#define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
#define NR_INTBITS (is_64bit ? 64 : 32)
+/* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
STATIC_INLINE_SIM_FPU (unsigned64)
pack_fpu (const sim_fpu *src,
int is_double)
fraction = 0;
break;
case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
ASSERT (src->fraction >= IMPLICIT_1);
ASSERT (src->fraction < IMPLICIT_2);
if (src->normal_exp < NORMAL_EXPMIN)
}
+/* Unpack a 32/64 bit integer into a sim_fpu structure */
STATIC_INLINE_SIM_FPU (void)
unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
{
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
- dst->class = sim_fpu_class_number;
+ dst->class = sim_fpu_class_denorm;
dst->sign = sign;
fraction <<= NR_GUARDS;
while (fraction < IMPLICIT_1)
}
+/* Convert a floating point into an integer */
STATIC_INLINE_SIM_FPU (int)
fpu2i (signed64 *i,
const sim_fpu *s,
return status;
}
+/* convert an integer into a floating point */
STATIC_INLINE_SIM_FPU (int)
i2fpu (sim_fpu *f, signed64 i, int is_64bit)
{
}
+/* Convert a floating point into an integer */
STATIC_INLINE_SIM_FPU (int)
fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
{
return 0;
}
+/* Convert an unsigned integer into a floating point */
STATIC_INLINE_SIM_FPU (int)
u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
{
return sim_fpu_status_invalid_snan;
break;
case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
{
int status;
ASSERT (f->fraction < IMPLICIT_2);
if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
&& !(denorm & sim_fpu_denorm_zero))
{
-
status = do_normal_round (f, shift + NR_GUARDS, round);
if (f->fraction == 0) /* rounding underflowed */
- status |= do_normal_underflow (f, is_double, round);
+ {
+ status |= do_normal_underflow (f, is_double, round);
+ }
else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
{
status |= sim_fpu_status_denorm;
before rounding, some after! */
if (status & sim_fpu_status_inexact)
status |= sim_fpu_status_underflow;
+ /* Flag that resultant value has been denormalized */
+ f->class = sim_fpu_class_denorm;
}
else if ((denorm & sim_fpu_denorm_underflow_inexact))
{
/* oops! rounding caused overflow */
status |= do_normal_overflow (f, is_double, round);
}
- ASSERT ((f->class == sim_fpu_class_number)
+ ASSERT ((f->class == sim_fpu_class_number
+ || f->class == sim_fpu_class_denorm)
<= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
return status;
}
{
switch (d->class)
{
+ case sim_fpu_class_denorm:
case sim_fpu_class_number:
return 1;
default:
}
}
+INLINE_SIM_FPU (int)
+sim_fpu_is_denorm (const sim_fpu *d)
+{
+ switch (d->class)
+ {
+ case sim_fpu_class_denorm:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
INLINE_SIM_FPU (int)
sim_fpu_is (const sim_fpu *d)
{
return SIM_FPU_IS_PINF;
case sim_fpu_class_number:
if (d->sign)
- return SIM_FPU_IS_NNUM;
+ return SIM_FPU_IS_NNUMBER;
else
- return SIM_FPU_IS_PNUM;
-#if 0
- /* FIXME: Since the intermediate sim_fpu format can hold numbers
- far smaller then the targets FP format, the test for denorm
- is currently bogus. Perhaphs the code converting a number to
- the internal format should flag such situtations with
- `ndemorm' */
- case ???:
+ return SIM_FPU_IS_PNUMBER;
+ case sim_fpu_class_denorm:
if (d->sign)
return SIM_FPU_IS_NDENORM;
else
return SIM_FPU_IS_PDENORM;
-#endif
case sim_fpu_class_zero:
if (d->sign)
return SIM_FPU_IS_NZERO;
print (arg, "INF");
break;
case sim_fpu_class_number:
+ case sim_fpu_class_denorm:
print (arg, "1.");
print_bits (f->fraction, NR_FRAC_GUARD - 1, print, arg);
print (arg, "*2^%+-5d", f->normal_exp);
-#ifndef _SIM_FPU_H_
-#define _SIM_FPU_H_
+#ifndef SIM_FPU_H
+#define SIM_FPU_H
-/* the FPU intermediate type */
+
+
+/* The FPU intermediate type - this object, passed by reference,
+ should be treated as opaque.
+
+
+ Pragmatics - pass struct by ref:
+
+ The alternatives for this object/interface that were considered
+ were: a packed 64 bit value; an unpacked structure passed by value;
+ and an unpacked structure passed by reference.
+
+ The packed 64 bit value was rejected because: it limited the
+ precision of intermediate values; reasonable performance would only
+ be achieved when the sim_fpu package was in-lined allowing repeated
+ unpacking operations to be eliminated.
+
+ For unpacked structures (passed by value and reference), the code
+ quality of GCC-2.7 (on x86) for each alternative was compared.
