static const int finalPointPositionTable[33] =
+ { 0, 32, 16, 8, 17, 4, 18, 9, 19, 2, 20, 10, 21, 5, 22, 11, 23,
+ 1, 24, 12, 25, 6, 26, 13, 27, 3, 28, 14, 29, 7, 30, 15, 31 };
+
+ // The loopStart and loopEnd tables below just provide optimal loop bounds for the
+ // stitching algorithm further below, for any given halfTssFactor.
+ // There is probably a better way to encode this...
+
+ // loopStart[halfTessFactor] encodes the FIRST entry in finalPointPositionTable[] above which is
+ // less than halfTessFactor. Exceptions are entry 0 and 1, which are set up to skip the loop.
+ static const int loopStart[33] =
+ {1,1,17,9,9,5,5,5,5,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2};
+ // loopStart[halfTessFactor] encodes the LAST entry in finalPointPositionTable[] above which is
+ // less than halfTessFactor. Exceptions are entry 0 and 1, which are set up to skip the loop.
+ static const int loopEnd[33] =
+ {0,0,17,17,25,25,25,25,29,29,29,29,29,29,29,29,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,32};
+#endif
+ if( TESSELLATOR_PARITY_ODD == insideEdgeTessFactorParity )
+ {
+ insideNumHalfTessFactorPoints -= 1;
+ }
+ if( TESSELLATOR_PARITY_ODD == outsideTessFactorParity )
+ {
+ outsideNumHalfTessFactorPoints -= 1;
+ }
+ // Walk first half
+ int outsidePoint = outsideEdgePointBaseOffset;
+ int insidePoint = insideEdgePointBaseOffset;
+
+ // iStart,iEnd are a small optimization so the loop below doesn't have to go from 0 up to 31
+ int iStart = min(loopStart[insideNumHalfTessFactorPoints],loopStart[outsideNumHalfTessFactorPoints]);
+ int iEnd = max(loopEnd[insideNumHalfTessFactorPoints],loopEnd[outsideNumHalfTessFactorPoints]);
+
+ if( finalPointPositionTable[0] < outsideNumHalfTessFactorPoints ) // since we dont' start the loop at 0 below, we need a special case.
+ {
+ // Advance outside
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3; outsidePoint++;
+ }
+
+ for(int i = iStart; i <= iEnd; i++)
+ {
+ if( /*(i>0) && <-- not needed since iStart is never 0*/(finalPointPositionTable[i] < insideNumHalfTessFactorPoints))
+ {
+ // Advance inside
+ DefineClockwiseTriangle(insidePoint,outsidePoint,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3; insidePoint++;
+ }
+ if((finalPointPositionTable[i] < outsideNumHalfTessFactorPoints))
+ {
+ // Advance outside
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3; outsidePoint++;
+ }
+ }
+
+ if( (insideEdgeTessFactorParity != outsideTessFactorParity) || (insideEdgeTessFactorParity == TESSELLATOR_PARITY_ODD))
+ {
+ if( insideEdgeTessFactorParity == outsideTessFactorParity )
+ {
+ // Quad in the middle
+ DefineClockwiseTriangle(insidePoint,outsidePoint,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ DefineClockwiseTriangle(insidePoint+1,outsidePoint,outsidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++;
+ outsidePoint++;
+ }
+ else if( TESSELLATOR_PARITY_EVEN == insideEdgeTessFactorParity )
+ {
+ // Triangle pointing inside
+ DefineClockwiseTriangle(insidePoint,outsidePoint,outsidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ outsidePoint++;
+ }
+ else
+ {
+ // Triangle pointing outside
+ DefineClockwiseTriangle(insidePoint,outsidePoint,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3;
+ insidePoint++;
+ }
+ }
+
+ // Walk second half.
+ for(int i = iEnd; i >= iStart; i--)
+ {
+ if((finalPointPositionTable[i] < outsideNumHalfTessFactorPoints))
+ {
+ // Advance outside
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3; outsidePoint++;
+ }
+ if( /*(i>0) && <-- not needed since iStart is never 0*/ (finalPointPositionTable[i] < insideNumHalfTessFactorPoints))
+ {
+ // Advance inside
+ DefineClockwiseTriangle(insidePoint,outsidePoint,insidePoint+1,baseIndexOffset);
+ baseIndexOffset += 3; insidePoint++;
+ }
+ }
+ // Below case is not needed if we didn't optimize loop above and made it run from 31 down to 0.
+ if((finalPointPositionTable[0] < outsideNumHalfTessFactorPoints))
+ {
+ DefineClockwiseTriangle(outsidePoint,outsidePoint+1,insidePoint,baseIndexOffset);
+ baseIndexOffset += 3; outsidePoint++;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHWTessellator::PatchIndexValue()
+//--------------------------------------------------------------------------------------------------------------------------------
+int CHWTessellator::PatchIndexValue(int index)
+{
+ if( m_bUsingPatchedIndices )
+ {
+ if( index >= m_IndexPatchContext.outsidePointIndexPatchBase ) // assumed remapped outide indices are > remapped inside vertices
+ {
+ if( index == m_IndexPatchContext.outsidePointIndexBadValue )
+ index = m_IndexPatchContext.outsidePointIndexReplacementValue;
+ else
+ index += m_IndexPatchContext.outsidePointIndexDeltaToRealValue;
+ }
+ else
+ {
+ if( index == m_IndexPatchContext.insidePointIndexBadValue )
+ index = m_IndexPatchContext.insidePointIndexReplacementValue;
+ else
+ index += m_IndexPatchContext.insidePointIndexDeltaToRealValue;
+ }
+ }
+ else if( m_bUsingPatchedIndices2 )
+ {
+ if( index >= m_IndexPatchContext2.baseIndexToInvert )
+ {
+ if( index == m_IndexPatchContext2.cornerCaseBadValue )
+ {
+ index = m_IndexPatchContext2.cornerCaseReplacementValue;
+ }
+ else
+ {
+ index = m_IndexPatchContext2.indexInversionEndPoint - index;
+ }
+ }
+ else if( index == m_IndexPatchContext2.cornerCaseBadValue )
+ {
+ index = m_IndexPatchContext2.cornerCaseReplacementValue;
+ }
+ }
+ return index;
+}
+
+
+//=================================================================================================================================
+// CHLSLTessellator
+//=================================================================================================================================
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::CHLSLTessellator
+//---------------------------------------------------------------------------------------------------------------------------------
+CHLSLTessellator::CHLSLTessellator()
+{
+ m_LastComputedTessFactors[0] = m_LastComputedTessFactors[1] = m_LastComputedTessFactors[2] =
+ m_LastComputedTessFactors[3] = m_LastComputedTessFactors[4] = m_LastComputedTessFactors[5] = 0;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::Init
