* :cpp:enumerator:`RESOLUTION <cvc5::PfRule::RESOLUTION>`
* - let :math:`C_1'` be equal, in its set representation, to :math:`C_1`,
* - for each :math:`i > 1`, let :math:`C_i'` be equal, it its set
- * representation, to :math:`C_{i-1} \diamond{L_{i-1},\mathit{pol}_{i-1}} C_i'`
+ * representation, to :math:`C_{i-1} \diamond{L_{i-1},\mathit{pol}_{i-1}}
+ * C_i'`
*
* The result of the chain resolution is :math:`C`, which is equal, in its set
* representation, to :math:`C_n'`
// strings::InferProofCons::convert.
STRING_INFERENCE,
- //================================================= Arithmetic rules
- // ======== Adding Inequalities
- // Note: an ArithLiteral is a term of the form (>< poly const)
- // where
- // >< is >=, >, ==, <, <=, or not(== ...).
- // poly is a polynomial
- // const is a rational constant
-
- // Children: (P1:l1, ..., Pn:ln)
- // where each li is an ArithLiteral
- // not(= ...) is dis-allowed!
- //
- // Arguments: (k1, ..., kn), non-zero reals
- // ---------------------
- // Conclusion: (>< t1 t2)
- // where >< is the fusion of the combination of the ><i, (flipping each it
- // its ki is negative). >< is always one of <, <=
- // NB: this implies that lower bounds must have negative ki,
- // and upper bounds must have positive ki.
- // t1 is the sum of the scaled polynomials (k_1 * poly_1 + ... + k_n *
- // poly_n) t2 is the sum of the scaled constants (k_1 * const_1 + ... + k_n
- // * const_n)
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Adding inequalities**
+ *
+ * An arithmetic literal is a term of the form :math:`p \diamond c` where
+ * :math:`\diamond \in \{ <, \leq, =, \geq, > \}`, :math:`p` a
+ * polynomial and :math:`c` a rational constant.
+ *
+ * .. math::
+ * \inferrule{l_1 \dots l_n \mid k_1 \dots k_n}{t_1 \diamond t_2}
+ *
+ * where :math:`k_i \in \mathbb{R}, k_i \neq 0`, :math:`\diamond` is the
+ * fusion of the :math:`\diamond_i` (flipping each if its :math:`k_i` is
+ * negative) such that :math:`\diamond_i \in \{ <, \leq \}` (this implies that
+ * lower bounds have negative :math:`k_i` and upper bounds have positive
+ * :math:`k_i`), :math:`t_1` is the sum of the scaled polynomials and
+ * :math:`t_2` is the sum of the scaled constants:
+ *
+ * .. math::
+ * t_1 \colon= k_1 \cdot p_1 + \cdots + k_n \cdot p_n
+ *
+ * t_2 \colon= k_1 \cdot c_1 + \cdots + k_n \cdot c_n
+ *
+ * \endverbatim
+ */
MACRO_ARITH_SCALE_SUM_UB,
- // ======== Sum Upper Bounds
- // Children: (P1, ... , Pn)
- // where each Pi has form (><i, Li, Ri)
- // for ><i in {<, <=, ==}
- // Conclusion: (>< L R)
- // where >< is < if any ><i is <, and <= otherwise.
- // L is (+ L1 ... Ln)
- // R is (+ R1 ... Rn)
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Sum upper bounds**
+ *
+ * .. math::
+ * \inferrule{P_1 \dots P_n \mid -}{L \diamond R}
+ *
+ * where :math:`P_i` has the form :math:`L_i \diamond_i R_i` and
+ * :math:`\diamond_i \in \{<, \leq, =\}`. Furthermore :math:`\diamond = <` if
+ * :math:`\diamond_i = <` for any :math:`i` and :math:`\diamond = \leq`
+ * otherwise, :math:`L = L_1 + \cdots + L_n` and :math:`R = R_1 + \cdots + R_n`.
+ * \endverbatim
+ */
ARITH_SUM_UB,
- // ======== Tightening Strict Integer Upper Bounds
- // Children: (P:(< i c))
- // where i has integer type.
- // Arguments: none
- // ---------------------
- // Conclusion: (<= i greatestIntLessThan(c)})
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Tighten strict integer upper bounds**
+ *
+ * .. math::
+ * \inferrule{i < c \mid -}{i \leq \lfloor c \rfloor}
+ *
+ * where :math:`i` has integer type.
+ * \endverbatim
+ */
INT_TIGHT_UB,
- // ======== Tightening Strict Integer Lower Bounds
- // Children: (P:(> i c))
- // where i has integer type.
- // Arguments: none
- // ---------------------
- // Conclusion: (>= i leastIntGreaterThan(c)})
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Tighten strict integer lower bounds**
+ *
+ * .. math::
+ * \inferrule{i > c \mid -}{i \geq \lceil c \rceil}
+ *
+ * where :math:`i` has integer type.
+ * \endverbatim
+ */
INT_TIGHT_LB,
- // ======== Trichotomy of the reals
- // Children: (A B)
- // Arguments: (C)
- // ---------------------
- // Conclusion: (C),
- // where (not A) (not B) and C
- // are (> x c) (< x c) and (= x c)
- // in some order
- // note that "not" here denotes arithmetic negation, flipping
- // >= to <, etc.
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Trichotomy of the reals**
+ *
+ * .. math::
+ * \inferrule{A, B \mid C}{C}
+ *
+ * where :math:`\neg A, \neg B, C` are :math:`x < c, x = c, x > c` in some order.
