#include "brw_blorp.h"
#include "brw_context.h"
-#include "brw_blorp_blit_eu.h"
#include "brw_state.h"
#include "brw_meta_util.h"
return b.shader;
}
-class brw_blorp_blit_program : public brw_blorp_eu_emitter
-{
-public:
- brw_blorp_blit_program(struct brw_context *brw,
- const brw_blorp_blit_prog_key *key);
-
- const GLuint *compile(struct brw_context *brw, bool debug_flag,
- GLuint *program_size);
-
- brw_blorp_prog_data prog_data;
-
-private:
- void alloc_regs();
- void alloc_push_const_regs(int base_reg);
- void compute_frag_coords();
- void translate_tiling(bool old_tiled_w, bool new_tiled_w);
- void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
- void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
- void translate_dst_to_src();
- void clamp_tex_coords(struct brw_reg regX, struct brw_reg regY,
- struct brw_reg clampX0, struct brw_reg clampY0,
- struct brw_reg clampX1, struct brw_reg clampY1);
- void single_to_blend();
- void manual_blend_average(unsigned num_samples);
- void manual_blend_bilinear(unsigned num_samples);
- void sample(struct brw_reg dst);
- void texel_fetch(struct brw_reg dst);
- void mcs_fetch();
- void texture_lookup(struct brw_reg dst, enum opcode op,
- const sampler_message_arg *args, int num_args);
- void render_target_write();
-
- /**
- * Base-2 logarithm of the maximum number of samples that can be blended.
- */
- static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
-
- struct brw_context *brw;
- const brw_blorp_blit_prog_key *key;
-
- /* Thread dispatch header */
- struct brw_reg R0;
-
- /* Pixel X/Y coordinates (always in R1). */
- struct brw_reg R1;
-
- /* Push constants */
- struct brw_reg dst_x0;
- struct brw_reg dst_x1;
- struct brw_reg dst_y0;
- struct brw_reg dst_y1;
- /* Top right coordinates of the rectangular grid used for scaled blitting */
- struct brw_reg rect_grid_x1;
- struct brw_reg rect_grid_y1;
- struct {
- struct brw_reg multiplier;
- struct brw_reg offset;
- } x_transform, y_transform;
- struct brw_reg src_z;
-
- /* Data read from texture (4 vec16's per array element) */
- struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
-
- /* Auxiliary storage for the contents of the MCS surface.
- *
- * Since the sampler always returns 8 registers worth of data, this is 8
- * registers wide, even though we only use the first 2 registers of it.
- */
- struct brw_reg mcs_data;
-
- /* X coordinates. We have two of them so that we can perform coordinate
- * transformations easily.
- */
- struct brw_reg x_coords[2];
-
- /* Y coordinates. We have two of them so that we can perform coordinate
- * transformations easily.
- */
- struct brw_reg y_coords[2];
-
- /* X, Y coordinates of the pixel from which we need to fetch the specific
- * sample. These are used for multisample scaled blitting.
- */
- struct brw_reg x_sample_coords;
- struct brw_reg y_sample_coords;
-
- /* Fractional parts of the x and y coordinates, used as bilinear interpolation coefficients */
- struct brw_reg x_frac;
- struct brw_reg y_frac;
-
- /* Which element of x_coords and y_coords is currently in use.
- */
- int xy_coord_index;
-
- /* True if, at the point in the program currently being compiled, the
- * sample index is known to be zero.
- */
- bool s_is_zero;
-
- /* Register storing the sample index when s_is_zero is false. */
- struct brw_reg sample_index;
-
- /* Temporaries */
- struct brw_reg t1;
- struct brw_reg t2;
-
- /* MRF used for sampling and render target writes */
- GLuint base_mrf;
-};
-
-brw_blorp_blit_program::brw_blorp_blit_program(
- struct brw_context *brw, const brw_blorp_blit_prog_key *key)
- : brw_blorp_eu_emitter(), brw(brw), key(key)
-{
-}
-
-const GLuint *
-brw_blorp_blit_program::compile(struct brw_context *brw, bool debug_flag,
- GLuint *program_size)
-{
- /* Sanity checks */
- if (key->dst_tiled_w && key->rt_samples > 0) {
- /* If the destination image is W tiled and multisampled, then the thread
- * must be dispatched once per sample, not once per pixel. This is
- * necessary because after conversion between W and Y tiling, there's no
- * guarantee that all samples corresponding to a single pixel will still
- * be together.