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::Init(
+ D3D11_TESSELLATOR_PARTITIONING partitioning,
+ D3D11_TESSELLATOR_REDUCTION insideTessFactorReduction,
+ D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS quadInsideTessFactorReductionAxis,
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive)
+{
+ CHWTessellator::Init(partitioning,outputPrimitive);
+ m_LastComputedTessFactors[0] = m_LastComputedTessFactors[1] = m_LastComputedTessFactors[2] =
+ m_LastComputedTessFactors[3] = m_LastComputedTessFactors[4] = m_LastComputedTessFactors[5] = 0;
+ m_partitioning = partitioning;
+ m_originalPartitioning = partitioning;
+ switch( partitioning )
+ {
+ case D3D11_TESSELLATOR_PARTITIONING_INTEGER:
+ default:
+ break;
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD:
+ m_parity = TESSELLATOR_PARITY_ODD;
+ break;
+ case D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN:
+ m_parity = TESSELLATOR_PARITY_EVEN;
+ break;
+ }
+ m_originalParity = m_parity;
+ m_outputPrimitive = outputPrimitive;
+ m_insideTessFactorReduction = insideTessFactorReduction;
+ m_quadInsideTessFactorReductionAxis = quadInsideTessFactorReductionAxis;
+}
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::TessellateQuadDomain
+// User calls this
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::TessellateQuadDomain( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
+ float insideTessFactorScaleU, float insideTessFactorScaleV )
+{
+ QuadHLSLProcessTessFactors(tessFactor_Ueq0,tessFactor_Veq0,tessFactor_Ueq1,tessFactor_Veq1,insideTessFactorScaleU,insideTessFactorScaleV);
+
+ CHWTessellator::TessellateQuadDomain(m_LastComputedTessFactors[0],m_LastComputedTessFactors[1],m_LastComputedTessFactors[2],m_LastComputedTessFactors[3],
+ m_LastComputedTessFactors[4],m_LastComputedTessFactors[5]);
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::QuadHLSLProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::QuadHLSLProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
+ float insideTessFactorScaleU, float insideTessFactorScaleV )
+{
+ if( !(tessFactor_Ueq0 > 0) ||// NaN will pass
+ !(tessFactor_Veq0 > 0) ||
+ !(tessFactor_Ueq1 > 0) ||
+ !(tessFactor_Veq1 > 0) )
+ {
+ m_LastUnRoundedComputedTessFactors[0] = tessFactor_Ueq0;
+ m_LastUnRoundedComputedTessFactors[1] = tessFactor_Veq0;
+ m_LastUnRoundedComputedTessFactors[2] = tessFactor_Ueq1;
+ m_LastUnRoundedComputedTessFactors[3] = tessFactor_Veq1;
+ m_LastUnRoundedComputedTessFactors[4] = 0;
+ m_LastUnRoundedComputedTessFactors[5] = 0;
+ m_LastComputedTessFactors[0] =
+ m_LastComputedTessFactors[1] =
+ m_LastComputedTessFactors[2] =
+ m_LastComputedTessFactors[3] =
+ m_LastComputedTessFactors[4] =
+ m_LastComputedTessFactors[5] = 0;
+ return;
+ }
+
+ CleanupFloatTessFactor(tessFactor_Ueq0);// clamp to [1.0f..INF], NaN->1.0f
+ CleanupFloatTessFactor(tessFactor_Veq0);
+ CleanupFloatTessFactor(tessFactor_Ueq1);
+ CleanupFloatTessFactor(tessFactor_Veq1);
+
+ // Save off tessFactors so they can be returned to app
+ m_LastUnRoundedComputedTessFactors[0] = tessFactor_Ueq0;
+ m_LastUnRoundedComputedTessFactors[1] = tessFactor_Veq0;
+ m_LastUnRoundedComputedTessFactors[2] = tessFactor_Ueq1;
+ m_LastUnRoundedComputedTessFactors[3] = tessFactor_Veq1;
+
+ // Process outside tessFactors
+ float outsideTessFactor[QUAD_EDGES] = {tessFactor_Ueq0, tessFactor_Veq0, tessFactor_Ueq1, tessFactor_Veq1};
+ int edge, axis;
+ TESSELLATOR_PARITY insideTessFactorParity[QUAD_AXES];
+ if( Pow2Partitioning() || IntegerPartitioning() )
+ {
+ for( edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ RoundUpTessFactor(outsideTessFactor[edge]);
+ ClampTessFactor(outsideTessFactor[edge]); // clamp unbounded user input based on tessellation mode
+ }
+ }
+ else
+ {
+ SetTessellationParity(m_originalParity); // ClampTessFactor needs it
+ for( edge = 0; edge < QUAD_EDGES; edge++ )
+ {
+ ClampTessFactor(outsideTessFactor[edge]); // clamp unbounded user input based on tessellation mode
+ }
+ }
+
+ // Compute inside TessFactors
+ float insideTessFactor[QUAD_AXES];
+ if( m_quadInsideTessFactorReductionAxis == D3D11_TESSELLATOR_QUAD_REDUCTION_1_AXIS )
+ {
+ switch( m_insideTessFactorReduction )
+ {
+ case D3D11_TESSELLATOR_REDUCTION_MIN:
+ insideTessFactor[U] = fmin(fmin(tessFactor_Veq0,tessFactor_Veq1),fmin(tessFactor_Ueq0,tessFactor_Ueq1));
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_MAX:
+ insideTessFactor[U] = fmax(fmax(tessFactor_Veq0,tessFactor_Veq1),fmax(tessFactor_Ueq0,tessFactor_Ueq1));
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_AVERAGE:
+ insideTessFactor[U] = (tessFactor_Veq0 + tessFactor_Veq1 + tessFactor_Ueq0 + tessFactor_Ueq1) / 4;
+ break;
+ }
+ // Scale inside tessFactor based on user scale factor.
+
+ ClampFloatTessFactorScale(insideTessFactorScaleU); // clamp scale value to [0..1], NaN->0
+ insideTessFactor[U] = insideTessFactor[U]*insideTessFactorScaleU;
+
+ // Compute inside parity
+ if( Pow2Partitioning() || IntegerPartitioning() )
+ {
+ ClampTessFactor(insideTessFactor[U]); // clamp reduction + scale result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4] = m_LastUnRoundedComputedTessFactors[5] = insideTessFactor[U]; // Save off TessFactors so they can be returned to app
+ RoundUpTessFactor(insideTessFactor[U]);
+ insideTessFactorParity[U] =
+ insideTessFactorParity[V] =
+ (isEven(insideTessFactor[U]) || (FLOAT_ONE == insideTessFactor[U]) )
+ ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ else
+ {
+ ClampTessFactor(insideTessFactor[U]); // clamp reduction + scale result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4] = m_LastUnRoundedComputedTessFactors[5] = insideTessFactor[U]; // Save off TessFactors so they can be returned to app
+ // no parity changes for fractional tessellation - just use what the user requested
+ insideTessFactorParity[U] = insideTessFactorParity[V] = m_originalParity;
+ }
+
+ // To prevent snapping on edges, the "picture frame" comes
+ // in using avg or max (and ignore inside TessFactor scaling) until it is at least 3.