+ Needless to say the results, while better then for a packed 64 bit
+ object, were still poor (GCC had only limited support for the
+ optimization of references to structure members). Regardless, the
+ struct-by-ref alternative achieved better results when compiled
+ with (better speed) and without (better code density) in-lining.
+ Here's looking forward to an improved GCC optimizer.
+
+
+ Pragmatics - avoid host FP hardware:
+
+ FP operations can be implemented by either: the host's floating
+ point hardware; or by emulating the FP operations using integer
+ only routines. This is direct tradeoff between speed, portability
+ and correctness.
+
+ The two principal reasons for selecting portability and correctness
+ over speed are:
+
+ 1 - Correctness. The assumption that FP correctness wasn't an
+ issue for code being run on simulators was wrong. Instead of
+ running FP tolerant (?) code, simulator users instead typically run
+ very aggressive FP code sequences. The sole purpose of those
+ sequences being to test the target ISA's FP implementation.
+
+ 2 - Portability. The host FP implementation is not predictable. A
+ simulator modeling aggressive FP code sequences using the hosts FPU
+ relies heavily on the correctness of the hosts FP implementation.
+ It turns out that such trust can be misplaced. The behavior of
+ host FP implementations when handling edge conditions such as SNaNs
+ and exceptions varied widely.
+
+
+ */
+
+
+typedef enum
+{
+ sim_fpu_class_zero,
+ sim_fpu_class_snan,
+ sim_fpu_class_qnan,
+ sim_fpu_class_number,
+ sim_fpu_class_denorm,
+ sim_fpu_class_infinity,
+} sim_fpu_class;
typedef struct _sim_fpu {
- double val;
+ sim_fpu_class class;
+ int normal_exp;
+ int result;
+ int sign;
+ unsigned64 fraction;
} sim_fpu;
-/* Directly map a 32/64bit register quantity into the sim_fpu internal
- type ready for various arithmetic and conversion operations. */
-INLINE_SIM_FPU (sim_fpu) sim_fpu_32to (unsigned32 s);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_64to (unsigned64 s);
+/* Rounding options.
+
+ The value zero (sim_fpu_round_default) for ALU operations indicates
+ that, when possible, rounding should be avoided. */
-INLINE_SIM_FPU (unsigned32) sim_fpu_to32 (sim_fpu s);
-INLINE_SIM_FPU (unsigned64) sim_fpu_to64 (sim_fpu s);
+typedef enum
+{
+ sim_fpu_round_default = 0,
+ sim_fpu_round_near = 1,
+ sim_fpu_round_zero = 2,
+ sim_fpu_round_up = 3,
+ sim_fpu_round_down = 4,
+} sim_fpu_round;
-/* Arrithmetic operators */
+/* Options when handling denormalized numbers. */
-INLINE_SIM_FPU (sim_fpu) sim_fpu_add (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_sub (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_mul (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_div (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_inv (sim_fpu l);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_sqrt (sim_fpu sqr);
+typedef enum
+{
+ sim_fpu_denorm_underflow_inexact = 1,
+ sim_fpu_denorm_zero = 2,
+} sim_fpu_denorm;
-/* Conversion of integer value into floating point types */
-INLINE_SIM_FPU (sim_fpu) sim_fpu_i32to (signed32 s);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_u32to (unsigned32 s);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_i64to (signed64 s);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_u64to (unsigned64 s);
+/* Status values returned by FPU operators.
+ When checking the result of an FP sequence (ex 32to, add, single,
+ to32) the caller may either: check the return value of each FP
+ operator; or form the union (OR) of the returned values and examine
+ them once at the end.
-/* Conversion of internal sim_fpu type to host float and double
- formats - for debuging/tracing */
+ FIXME: This facility is still being developed. The choice of
+ status values returned and their exact meaning may changed in the
+ future. */
-INLINE_SIM_FPU (float) sim_fpu_2f (sim_fpu f);
-INLINE_SIM_FPU (double) sim_fpu_2d (sim_fpu d);
+typedef enum
+{
+ sim_fpu_status_invalid_snan = 1,
+ sim_fpu_status_invalid_qnan = 2,
+ sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
+ sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
+ sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
+ sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
+ sim_fpu_status_invalid_cvi = 64, /* convert to integer */
+ sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
+ sim_fpu_status_invalid_cmp = 256, /* compare */
+ sim_fpu_status_invalid_sqrt = 512,
+ sim_fpu_status_rounded = 1024,
+ sim_fpu_status_inexact = 2048,
+ sim_fpu_status_overflow = 4096,
+ sim_fpu_status_underflow = 8192,
+ sim_fpu_status_denorm = 16384,
+} sim_fpu_status;
-#if 0
-INLINE_SIM_FPU (sim_fpu) sim_fpu_f2 (float f);
-INLINE_SIM_FPU (sim_fpu) sim_fpu_d2 (double d);
+
+
+
+/* Directly map between a 32/64 bit register and the sim_fpu internal
+ type.