- */
- assert(key->persample_msaa_dispatch);
- }
-
- if (key->blend) {
- /* We are blending, which means we won't have an opportunity to
- * translate the tiling and sample count for the texture surface. So
- * the surface state for the texture must be configured with the correct
- * tiling and sample count.
- */
- assert(!key->src_tiled_w);
- assert(key->tex_samples == key->src_samples);
- assert(key->tex_layout == key->src_layout);
- assert(key->tex_samples > 0);
- }
-
- if (key->persample_msaa_dispatch) {
- /* It only makes sense to do persample dispatch if the render target is
- * configured as multisampled.
- */
- assert(key->rt_samples > 0);
- }
-
- /* Make sure layout is consistent with sample count */
- assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
- (key->tex_samples == 0));
- assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
- (key->rt_samples == 0));
- assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
- (key->src_samples == 0));
- assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
- (key->dst_samples == 0));
-
- /* Set up prog_data */
- brw_blorp_prog_data_init(&prog_data);
- prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
-
- alloc_regs();
- compute_frag_coords();
-
- /* Render target and texture hardware don't support W tiling until Gen8. */
- const bool rt_tiled_w = false;
- const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
-
- /* The address that data will be written to is determined by the
- * coordinates supplied to the WM thread and the tiling and sample count of
- * the render target, according to the formula:
- *
- * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
- *
- * If the actual tiling and sample count of the destination surface are not
- * the same as the configuration of the render target, then these
- * coordinates are wrong and we have to adjust them to compensate for the
- * difference.
- */
- if (rt_tiled_w != key->dst_tiled_w ||
- key->rt_samples != key->dst_samples ||
- key->rt_layout != key->dst_layout) {
- encode_msaa(key->rt_samples, key->rt_layout);
- /* Now (X, Y, S) = detile(rt_tiling, offset) */
- translate_tiling(rt_tiled_w, key->dst_tiled_w);
- /* Now (X, Y, S) = detile(dst_tiling, offset) */
- decode_msaa(key->dst_samples, key->dst_layout);
- }
-
- /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
- *
- * That is: X, Y and S now contain the true coordinates and sample index of
- * the data that the WM thread should output.
- *
- * If we need to kill pixels that are outside the destination rectangle,
- * now is the time to do it.
- */
-
- if (key->use_kill)
- emit_kill_if_outside_rect(x_coords[xy_coord_index],
- y_coords[xy_coord_index],
- dst_x0, dst_x1, dst_y0, dst_y1);
-
- /* Next, apply a translation to obtain coordinates in the source image. */
- translate_dst_to_src();
-
- /* If the source image is not multisampled, then we want to fetch sample
- * number 0, because that's the only sample there is.
- */
- if (key->src_samples == 0)
- s_is_zero = true;
-
- /* X, Y, and S are now the coordinates of the pixel in the source image
- * that we want to texture from. Exception: if we are blending, then S is
- * irrelevant, because we are going to fetch all samples.
- */
- if (key->blend && !key->blit_scaled) {
- if (brw->gen == 6) {
- /* Gen6 hardware an automatically blend using the SAMPLE message */
- single_to_blend();
- sample(texture_data[0]);
- } else {
- /* Gen7+ hardware doesn't automaticaly blend. */
- manual_blend_average(key->src_samples);
- }
- } else if(key->blend && key->blit_scaled) {
- manual_blend_bilinear(key->src_samples);
- } else {
- /* We aren't blending, which means we just want to fetch a single sample
- * from the source surface. The address that we want to fetch from is
- * related to the X, Y and S values according to the formula:
- *
- * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
- *
- * If the actual tiling and sample count of the source surface are not
- * the same as the configuration of the texture, then we need to adjust
- * the coordinates to compensate for the difference.