+ if( (TESSELLATOR_PARITY_ODD == insideTessFactorParity[U]) &&
+ (insideTessFactor[U] < FLOAT_THREE) )
+ {
+ if(D3D11_TESSELLATOR_REDUCTION_MAX == m_insideTessFactorReduction)
+ {
+ insideTessFactor[U] = fmin(FLOAT_THREE,fmax(fmax(tessFactor_Veq0,tessFactor_Veq1),fmax(tessFactor_Ueq0,tessFactor_Ueq1)));
+ }
+ else
+ {
+ insideTessFactor[U] = fmin(FLOAT_THREE,(tessFactor_Veq0 + tessFactor_Veq1 + tessFactor_Ueq0 + tessFactor_Ueq1) / 4);
+ }
+ ClampTessFactor(insideTessFactor[U]); // clamp reduction result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4] = m_LastUnRoundedComputedTessFactors[5] = insideTessFactor[U]; // Save off TessFactors so they can be returned to app
+ if( IntegerPartitioning())
+ {
+ RoundUpTessFactor(insideTessFactor[U]);
+ insideTessFactorParity[U] =
+ insideTessFactorParity[V] = isEven(insideTessFactor[U]) ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ }
+ insideTessFactor[V] = insideTessFactor[U];
+ }
+ else
+ {
+ switch( m_insideTessFactorReduction )
+ {
+ case D3D11_TESSELLATOR_REDUCTION_MIN:
+ insideTessFactor[U] = fmin(tessFactor_Veq0,tessFactor_Veq1);
+ insideTessFactor[V] = fmin(tessFactor_Ueq0,tessFactor_Ueq1);
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_MAX:
+ insideTessFactor[U] = fmax(tessFactor_Veq0,tessFactor_Veq1);
+ insideTessFactor[V] = fmax(tessFactor_Ueq0,tessFactor_Ueq1);
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_AVERAGE:
+ insideTessFactor[U] = (tessFactor_Veq0 + tessFactor_Veq1) / 2;
+ insideTessFactor[V] = (tessFactor_Ueq0 + tessFactor_Ueq1) / 2;
+ break;
+ }
+ // Scale inside tessFactors based on user scale factor.
+
+ ClampFloatTessFactorScale(insideTessFactorScaleU); // clamp scale value to [0..1], NaN->0
+ ClampFloatTessFactorScale(insideTessFactorScaleV);
+ insideTessFactor[U] = insideTessFactor[U]*insideTessFactorScaleU;
+ insideTessFactor[V] = insideTessFactor[V]*insideTessFactorScaleV;
+
+ // Compute inside parity
+ if( Pow2Partitioning() || IntegerPartitioning() )
+ {
+ for( axis = 0; axis < QUAD_AXES; axis++ )
+ {
+ ClampTessFactor(insideTessFactor[axis]); // clamp reduction + scale result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4+axis] = insideTessFactor[axis]; // Save off TessFactors so they can be returned to app
+ RoundUpTessFactor(insideTessFactor[axis]);
+ insideTessFactorParity[axis] =
+ (isEven(insideTessFactor[axis]) || (FLOAT_ONE == insideTessFactor[axis]) )
+ ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ }
+ else
+ {
+ ClampTessFactor(insideTessFactor[U]); // clamp reduction + scale result that is based on unbounded user input
+ ClampTessFactor(insideTessFactor[V]); // clamp reduction + scale result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4] = insideTessFactor[U]; // Save off TessFactors so they can be returned to app
+ m_LastUnRoundedComputedTessFactors[5] = insideTessFactor[V]; // Save off TessFactors so they can be returned to app
+ // no parity changes for fractional tessellation - just use what the user requested
+ insideTessFactorParity[U] = insideTessFactorParity[V] = m_originalParity;
+ }
+
+ // To prevent snapping on edges, the "picture frame" comes
+ // in using avg or max (and ignore inside TessFactor scaling) until it is at least 3.
+ if( (TESSELLATOR_PARITY_ODD == insideTessFactorParity[U]) &&
+ (insideTessFactor[U] < FLOAT_THREE) )
+ {
+ if(D3D11_TESSELLATOR_REDUCTION_MAX == m_insideTessFactorReduction)
+ {
+ insideTessFactor[U] = fmin(FLOAT_THREE,fmax(tessFactor_Veq0,tessFactor_Veq1));
+ }
+ else
+ {
+ insideTessFactor[U] = fmin(FLOAT_THREE,(tessFactor_Veq0 + tessFactor_Veq1) / 2);
+ }
+ ClampTessFactor(insideTessFactor[U]); // clamp reduction result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[4] = insideTessFactor[U]; // Save off TessFactors so they can be returned to app
+ if( IntegerPartitioning())
+ {
+ RoundUpTessFactor(insideTessFactor[U]);
+ insideTessFactorParity[U] = isEven(insideTessFactor[U]) ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ }
+
+ if( (TESSELLATOR_PARITY_ODD == insideTessFactorParity[V]) &&
+ (insideTessFactor[V] < FLOAT_THREE) )
+ {
+ if(D3D11_TESSELLATOR_REDUCTION_MAX == m_insideTessFactorReduction)
+ {
+ insideTessFactor[V] = fmin(FLOAT_THREE,fmax(tessFactor_Ueq0,tessFactor_Ueq1));
+ }
+ else
+ {
+ insideTessFactor[V] = fmin(FLOAT_THREE,(tessFactor_Ueq0 + tessFactor_Ueq1) / 2);
+ }
+ ClampTessFactor(insideTessFactor[V]);// clamp reduction result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[5] = insideTessFactor[V]; // Save off TessFactors so they can be returned to app
+ if( IntegerPartitioning())
+ {
+ RoundUpTessFactor(insideTessFactor[V]);
+ insideTessFactorParity[V] = isEven(insideTessFactor[V]) ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ }
+
+ for( axis = 0; axis < QUAD_AXES; axis++ )
+ {
+ if( TESSELLATOR_PARITY_ODD == insideTessFactorParity[axis] )
+ {
+ // Ensure the first ring ("picture frame") interpolates in on all sides
+ // as much as the side with the minimum TessFactor. Prevents snapping to edge.