+
+ When converting from the 32/64 bit packed format to the sim_fpu
+ internal type, the operation is exact.
+
+ When converting from the sim_fpu internal type to 32/64 bit packed
+ format, the operation may result in a loss of precision. The
+ configuration macro WITH_FPU_CONVERSION controls this. By default,
+ silent round to nearest is performed. Alternativly, round up,
+ round down and round to zero can be performed. In a simulator
+ emulating exact FPU behavour, sim_fpu_round_{32,64} should be
+ called before packing the sim_fpu value. */
+
+INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
+INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
+INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
+
+INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
+INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
+INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
+
+#if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
+#define sim_fpu_tofp sim_fpu_to32
+#define sim_fpu_fpto sim_fpu_32to
+#define sim_fpu_round_fp sim_fpu_round_32
+#endif
+#if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
+#define sim_fpu_tofp sim_fpu_to64
+#define sim_fpu_fpto sim_fpu_64to
+#define sim_fpu_round_fp sim_fpu_round_64
#endif
-/* Signalling or NonSignalling NaN */
+/* Rounding operators.
+
+ Force an intermediate result to an exact 32/64 bit
+ representation. */
+
+INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
+ sim_fpu_round round,
+ sim_fpu_denorm denorm);
+INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
+ sim_fpu_round round,
+ sim_fpu_denorm denorm);
+
+
+
+/* Arrithmetic operators.
+
+ FIXME: In the future, additional arguments ROUNDING and BITSIZE may
+ be added. */
+
+INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
+ const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
+ const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
+ const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
+ const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
+ const sim_fpu *a);
+INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
+ const sim_fpu *a);
+INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
+ const sim_fpu *a);
+INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
+ const sim_fpu *sqr);
+
+
+
+/* Conversion of integer <-> floating point. */
+
+INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
+ sim_fpu_round round);
+
+INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
+ sim_fpu_round round);
+INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
+ sim_fpu_round round);
+
+
+
+/* Conversion of internal sim_fpu type to host double format.
+
+ For debuging/tracing only. A SNaN is never returned. */
+
+/* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
+INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
+
+/* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
+INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
+
+
+
+/* Specific number classes.
+
+ NB: When either a 32/64 bit floating points is converted to
+ internal format, or an internal format number is rounded to 32/64
+ bit precision, a special marker is retained that indicates that the
+ value was normalized. For such numbers both is_number and
+ is_denorm will return true. */
+
+INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
+INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
+INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
+
+INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
+INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
+INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
+INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
+
+
+/* Specific comparison operators
+
+ The comparison operators set *IS to zero and return a nonzero
+ result for NaNs et.al. */
+
+INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
+
+INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
+INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
+
+
+
+/* General number class and comparison operators.
+
+ The result of the comparison is indicated by returning one of the
+ values below. Efficient emulation of a target FP compare
+ instruction can be achieved by redefining the values below to match
+ corresponding target FP status bits.
+
+ For instance. SIM_FPU_QNAN may be redefined to be the bit
+ `INVALID' while SIM_FPU_NINF might be redefined as the bits
+ `NEGATIVE | INFINITY | VALID'. */
+
+#ifndef SIM_FPU_IS_SNAN
+enum {
+ SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
+ SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */
+ SIM_FPU_IS_NINF = 3, /* -infinity */
+ SIM_FPU_IS_PINF = 4, /* +infinity */
+ SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
+ SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
+ SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
+ SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
+ SIM_FPU_IS_NZERO = 9, /* -0 */
+ SIM_FPU_IS_PZERO = 10, /* +0 */
+};
+#endif
+
+INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
+INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
+
+
+
+/* A constant of useful numbers */
+
+extern const sim_fpu sim_fpu_zero;
+extern const sim_fpu sim_fpu_one;
+extern const sim_fpu sim_fpu_two;
+extern const sim_fpu sim_fpu_qnan;
+
-INLINE_SIM_FPU (int) sim_fpu_is_nan (sim_fpu s);
+/* For debugging */
+typedef void sim_fpu_print_func (void *, char *, ...);
-/* compare l with r; return <0, ==0, >0 accordingly */
+INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
+ sim_fpu_print_func *print,
+ void *arg);
-INLINE_SIM_FPU (int) sim_fpu_is_lt (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (int) sim_fpu_is_le (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (int) sim_fpu_is_eq (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (int) sim_fpu_is_ne (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (int) sim_fpu_is_ge (sim_fpu l, sim_fpu r);
-INLINE_SIM_FPU (int) sim_fpu_is_gt (sim_fpu l, sim_fpu r);
+INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
+ sim_fpu_print_func *print,
+ void *arg);
#endif