- */
- if ((tex_tiled_w != key->src_tiled_w ||
- key->tex_samples != key->src_samples ||
- key->tex_layout != key->src_layout) &&
- !key->bilinear_filter) {
- encode_msaa(key->src_samples, key->src_layout);
- /* Now (X, Y, S) = detile(src_tiling, offset) */
- translate_tiling(key->src_tiled_w, tex_tiled_w);
- /* Now (X, Y, S) = detile(tex_tiling, offset) */
- decode_msaa(key->tex_samples, key->tex_layout);
- }
-
- if (key->bilinear_filter) {
- sample(texture_data[0]);
- }
- else {
- /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
- *
- * In other words: X, Y, and S now contain values which, when passed to
- * the texturing unit, will cause data to be read from the correct
- * memory location. So we can fetch the texel now.
- */
- if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
- mcs_fetch();
- texel_fetch(texture_data[0]);
- }
- }
-
- /* Finally, write the fetched (or blended) value to the render target and
- * terminate the thread.
- */
- render_target_write();
-
- return get_program(brw, debug_flag, program_size);
-}
-
-void
-brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
-{
-#define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
-#define ALLOC_REG(name, type) \
- this->name = \
- retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, \
- base_reg + CONST_LOC(name) / 32, \
- (CONST_LOC(name) % 32) / 4), type)
-
- ALLOC_REG(dst_x0, BRW_REGISTER_TYPE_UD);
- ALLOC_REG(dst_x1, BRW_REGISTER_TYPE_UD);
- ALLOC_REG(dst_y0, BRW_REGISTER_TYPE_UD);
- ALLOC_REG(dst_y1, BRW_REGISTER_TYPE_UD);
- ALLOC_REG(rect_grid_x1, BRW_REGISTER_TYPE_F);
- ALLOC_REG(rect_grid_y1, BRW_REGISTER_TYPE_F);
- ALLOC_REG(x_transform.multiplier, BRW_REGISTER_TYPE_F);
- ALLOC_REG(x_transform.offset, BRW_REGISTER_TYPE_F);
- ALLOC_REG(y_transform.multiplier, BRW_REGISTER_TYPE_F);
- ALLOC_REG(y_transform.offset, BRW_REGISTER_TYPE_F);
- ALLOC_REG(src_z, BRW_REGISTER_TYPE_UD);
-#undef CONST_LOC
-#undef ALLOC_REG
-}
-
-void
-brw_blorp_blit_program::alloc_regs()
-{
- int reg = 0;
- this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
- this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
- prog_data.first_curbe_grf_0 = reg;
- alloc_push_const_regs(reg);
- reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
- for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
- this->texture_data[i] =
- retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
- reg += 8;
- }
- this->mcs_data =
- retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
-
- for (int i = 0; i < 2; ++i) {
- this->x_coords[i]
- = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
- reg += 2;
- this->y_coords[i]
- = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
- reg += 2;
- }
-
- if (key->blit_scaled && key->blend) {
- this->x_sample_coords = brw_vec8_grf(reg, 0);
- reg += 2;
- this->y_sample_coords = brw_vec8_grf(reg, 0);
- reg += 2;
- this->x_frac = brw_vec8_grf(reg, 0);
- reg += 2;
- this->y_frac = brw_vec8_grf(reg, 0);
- reg += 2;
- }
-
- this->xy_coord_index = 0;
- this->sample_index
- = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
- reg += 2;
- this->t1 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
- reg += 2;
- this->t2 = retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD);
- reg += 2;
-
- /* Make sure we didn't run out of registers */
- assert(reg <= GEN7_MRF_HACK_START);
-
- int mrf = 2;
- this->base_mrf = mrf;
-}
-
-/* In the code that follows, X and Y can be used to quickly refer to the
- * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
- * prime") to the inactive elements.
- *
- * S can be used to quickly refer to sample_index.
- */
-#define X x_coords[xy_coord_index]
-#define Y y_coords[xy_coord_index]
-#define Xp x_coords[!xy_coord_index]
-#define Yp y_coords[!xy_coord_index]
-#define S sample_index
-
-/* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do
- * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
- */
-#define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
-
-/**
- * Emit code to compute the X and Y coordinates of the pixels being rendered
- * by this WM invocation.