+ if( (insideTessFactor[axis] < FLOAT_THREE) && (insideTessFactor[axis] < insideTessFactor[(axis+1)&0x1]))
+ {
+ insideTessFactor[axis] = fmin(insideTessFactor[(axis+1)&0x1],FLOAT_THREE);
+ m_LastUnRoundedComputedTessFactors[4+axis] = insideTessFactor[axis]; // Save off TessFactors so they can be returned to app
+ }
+ }
+ }
+ }
+
+ // Save off TessFactors so they can be returned to app
+ m_LastComputedTessFactors[0] = outsideTessFactor[Ueq0];
+ m_LastComputedTessFactors[1] = outsideTessFactor[Veq0];
+ m_LastComputedTessFactors[2] = outsideTessFactor[Ueq1];
+ m_LastComputedTessFactors[3] = outsideTessFactor[Veq1];
+ m_LastComputedTessFactors[4] = insideTessFactor[U];
+ m_LastComputedTessFactors[5] = insideTessFactor[V];
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::TessellateTriDomain
+// User calls this
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::TessellateTriDomain( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Weq0,
+ float insideTessFactorScale )
+{
+ TriHLSLProcessTessFactors(tessFactor_Ueq0,tessFactor_Veq0,tessFactor_Weq0,insideTessFactorScale);
+
+ CHWTessellator::TessellateTriDomain(m_LastComputedTessFactors[0],m_LastComputedTessFactors[1],m_LastComputedTessFactors[2],m_LastComputedTessFactors[3]);
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::TriHLSLProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::TriHLSLProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Weq0,
+ float insideTessFactorScale )
+{
+ if( !(tessFactor_Ueq0 > 0) || // NaN will pass
+ !(tessFactor_Veq0 > 0) ||
+ !(tessFactor_Weq0 > 0) )
+ {
+ m_LastUnRoundedComputedTessFactors[0] = tessFactor_Ueq0;
+ m_LastUnRoundedComputedTessFactors[1] = tessFactor_Veq0;
+ m_LastUnRoundedComputedTessFactors[2] = tessFactor_Weq0;
+ m_LastUnRoundedComputedTessFactors[3] =
+ m_LastComputedTessFactors[0] =
+ m_LastComputedTessFactors[1] =
+ m_LastComputedTessFactors[2] =
+ m_LastComputedTessFactors[3] = 0;
+ return;
+ }
+
+ CleanupFloatTessFactor(tessFactor_Ueq0); // clamp to [1.0f..INF], NaN->1.0f
+ CleanupFloatTessFactor(tessFactor_Veq0);
+ CleanupFloatTessFactor(tessFactor_Weq0);
+
+ // Save off TessFactors so they can be returned to app
+ m_LastUnRoundedComputedTessFactors[0] = tessFactor_Ueq0;
+ m_LastUnRoundedComputedTessFactors[1] = tessFactor_Veq0;
+ m_LastUnRoundedComputedTessFactors[2] = tessFactor_Weq0;
+
+ // Process outside TessFactors
+ float outsideTessFactor[TRI_EDGES] = {tessFactor_Ueq0, tessFactor_Veq0, tessFactor_Weq0};
+ int edge;
+ if( Pow2Partitioning() || IntegerPartitioning() )
+ {
+ for( edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ RoundUpTessFactor(outsideTessFactor[edge]); // for pow2 this rounds to pow2
+ ClampTessFactor(outsideTessFactor[edge]); // clamp unbounded user input based on tessellation mode
+ }
+ }
+ else
+ {
+ for( edge = 0; edge < TRI_EDGES; edge++ )
+ {
+ ClampTessFactor(outsideTessFactor[edge]); // clamp unbounded user input based on tessellation mode
+ }
+ }
+
+ // Compute inside TessFactor
+ float insideTessFactor;
+ switch( m_insideTessFactorReduction )
+ {
+ case D3D11_TESSELLATOR_REDUCTION_MIN:
+ insideTessFactor = fmin(fmin(tessFactor_Ueq0,tessFactor_Veq0),tessFactor_Weq0);
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_MAX:
+ insideTessFactor = fmax(fmax(tessFactor_Ueq0,tessFactor_Veq0),tessFactor_Weq0);
+ break;
+ case D3D11_TESSELLATOR_REDUCTION_AVERAGE:
+ insideTessFactor = (tessFactor_Ueq0 + tessFactor_Veq0 + tessFactor_Weq0) / 3;
+ break;
+ }
+
+ // Scale inside TessFactor based on user scale factor.
+ ClampFloatTessFactorScale(insideTessFactorScale); // clamp scale value to [0..1], NaN->0
+ insideTessFactor = insideTessFactor*fmin(FLOAT_ONE,insideTessFactorScale);
+
+ ClampTessFactor(insideTessFactor); // clamp reduction + scale result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[3] = insideTessFactor;// Save off TessFactors so they can be returned to app
+ TESSELLATOR_PARITY parity;
+ if( Pow2Partitioning() || IntegerPartitioning() )
+ {
+ RoundUpTessFactor(insideTessFactor);
+ parity = (isEven(insideTessFactor) || (FLOAT_ONE == insideTessFactor))
+ ? TESSELLATOR_PARITY_EVEN : TESSELLATOR_PARITY_ODD;
+ }
+ else
+ {
+ parity = m_originalParity;
+ }
+
+ if( (TESSELLATOR_PARITY_ODD == parity) &&
+ (insideTessFactor < FLOAT_THREE))
+ {
+ // To prevent snapping on edges, the "picture frame" comes
+ // in using avg or max (and ignore inside TessFactor scaling) until it is at least 3.
+ if(D3D11_TESSELLATOR_REDUCTION_MAX == m_insideTessFactorReduction)
+ {
+ insideTessFactor = fmin(FLOAT_THREE,fmax(tessFactor_Ueq0,fmax(tessFactor_Veq0,tessFactor_Weq0)));
+ }
+ else
+ {
+ insideTessFactor = fmin(FLOAT_THREE,(tessFactor_Ueq0 + tessFactor_Veq0 + tessFactor_Weq0) / 3);
+ }
+ ClampTessFactor(insideTessFactor); // clamp reduction result that is based on unbounded user input
+ m_LastUnRoundedComputedTessFactors[3] = insideTessFactor;// Save off TessFactors so they can be returned to app
+ if( IntegerPartitioning())
+ {
+ RoundUpTessFactor(insideTessFactor);
+ }
+ }
+
+ // Save off TessFactors so they can be returned to app
+ m_LastComputedTessFactors[0] = outsideTessFactor[Ueq0];
+ m_LastComputedTessFactors[1] = outsideTessFactor[Veq0];
+ m_LastComputedTessFactors[2] = outsideTessFactor[Weq0];
+ m_LastComputedTessFactors[3] = insideTessFactor;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::TessellateIsoLineDomain
+// User calls this.