+ * Note that :math:`\neg` here denotes arithmetic negation, i.e., flipping :math:`\geq` to :math:`<` etc.
+ * \endverbatim
+ */
ARITH_TRICHOTOMY,
- // ======== Arithmetic operator elimination
- // Children: none
- // Arguments: (t)
- // ---------------------
- // Conclusion: arith::OperatorElim::getAxiomFor(t)
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Operator elimination**
+ *
+ * .. math::
+ * \inferrule{- \mid t}{\texttt{arith::OperatorElim::getAxiomFor(t)}}
+ * \endverbatim
+ */
ARITH_OP_ELIM_AXIOM,
- // ======== Arithmetic polynomial normalization
- // Children: none
- // Arguments: ((= t s))
- // ---------------------
- // Conclusion: (= t s)
- // where arith::PolyNorm::isArithPolyNorm(t, s) = true
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Polynomial normalization**
+ *
+ * .. math::
+ * \inferrule{- \mid t = s}{t = s}
+ *
+ * where :math:`\texttt{arith::PolyNorm::isArithPolyNorm(t, s)} = \top`.
+ * \endverbatim
+ */
ARITH_POLY_NORM,
- //======== Multiplication sign inference
- // Children: none
- // Arguments: (f1, ..., fk, m)
- // ---------------------
- // Conclusion: (=> (and f1 ... fk) (~ m 0))
- // Where f1, ..., fk are variables compared to zero (less, greater or not
- // equal), m is a monomial from these variables, and ~ is the comparison (less
- // or greater) that results from the signs of the variables. All variables
- // with even exponent in m should be given as not equal to zero while all
- // variables with odd exponent in m should be given as less or greater than
- // zero.
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Sign inference**
+ *
+ * .. math::
+ * \inferrule{- \mid f_1 \dots f_k, m}{(f_1 \land \dots \land f_k) \rightarrow m \diamond 0}
+ *
+ * where :math:`f_1 \dots f_k` are variables compared to zero (less, greater
+ * or not equal), :math:`m` is a monomial from these variables and
+ * :math:`\diamond` is the comparison (less or equal) that results from the
+ * signs of the variables. All variables with even exponent in :math:`m`
+ * should be given as not equal to zero while all variables with odd exponent
+ * in :math:`m` should be given as less or greater than zero.
+ * \endverbatim
+ */
ARITH_MULT_SIGN,
- //======== Multiplication with positive factor
- // Children: none
- // Arguments: (m, (rel lhs rhs))
- // ---------------------
- // Conclusion: (=> (and (> m 0) (rel lhs rhs)) (rel (* m lhs) (* m rhs)))
- // Where rel is a relation symbol.
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Multiplication with positive factor**
+ *
+ * .. math::
+ * \inferrule{- \mid m, l \diamond r}{(m > 0 \land l \diamond r) \rightarrow m \cdot l \diamond m \cdot r}
+ *
+ * where :math:`\diamond` is a relation symbol.
+ * \endverbatim
+ */
ARITH_MULT_POS,
- //======== Multiplication with negative factor
- // Children: none
- // Arguments: (m, (rel lhs rhs))
- // ---------------------
- // Conclusion: (=> (and (< m 0) (rel lhs rhs)) (rel_inv (* m lhs) (* m rhs)))
- // Where rel is a relation symbol and rel_inv the inverted relation symbol.
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Multiplication with negative factor**
+ *
+ * .. math::
+ * \inferrule{- \mid m, l \diamond r}{(m < 0 \land l \diamond r) \rightarrow m \cdot l \diamond_{inv} m \cdot r}
+ *
+ * where :math:`\diamond` is a relation symbol and :math:`\diamond_{inv}` the
+ * inverted relation symbol.
+ * \endverbatim
+ */
ARITH_MULT_NEG,
- //======== Multiplication tangent plane
- // Children: none
- // Arguments: (t, x, y, a, b, sgn)
- // ---------------------
- // Conclusion:
- // sgn=-1: (= (<= t tplane) (or (and (<= x a) (>= y b)) (and (>= x a) (<= y
- // b))) sgn= 1: (= (>= t tplane) (or (and (<= x a) (<= y b)) (and (>= x a)
- // (>= y b)))
- // Where x,y are real terms (variables or extended terms), t = (* x y)
- // (possibly under rewriting), a,b are real constants, and sgn is either -1
- // or 1. tplane is the tangent plane of x*y at (a,b): b*x + a*y - a*b
+ /**
+ * \verbatim embed:rst:leading-asterisk
+ * **Arithmetic -- Multiplication tangent plane**
+ *
+ * .. math::
+ * \inferruleSC{- \mid t, x, y, a, b, \sigma}{(t \leq tplane) \leftrightarrow ((x \leq a \land y \geq b) \lor (x \geq a \land y \leq b))}{if $\sigma = -1$}
+ *
+ * \inferruleSC{- \mid t, x, y, a, b, \sigma}{(t \geq tplane) \leftrightarrow ((x \leq a \land y \leq b) \lor (x \geq a \land y \geq b))}{if $\sigma = 1$}
+ *
+ * where :math:`x,y` are real terms (variables or extended terms),
+ * :math:`t = x \cdot y` (possibly under rewriting), :math:`a,b` are real
+ * constants, :math:`\sigma \in \{ 1, -1\}` and :math:`tplane := b \cdot x + a \cdot y - a \cdot b` is the tangent plane of :math:`x \cdot y` at :math:`(a,b)`.
+ * \endverbatim
+ */
ARITH_MULT_TANGENT,
/**