- *
- * Assuming the render target is set up for Y tiling, these (X, Y) values are
- * related to the address offset where outputs will be written by the formula:
- *
- * (X, Y, S) = decode_msaa(detile(offset)).
- *
- * (See brw_blorp_blit_program).
- */
-void
-brw_blorp_blit_program::compute_frag_coords()
-{
- /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
- * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
- * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
- * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
- *
- * Pixels within a subspan are laid out in this arrangement:
- * 0 1
- * 2 3
- *
- * So, to compute the coordinates of each pixel, we need to read every 2nd
- * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
- * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
- * In other words, the data we want to access is R1.4<2;4,0>UW.
- *
- * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
- * result, since pixels n+1 and n+3 are in the right half of the subspan.
- */
- emit_add(vec16(retype(X, BRW_REGISTER_TYPE_UW)),
- stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
-
- /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
- * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
- * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
- * R1.4<2;4,0>UW).
- *
- * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
- * pixels n+2 and n+3 are in the bottom half of the subspan.
- */
- emit_add(vec16(retype(Y, BRW_REGISTER_TYPE_UW)),
- stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
-
- /* Move the coordinates to UD registers. */
- emit_mov(vec16(Xp), retype(X, BRW_REGISTER_TYPE_UW));
- emit_mov(vec16(Yp), retype(Y, BRW_REGISTER_TYPE_UW));
- SWAP_XY_AND_XPYP();
-
- if (key->persample_msaa_dispatch) {
- switch (key->rt_samples) {
- case 2:
- case 4: {
- /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
- * Therefore, subspan 0 will represent sample 0, subspan 1 will
- * represent sample 1, and so on.
- *
- * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
- * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to
- * populate a temporary variable with the sequence (0, 1, 2, 3), and
- * then copy from it using vstride=1, width=4, hstride=0.
- */
- struct brw_reg t1_uw1 = retype(t1, BRW_REGISTER_TYPE_UW);
- emit_mov(vec16(t1_uw1), key->rt_samples == 4 ?
- brw_imm_v(0x3210) : brw_imm_v(0x1010));
- /* Move to UD sample_index register. */
- emit_mov_8(S, stride(t1_uw1, 1, 4, 0));
- emit_mov_8(offset(S, 1), suboffset(stride(t1_uw1, 1, 4, 0), 2));
- break;
- }
- case 8: {
- /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
- * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
- * subspan 1 will represent sample 1, and so on. We can find the
- * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
- * Index") and multiplying by two (since samples are always delivered
- * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
- * 0xc0) >> 5.
- *
- * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
- * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
- * variable with the sequence (0, 1, 2, 3), and then reading from it
- * using vstride=1, width=4, hstride=0.
- */
- struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
- struct brw_reg t2_uw1 = retype(t2, BRW_REGISTER_TYPE_UW);
- struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
- emit_and(t1_ud1, r0_ud1, brw_imm_ud(0xc0));
- emit_shr(t1_ud1, t1_ud1, brw_imm_ud(5));
- emit_mov(vec16(t2_uw1), brw_imm_v(0x3210));
- emit_add(vec16(S), retype(t1_ud1, BRW_REGISTER_TYPE_UW),
- stride(t2_uw1, 1, 4, 0));
- emit_add_8(offset(S, 1),
- retype(t1_ud1, BRW_REGISTER_TYPE_UW),
- suboffset(stride(t2_uw1, 1, 4, 0), 2));
- break;
- }
- default:
- unreachable("Unrecognized sample count in "
- "brw_blorp_blit_program::compute_frag_coords()");
- }
- s_is_zero = false;
- } else {
- /* Either the destination surface is single-sampled, or the WM will be
- * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
- * per pixel). In either case, it's not meaningful to compute a sample
- * value. Just set it to 0.
- */
- s_is_zero = true;
- }
-}
-
-/**
- * Emit code to compensate for the difference between Y and W tiling.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
- *
- * (See brw_blorp_blit_program).
- *
- * It can only translate between W and Y tiling, so new_tiling and old_tiling
- * are booleans where true represents W tiling and false represents Y tiling.