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::TessellateIsoLineDomain( float TessFactor_U_LineDetail, float TessFactor_V_LineDensity )
+{
+ IsoLineHLSLProcessTessFactors(TessFactor_V_LineDensity,TessFactor_U_LineDetail);
+ CHWTessellator::TessellateIsoLineDomain(m_LastComputedTessFactors[0],m_LastComputedTessFactors[1]);
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::IsoLineHLSLProcessTessFactors
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::IsoLineHLSLProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail )
+{
+ if( !(TessFactor_V_LineDensity > 0) || // NaN will pass
+ !(TessFactor_U_LineDetail > 0) )
+ {
+ m_LastUnRoundedComputedTessFactors[0] = TessFactor_V_LineDensity;
+ m_LastUnRoundedComputedTessFactors[1] = TessFactor_U_LineDetail;
+ m_LastComputedTessFactors[0] =
+ m_LastComputedTessFactors[1] = 0;
+ return;
+ }
+
+ CleanupFloatTessFactor(TessFactor_V_LineDensity); // clamp to [1.0f..INF], NaN->1.0f
+ CleanupFloatTessFactor(TessFactor_U_LineDetail); // clamp to [1.0f..INF], NaN->1.0f
+
+ ClampTessFactor(TessFactor_U_LineDetail); // clamp unbounded user input based on tessellation mode
+
+ m_LastUnRoundedComputedTessFactors[1] = TessFactor_U_LineDetail; // Save off TessFactors so they can be returned to app
+
+ if(Pow2Partitioning()||IntegerPartitioning())
+ {
+ RoundUpTessFactor(TessFactor_U_LineDetail);
+ }
+
+ OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING_INTEGER);
+
+ ClampTessFactor(TessFactor_V_LineDensity); // Clamp unbounded user input to integer
+ m_LastUnRoundedComputedTessFactors[0] = TessFactor_V_LineDensity; // Save off TessFactors so they can be returned to app
+
+ RoundUpTessFactor(TessFactor_V_LineDensity);
+
+ RestorePartitioning();
+
+ // Save off TessFactors so they can be returned to app
+ m_LastComputedTessFactors[0] = TessFactor_V_LineDensity;
+ m_LastComputedTessFactors[1] = TessFactor_U_LineDetail;
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::ClampTessFactor()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::ClampTessFactor(float& TessFactor)
+{
+ if( Pow2Partitioning() )
+ {
+ TessFactor = fmin( D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR, fmax( TessFactor, D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR) );
+ }
+ else if( IntegerPartitioning() )
+ {
+ TessFactor = fmin( D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR, fmax( TessFactor, D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR) );
+ }
+ else if( Odd() )
+ {
+ TessFactor = fmin( D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR, fmax( TessFactor, D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR) );
+ }
+ else // even
+ {
+ TessFactor = fmin( D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR, fmax( TessFactor, D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR) );
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::CleanupFloatTessFactor()
+//---------------------------------------------------------------------------------------------------------------------------------
+static const int exponentMask = 0x7f800000;
+static const int mantissaMask = 0x007fffff;
+void CHLSLTessellator::CleanupFloatTessFactor(float& input)
+{
+ // If input is < 1.0f or NaN, clamp to 1.0f.
+ // In other words, clamp input to [1.0f...+INF]
+ int bits = *(int*)&input;
+ if( ( ( ( bits & exponentMask ) == exponentMask ) && ( bits & mantissaMask ) ) ||// nan?
+ (input < 1.0f) )
+ {
+ input = 1;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::ClampFloatTessFactorScale()
+//---------------------------------------------------------------------------------------------------------------------------------
+void CHLSLTessellator::ClampFloatTessFactorScale(float& input)
+{
+ // If input is < 0.0f or NaN, clamp to 0.0f. > 1 clamps to 1.
+ // In other words, clamp input to [0.0f...1.0f]
+ int bits = *(int*)&input;
+ if( ( ( ( bits & exponentMask ) == exponentMask ) && ( bits & mantissaMask ) ) ||// nan?
+ (input < 0.0f) )
+ {
+ input = 0;
+ }
+ else if( input > 1 )
+ {
+ input = 1;
+ }
+}
+
+//---------------------------------------------------------------------------------------------------------------------------------
+// CHLSLTessellator::RoundUpTessFactor()
+//---------------------------------------------------------------------------------------------------------------------------------
+static const int exponentLSB = 0x00800000;
+void CHLSLTessellator::RoundUpTessFactor(float& TessFactor)
+{
+ // Assume TessFactor is in [1.0f..+INF]
+ if( Pow2Partitioning() )
+ {
+ int bits = *(int*)&TessFactor;
+ if( bits & mantissaMask )
+ {
+ *(int*)&TessFactor = (bits & exponentMask) + exponentLSB;
+ }
+ }
+ else if( IntegerPartitioning() )
+ {
+ TessFactor = ceil(TessFactor);
+ }
+}
--- /dev/null
+/*
+ Copyright (c) Microsoft Corporation
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
+ associated documentation files (the "Software"), to deal in the Software without restriction,
+ including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
+ subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in all copies or substantial
+ portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
+ NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+#pragma once
+//=================================================================================================================================
+// Microsoft D3D11 Fixed Function Tessellator Reference - May 7, 2012
+// amar.patel@microsoft.com
+//
+// CHWTessellator demonstrates what is expected of hardware in the D3D11 fixed function Tessellator stage. Hardware
+// implementers need only look at this class.
+//
+// CHLSLTessellator is a wrapper for CHWTessellator, representing the effect of shader code that will
+// be autogenerated by HLSL in the Hull Shader, both for plumbing data around, and to precondition TessFactor values before they
+// are passed to the hardware (such as deriving inside TessFactors from edge TessFactors). The algorithms used
+// in CHLSLTessellator are subject to change, but since they represent shader code auto-generated by the HLSL compiler,
+// CHLSLTessellator has no effect on hardware design at all. Note the HLSL compiler will expose all the raw hardware
+// control illustrated by CHWTessellator for those who don't need the helper functionality illustrated by CHLSLTessellator.
+//
+// Usage: (1) Create either a CHLSLTessellator or CHWTessellator object, depending on which you want to verify.
+// (2) Call C*Tessellator::Init()
+// (3) Call C*Tessellator::Tessellate[IsoLine|Tri|Quad]Domain()
+// - Here you pass in TessFactors (how much to tessellate)
+// (4) Call C*Tessellator::GetPointCount(), C*Tessellator::GetIndexCount() to see how much data was generated.
+// (5) Call C*Tessellator::GetPoints() and C*Tessellator::GetIndices() to get pointers to the data.
+// The pointers are fixed for the lifetime of the object (storage for max tessellation),
+// so if you ::Tessellate again, the data in the buffers is overwritten.
+// (6) There are various other Get() methods to retrieve TessFactors that have been processed from
+// what you passed in at step 3. You can retrieve separate TessFactors that the tessellator
+// produced after clamping but before rounding, and also after rounding (say in pow2 mode).
+// These numbers can be useful information if you are geomorphing displacement maps.
+// (7) Goto Step 2 or 3 if you want to animate TessFactors or tessellate a different patch
+//
+// Code implementation details:
+//
+// There is lots of headroom to make this code run faster on CPUs. It was written merely as a reference for
+// what results hardware should produce, with CPU performance not a consideration. It is nice that this implementation
+// only generates the exact number of vertices needed (no duplicates) in the output vertex buffer. Also, the number
+// of calculations done for each U/V domain coordinate is minimized by doing some precalculation of some patch or edge
+// invariant numbers (see TESS_FACTOR_CONTEXT). All the vertex coordinate calculations could be computed with as much
+// parallelism as you like. Similarly the calculation of connectivity itself is highly parallelizable, and can also
+// be done independent of the vertex calculations.