- */
-void
-brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
-{
- if (old_tiled_w == new_tiled_w)
- return;
-
- /* In the code that follows, we can safely assume that S = 0, because W
- * tiling formats always use IMS layout.
- */
- assert(s_is_zero);
-
- if (new_tiled_w) {
- /* Given X and Y coordinates that describe an address using Y tiling,
- * translate to the X and Y coordinates that describe the same address
- * using W tiling.
- *
- * If we break down the low order bits of X and Y, using a
- * single letter to represent each low-order bit:
- *
- * X = A << 7 | 0bBCDEFGH
- * Y = J << 5 | 0bKLMNP (1)
- *
- * Then we can apply the Y tiling formula to see the memory offset being
- * addressed:
- *
- * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
- *
- * If we apply the W detiling formula to this memory location, that the
- * corresponding X' and Y' coordinates are:
- *
- * X' = A << 6 | 0bBCDPFH (3)
- * Y' = J << 6 | 0bKLMNEG
- *
- * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
- * we need to make the following computation:
- *
- * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
- * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
- */
- emit_and(t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
- emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
- emit_or(t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
- emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
- emit_and(t2, X, brw_imm_uw(8)); /* X & 0b1000 */
- emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
- emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
- emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
- emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
- emit_or(Yp, t1, t2);
- SWAP_XY_AND_XPYP();
- } else {
- /* Applying the same logic as above, but in reverse, we obtain the
- * formulas:
- *
- * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
- * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
- */
- emit_and(t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
- emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
- emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
- emit_shl(t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
- emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_shl(t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
- emit_or(t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
- | (Y & 0b1) << 1 */
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
- emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
- emit_and(t2, X, brw_imm_uw(4)); /* X & 0b100 */
- emit_shr(t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
- emit_or(Yp, t1, t2);
- SWAP_XY_AND_XPYP();
- }
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-void
-brw_blorp_blit_program::encode_msaa(unsigned num_samples,
- intel_msaa_layout layout)
-{
- switch (layout) {
- case INTEL_MSAA_LAYOUT_NONE:
- /* No translation necessary, and S should already be zero. */
- assert(s_is_zero);
- break;
- case INTEL_MSAA_LAYOUT_CMS:
- /* We can't compensate for compressed layout since at this point in the
- * program we haven't read from the MCS buffer.
- */
- unreachable("Bad layout in encode_msaa");
- case INTEL_MSAA_LAYOUT_UMS:
- /* No translation necessary. */
- break;
- case INTEL_MSAA_LAYOUT_IMS:
- switch (num_samples) {
- case 2:
- /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- * Y' = Y
- */
- case 4:
- /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- */
- emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
- if (!s_is_zero) {
- emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
- emit_or(t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
- }
- emit_shl(t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
- | (S & 0b1) << 1 */
- if (num_samples == 2) {
- emit_mov(Yp, Y);
- return;
- }
-
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
- emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
- if (!s_is_zero) {
- emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
- emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
- }
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_or(Yp, t1, t2);
- break;
- case 8:
- /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
- * | (X & 0b1)
- * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- */
- emit_and(t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
- emit_shl(t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
- if (!s_is_zero) {
- emit_and(t2, S, brw_imm_uw(4)); /* S & 0b100 */
- emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
- emit_and(t2, S, brw_imm_uw(1)); /* S & 0b1 */
- emit_shl(t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
- emit_or(t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
- | (S & 0b1) << 1 */
- }
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
- emit_shl(t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
- if (!s_is_zero) {
- emit_and(t2, S, brw_imm_uw(2)); /* S & 0b10 */
- emit_or(t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
- }
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_or(Yp, t1, t2);
- break;
- }
- SWAP_XY_AND_XPYP();
- s_is_zero = true;
- break;
- }
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-void
-brw_blorp_blit_program::decode_msaa(unsigned num_samples,
- intel_msaa_layout layout)
-{
- switch (layout) {
- case INTEL_MSAA_LAYOUT_NONE:
- /* No translation necessary, and S should already be zero. */
- assert(s_is_zero);
- break;
- case INTEL_MSAA_LAYOUT_CMS:
- /* We can't compensate for compressed layout since at this point in the
- * program we don't have access to the MCS buffer.