+//
+//=================================================================================================================================
+
+#define D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR 1
+#define D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR 63
+#define D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR 2
+#define D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR 64
+
+#define D3D11_TESSELLATOR_MIN_ISOLINE_DENSITY_TESSELLATION_FACTOR 1
+#define D3D11_TESSELLATOR_MAX_ISOLINE_DENSITY_TESSELLATION_FACTOR 64
+
+#define D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR 64 // max of even and odd tessFactors
+
+#define MAX_POINT_COUNT ((D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR+1)*(D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR+1))
+#define MAX_INDEX_COUNT (D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR*D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR*2*3)
+
+//=================================================================================================================================
+// Data types for the caller
+//=================================================================================================================================
+enum D3D11_TESSELLATOR_PARTITIONING
+{
+ D3D11_TESSELLATOR_PARTITIONING_INTEGER,
+ D3D11_TESSELLATOR_PARTITIONING_POW2,
+ D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD,
+ D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN
+};
+
+enum D3D11_TESSELLATOR_REDUCTION
+{
+ D3D11_TESSELLATOR_REDUCTION_MIN,
+ D3D11_TESSELLATOR_REDUCTION_MAX,
+ D3D11_TESSELLATOR_REDUCTION_AVERAGE
+};
+
+enum D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS
+{
+ D3D11_TESSELLATOR_QUAD_REDUCTION_1_AXIS,
+ D3D11_TESSELLATOR_QUAD_REDUCTION_2_AXIS
+};
+
+enum D3D11_TESSELLATOR_OUTPUT_PRIMITIVE
+{
+ D3D11_TESSELLATOR_OUTPUT_POINT,
+ D3D11_TESSELLATOR_OUTPUT_LINE,
+ D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CW,
+ D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CCW,
+};
+
+typedef struct DOMAIN_POINT
+{
+ float u;
+ float v; // for tri, w = 1 - u - v;
+} DOMAIN_POINT;
+
+//=================================================================================================================================
+// CHWTessellator: D3D11 Tessellation Fixed Function Hardware Reference
+//=================================================================================================================================
+typedef unsigned int FXP; // fixed point number
+
+class CHWTessellator
+{
+
+//---------------------------------------------------------------------------------------------------------------------------------
+public:
+ void Init( D3D11_TESSELLATOR_PARTITIONING partitioning,
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive);
+
+ void TessellateIsoLineDomain( float TessFactor_V_LineDensity,
+ float TessFactor_U_LineDetail );
+
+ void TessellateTriDomain( float TessFactor_Ueq0,
+ float TessFactor_Veq0,
+ float TessFactor_Weq0,
+ float TessFactor_Inside );
+
+ void TessellateQuadDomain( float TessFactor_Ueq0,
+ float TessFactor_Veq0,
+ float TessFactor_Ueq1,
+ float TessFactor_Veq1,
+ float TessFactor_InsideU,
+ float TessFactor_InsideV );
+
+ int GetPointCount();
+ int GetIndexCount();
+
+ DOMAIN_POINT* GetPoints(); // Get CHWTessellator owned pointer to vertices (UV values).
+ // Pointer is fixed for lifetime of CHWTessellator object.
+ int* GetIndices(); // Get CHWTessellator owned pointer to vertex indices.
+ // Pointer is fixed for lifetime of CHWTessellator object.
+
+#define ALLOW_XBOX_360_COMPARISON // Different vertex splitting order. This is NOT D3D11 behavior, just available here for comparison.
+ // Setting this define true just allows the XBox split style to be enabled via
+ // SetXBox360Mode() below, but by default this XBox360 mode still always starts off DISABLED.
+ // The XBox360 always splits from the center of an edge (D3D11 uses ruler function). Splitting
+ // from the center causes sliver triangles in transition areas, which cause numerous problems.
+ // Note the XBox360 only supports adaptive tessellation via fractional_even partitioning,
+ // though this #define lets you try the XBox vertex splitting order with any of the
+ // partitioning modes: even, odd, integer or pow2.
+#ifdef ALLOW_XBOX_360_COMPARISON
+ void SetXBox360Mode(bool bXboxMode) {m_bXBox360Mode = bXboxMode;}
+#endif
+ CHWTessellator();
+ ~CHWTessellator();
+//---------------------------------------------------------------------------------------------------------------------------------
+ //=============================================================================================================================
+ // Some defines so that numbers are usually self commenting
+ //=============================================================================================================================
+ static const int U = 0; // points on a tri patch
+ static const int V = 1;
+ static const int W = 2;
+ static const int Ueq0 = 0; // edges on a tri patch
+ static const int Veq0 = 1;
+ static const int Weq0 = 2;
+
+ static const int Ueq1 = 2; // edges on a quad patch: Ueq0, Veq0, Ueq1, Veq1
+ static const int Veq1 = 3;
+
+ static const int QUAD_AXES = 2;
+ static const int QUAD_EDGES = 4;
+ static const int TRI_EDGES = 3;
+ //=============================================================================================================================
+
+ enum TESSELLATOR_PARITY // derived from D3D11_TESSELLATOR_PARTITIONING
+ { // (note: for integer tessellation, both parities are used)
+ TESSELLATOR_PARITY_EVEN,
+ TESSELLATOR_PARITY_ODD
+ };
+private:
+ TESSELLATOR_PARITY m_originalParity; // user chosen parity
+ TESSELLATOR_PARITY m_parity; // current parity: if allowing mix of even/odd during discrete
+ // tessellation, this can vary from the user defined parity
+ D3D11_TESSELLATOR_PARTITIONING m_originalPartitioning; // user chosen partitioning
+ D3D11_TESSELLATOR_PARTITIONING m_partitioning; // current partitioning. IsoLines overrides for line density
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE m_outputPrimitive;
+ DOMAIN_POINT* m_Point; // array where we will store u/v's for the points we generate
+ int* m_Index; // array where we will store index topology
+ int m_NumPoints;
+ int m_NumIndices;
+#ifdef ALLOW_XBOX_360_COMPARISON
+ bool m_bXBox360Mode;
+#endif
+ // PlacePointIn1D below is the workhorse for all position placement.
+ // It is code that could run as preamble in a Domain Shader, so the tessellator itself
+ // doesn't necessarily need to have floating point.
+ // Some per-TessFactor fixed context is needed, and that can be computed wherever
+ // the TessFactor reduction is done, perhaps as Hull Shader postamble - this is shared
+ // for all point evaluation.
+ typedef struct TESS_FACTOR_CONTEXT
+ {
+ FXP fxpInvNumSegmentsOnFloorTessFactor;
+ FXP fxpInvNumSegmentsOnCeilTessFactor;
+ FXP fxpHalfTessFactorFraction;
+ int numHalfTessFactorPoints;
+ int splitPointOnFloorHalfTessFactor;
+ } TESS_FACTOR_CONTEXT;
+ void ComputeTessFactorContext( FXP fxpTessFactor, TESS_FACTOR_CONTEXT& TessFactorCtx );
+ void PlacePointIn1D( const TESS_FACTOR_CONTEXT& TessFactorCtx, int point, FXP& fxpLocation );
+
+ int NumPointsForTessFactor(FXP fxpTessFactor);
+
+ // Tessellation parity control
+ bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;}
+ void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;}
+
+ // HWIntegerPartitioning() - hardware doesn't care about what pow2 partitioning is - the query below is true for
+ // both integer and pow2.
+ bool HWIntegerPartitioning() {return ((m_partitioning == D3D11_TESSELLATOR_PARTITIONING_INTEGER)||
+ (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_POW2)) ? true : false;}
+
+ // Tesselation Partitioning control
+ void RestorePartitioning() {m_partitioning = m_originalPartitioning;};
+ void OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density
+
+ // Call these to generate new points and indices. Max TessFactor storage is already allocated.
+ int DefinePoint(FXP u, FXP v, int pointStorageOffset);
+ void DefineIndex(int index, int indexStorageOffset);
+ void DefineClockwiseTriangle(int index0, int index1, int index2, int indexStorageBaseOffset);
+
+ // Couple of trivial ways to generate index data just given points and no other connectivity.
+ void DumpAllPoints(); // Make point indices for point rendering mode -
+ // redundant, but just here for orthogonality.
+ void DumpAllPointsAsInOrderLineList(); // A debug visualization of all the points connected
+ // in the order they were generated.
+ // Asking to draw line topology on a tri or quad patch will do this
+
+
+ // The structures below define the data that is derived given input TessFactors and which
+ // is used by point generation and connectivity generation steps (each of which are independent)
+ typedef struct PROCESSED_TESS_FACTORS_ISOLINE
+ {
+ TESSELLATOR_PARITY lineDensityParity;
+ TESSELLATOR_PARITY lineDetailParity;
+ TESS_FACTOR_CONTEXT lineDensityTessFactorCtx;
+ TESS_FACTOR_CONTEXT lineDetailTessFactorCtx;
+ bool bPatchCulled;
+ int numPointsPerLine;
+ int numLines;
+ } PROCESSED_TESS_FACTORS_ISOLINE;
+ typedef struct PROCESSED_TESS_FACTORS_TRI
+ {
+ FXP outsideTessFactor[TRI_EDGES];
+ FXP insideTessFactor;
+ TESSELLATOR_PARITY outsideTessFactorParity[TRI_EDGES];
+ TESSELLATOR_PARITY insideTessFactorParity;
+ TESS_FACTOR_CONTEXT outsideTessFactorCtx[TRI_EDGES];
+ TESS_FACTOR_CONTEXT insideTessFactorCtx;
+ bool bJustDoMinimumTessFactor;
+ bool bPatchCulled;
+ // Stuff below is just specific to the traversal order
+ // this code happens to use to generate points/lines
+ int numPointsForOutsideEdge[TRI_EDGES];
+ int numPointsForInsideTessFactor;
+ int insideEdgePointBaseOffset;
+ } PROCESSED_TESS_FACTORS_TRI;
+ typedef struct PROCESSED_TESS_FACTORS_QUAD
+ {
+ FXP outsideTessFactor[QUAD_EDGES];
+ FXP insideTessFactor[QUAD_AXES];
+ TESSELLATOR_PARITY outsideTessFactorParity[QUAD_EDGES];
+ TESSELLATOR_PARITY insideTessFactorParity[QUAD_AXES];
+ TESS_FACTOR_CONTEXT outsideTessFactorCtx[QUAD_EDGES];
+ TESS_FACTOR_CONTEXT insideTessFactorCtx[QUAD_AXES];
+ bool bJustDoMinimumTessFactor;
+ bool bPatchCulled;
+ // Stuff below is just specific to the traversal order
+ // this code happens to use to generate points/lines
+ int numPointsForOutsideEdge[QUAD_EDGES];
+ int numPointsForInsideTessFactor[QUAD_AXES];
+ int insideEdgePointBaseOffset;
+ } PROCESSED_TESS_FACTORS_QUAD;
+
+ // These are the workhorse functions for tessellation:
+ // (1) Process input TessFactors
+ // (2) Generate points
+ // (3) Generate connectivity (can be done in parallel to (2))
+ void IsoLineProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail, PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
+ void IsoLineGeneratePoints( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
+ void IsoLineGenerateConnectivity( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors );
+ void TriProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor, PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
+ void TriGeneratePoints( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
+ void TriGenerateConnectivity( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors );
+ void QuadProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1,
+ float insideTessFactor_U, float insideTessFactor_V, PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
+ void QuadGeneratePoints( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
+ void QuadGenerateConnectivity( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors );
+
+ // Stitching
+ // ---------
+ // Given pointers to the beginning of 2 parallel rows of points, and TessFactors for each, stitch them.
+ // The assumption is the stitch is symmetric.
+ void StitchTransition(int baseIndexOffset, int insideEdgePointBaseOffset, int insideNumHalfTessFactorPoints,
+ TESSELLATOR_PARITY insideEdgeTessFactorParity,
+ int outsideEdgePointBaseOffset, int outsideNumHalfTessFactorPoints,
+ TESSELLATOR_PARITY outsideEdgeTessFactorParity );
+ // The interior can just use a simpler stitch.
+ enum DIAGONALS
+ {
+ DIAGONALS_INSIDE_TO_OUTSIDE,
+ DIAGONALS_INSIDE_TO_OUTSIDE_EXCEPT_MIDDLE,
+ DIAGONALS_MIRRORED
+ };
+
+ void StitchRegular(bool bTrapezoid, DIAGONALS diagonals, int baseIndexOffset, int numInsideEdgePoints,
+ int insideEdgePointBaseOffset, int outsideEdgePointBaseOffset);
+
+//---------------------------------------------------------------------------------------------------------------------------------
+ // Index Patching
+ // --------------
+ // The code below patches index values produces during triangulation, so triangulation doesn't have to know
+ // where points should go. I happened to never produce duplicate vertices, but the patching would
+ // be simpler if some duplicate vertices were introduced in practice. During point rendering mode however,
+ // it is not permitted for duplicate points to show up.
+
+ // Since the points are generated in concentric rings, most of the time, the point locations are
+ // sequentially increasing in memory for each side of a ring, which the stitch can take advantage of.
+ // However, there are exceptions where the points are not sequentially increasing, such as
+ // the 4th row in a given ring, where the last point on the outside of each row is actually the beginning
+ // point.
+ // So we let the stitching code think it sees sequential vertices, and when it emits a vertex index,
+ // we patch it to be the real location.
+ int PatchIndexValue(int index);
+ typedef struct INDEX_PATCH_CONTEXT
+ {
+ int insidePointIndexDeltaToRealValue;
+ int insidePointIndexBadValue;
+ int insidePointIndexReplacementValue;
+ int outsidePointIndexPatchBase;
+ int outsidePointIndexDeltaToRealValue;
+ int outsidePointIndexBadValue;
+ int outsidePointIndexReplacementValue;
+ } INDEX_PATCH_CONTEXT;
+ void SetUsingPatchedIndices(bool bUsingPatchedIndices) {m_bUsingPatchedIndices = bUsingPatchedIndices;}
+
+ // A second index patch we have to do handles the leftover strip of quads in the middle of an odd quad patch after
+ // finishing all the concentric rings.
+ // This also handles the leftover strip of points in the middle of an even quad
+ // patch, when stitching the row of triangles up the left side (V major quad) or bottom (U major quad) of the
+ // inner ring
+ typedef struct INDEX_PATCH_CONTEXT2
+ {
+ int baseIndexToInvert;
+ int indexInversionEndPoint;
+ int cornerCaseBadValue;
+ int cornerCaseReplacementValue;
+ } INDEX_PATCH_CONTEXT2;
+ void SetUsingPatchedIndices2(bool bUsingPatchedIndices) {m_bUsingPatchedIndices2 = bUsingPatchedIndices;}
+ bool m_bUsingPatchedIndices;
+ bool m_bUsingPatchedIndices2;
+ INDEX_PATCH_CONTEXT m_IndexPatchContext;
+ INDEX_PATCH_CONTEXT2 m_IndexPatchContext2;
+
+};
+
+//=================================================================================================================================
+// CHLSLTessellator: D3D11 Tessellation HLSL Tessellator Interface
+// Demonstrates TessFactor preconditioning code auto-generated by HLSL. Subject to change, but this
+// just represents the effect of shader code the HLSL compiler will generate in the Hull Shader,
+// so it does not affect hardware design at all.
+//=================================================================================================================================
+class CHLSLTessellator : public CHWTessellator
+{
+public:
+ void Init( D3D11_TESSELLATOR_PARTITIONING partitioning,
+ D3D11_TESSELLATOR_REDUCTION insideTessFactorReduction,
+ D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS quadInsideTessFactorReductionAxis,
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive);
+
+ void TessellateIsoLineDomain( float TessFactor_V_LineDensity,
+ float TessFactor_U_LineDetail );
+
+ void TessellateTriDomain( float tessFactor_Ueq0,
+ float TessFactor_Veq0,
+ float TessFactor_Weq0,
+ float insideTessFactorScale /*[0..1]*/ );
+
+ void TessellateQuadDomain( float TessFactorUeq0,
+ float TessFactorVeq0,
+ float TessFactorUeq1,
+ float TessFactorVeq1,
+ float insideTessFactorScaleU /*[0..1]*/,
+ float insideTessFactorScaleV /*[0..1]*/ );
+
+ int GetPointCount() {return CHWTessellator::GetPointCount();};
+ int GetIndexCount() {return CHWTessellator::GetIndexCount();}
+
+ DOMAIN_POINT* GetPoints() {return CHWTessellator::GetPoints();} // Get CHLSLTessellator owned pointer to vertices (UV values).
+ // Pointer is fixed for lifetime of CHLSLTessellator object.
+ int* GetIndices() {return CHWTessellator::GetIndices();} // Get CHLSLTessellator owned pointer to vertex indices.
+ // Pointer is fixed for lifetime of CHLSLTessellator object.
+
+ // Retrieve TessFactors actually used by the "hardware"
+ // This includes clamping to valid range, and more interestingly
+ // if integer or pow2 partitioning is being done, the rounded TessFactors can be retrieved.
+ // Getting the rounded TessFactors can be useful for geomorphing of displacement maps.
+ float GetIsoLineDensityTessFactor() {return m_LastComputedTessFactors[0];}
+ float GetIsoLineDetailTessFactor() {return m_LastComputedTessFactors[1];}
+ float GetTriUeq0TessFactor() {return m_LastComputedTessFactors[0];}
+ float GetTriVeq0TessFactor() {return m_LastComputedTessFactors[1];}
+ float GetTriWeq0TessFactor() {return m_LastComputedTessFactors[2];}
+ float GetTriInsideTessFactor() {return m_LastComputedTessFactors[3];}
+ float GetQuadUeq0TessFactor() {return m_LastComputedTessFactors[0];}
+ float GetQuadVeq0TessFactor() {return m_LastComputedTessFactors[1];}
+ float GetQuadUeq1TessFactor() {return m_LastComputedTessFactors[2];}
+ float GetQuadVeq1TessFactor() {return m_LastComputedTessFactors[3];}
+ float GetQuadInsideUTessFactor() {return m_LastComputedTessFactors[4];}
+ float GetQuadInsideVTessFactor() {return m_LastComputedTessFactors[5];}
+ float GetUnRoundedIsoLineDensityTessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
+ float GetUnRoundedIsoLineDetailTessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
+ float GetUnRoundedTriUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
+ float GetUnRoundedTriVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
+ float GetUnRoundedTriWeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[2];}
+ float GetUnRoundedTriInsideTessFactor() {return m_LastUnRoundedComputedTessFactors[3];}
+ float GetUnRoundedQuadUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];}
+ float GetUnRoundedQuadVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];}
+ float GetUnRoundedQuadUeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[2];}
+ float GetUnRoundedQuadVeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[3];}
+ float GetUnRoundedQuadInsideUTessFactor() {return m_LastUnRoundedComputedTessFactors[4];}
+ float GetUnRoundedQuadInsideVTessFactor() {return m_LastUnRoundedComputedTessFactors[5];}
+
+ CHLSLTessellator();
+//---------------------------------------------------------------------------------------------------------------------------------
+private:
+ TESSELLATOR_PARITY m_originalParity; // user chosen parity
+ TESSELLATOR_PARITY m_parity; // current parity: if allowing mix of even/odd during discrete
+ // tessellation, this can vary from the user defined parity
+ D3D11_TESSELLATOR_PARTITIONING m_originalPartitioning; // user chosen partitioning
+ D3D11_TESSELLATOR_PARTITIONING m_partitioning; // current partitioning. IsoLines overrides for line density
+ D3D11_TESSELLATOR_OUTPUT_PRIMITIVE m_outputPrimitive;
+ D3D11_TESSELLATOR_REDUCTION m_insideTessFactorReduction;
+ D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS m_quadInsideTessFactorReductionAxis;
+ float m_LastComputedTessFactors[6]; // TessFactors used for last tessellation
+ float m_LastUnRoundedComputedTessFactors[6]; // TessFactors used for last tessellation (before they were rounded)
+ bool IntegerPartitioning() {return (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_INTEGER) ? true : false;}
+ bool Pow2Partitioning() {return (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_POW2)? true : false;}
+ void ClampTessFactor(float& TessFactor);
+ void RoundUpTessFactor(float& TessFactor);
+ void CleanupFloatTessFactor(float& input); // clamp float to [1.0f... +INF] (incl NaN->1.0f)
+ void ClampFloatTessFactorScale(float& input); // clamp float to [0.0f... +INF] (incl NaN->0.0f)
+
+ // Tessellation parity control
+ bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;}
+ void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;}
+
+ // Tesselation Partitioning control
+ void RestorePartitioning() {m_partitioning = m_originalPartitioning;};
+ void OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density
+
+ void IsoLineHLSLProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail );
+ void TriHLSLProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor );
+ void QuadHLSLProcessTessFactors( float TessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Ueq1, float TessFactor_Veq1,
+ float insideTessFactor_U, float insideTessFactor_V );
+
+};
+