- */
- unreachable("Bad layout in encode_msaa");
- case INTEL_MSAA_LAYOUT_UMS:
- /* No translation necessary. */
- break;
- case INTEL_MSAA_LAYOUT_IMS:
- assert(s_is_zero);
- switch (num_samples) {
- case 2:
- /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b11) >> 1 | (X & 0b1)
- * S = (X & 0b10) >> 1
- */
- case 4:
- /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b11) >> 1 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (Y & 0b10) | (X & 0b10) >> 1
- */
- emit_and(t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
- emit_shr(t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
-
- if (num_samples == 2) {
- emit_mov(Yp, Y);
- emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
- emit_shr(S, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
- } else {
- emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
- emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_or(Yp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
- emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
- emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
- emit_or(S, t1, t2);
- }
- break;
- case 8:
- /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b111) >> 2 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
- */
- emit_and(t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
- emit_shr(t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
- emit_and(t2, X, brw_imm_uw(1)); /* X & 0b1 */
- emit_or(Xp, t1, t2);
- emit_and(t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
- emit_shr(t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
- emit_and(t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
- emit_or(Yp, t1, t2);
- emit_and(t1, X, brw_imm_uw(4)); /* X & 0b100 */
- emit_and(t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
- emit_or(t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
- emit_and(t2, X, brw_imm_uw(2)); /* X & 0b10 */
- emit_shr(t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
- emit_or(S, t1, t2);
- break;
- }
- s_is_zero = false;
- SWAP_XY_AND_XPYP();
- break;
- }
-}
-
-/**
- * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
- * coordinates.
- */
-void
-brw_blorp_blit_program::translate_dst_to_src()
-{
- struct brw_reg X_f = retype(X, BRW_REGISTER_TYPE_F);
- struct brw_reg Y_f = retype(Y, BRW_REGISTER_TYPE_F);
- struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
- struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
-
- /* Move the UD coordinates to float registers. */
- emit_mov(Xp_f, X);
- emit_mov(Yp_f, Y);
- /* Scale and offset */
- emit_mad(X_f, x_transform.offset, Xp_f, x_transform.multiplier);
- emit_mad(Y_f, y_transform.offset, Yp_f, y_transform.multiplier);
- if (key->blit_scaled && key->blend) {
- /* Translate coordinates to lay out the samples in a rectangular grid
- * roughly corresponding to sample locations.
- */
- emit_mul(X_f, X_f, brw_imm_f(key->x_scale));
- emit_mul(Y_f, Y_f, brw_imm_f(key->y_scale));
- /* Adjust coordinates so that integers represent pixel centers rather
- * than pixel edges.
- */
- emit_add(X_f, X_f, brw_imm_f(-0.5));
- emit_add(Y_f, Y_f, brw_imm_f(-0.5));
-
- /* Clamp the X, Y texture coordinates to properly handle the sampling of
- * texels on texture edges.
- */
- clamp_tex_coords(X_f, Y_f,
- brw_imm_f(0.0), brw_imm_f(0.0),
- rect_grid_x1, rect_grid_y1);
-
- /* Store the fractional parts to be used as bilinear interpolation
- * coefficients.
- */
- emit_frc(x_frac, X_f);
- emit_frc(y_frac, Y_f);
-
- /* Round the float coordinates down to nearest integer */
- emit_rndd(Xp_f, X_f);
- emit_rndd(Yp_f, Y_f);
- emit_mul(X_f, Xp_f, brw_imm_f(1.0f / key->x_scale));
- emit_mul(Y_f, Yp_f, brw_imm_f(1.0f / key->y_scale));
- SWAP_XY_AND_XPYP();
- } else if (!key->bilinear_filter) {
- /* Round the float coordinates down to nearest integer by moving to
- * UD registers.
- */
- emit_mov(Xp, X_f);
- emit_mov(Yp, Y_f);
- SWAP_XY_AND_XPYP();
- }
-}
-
-void
-brw_blorp_blit_program::clamp_tex_coords(struct brw_reg regX,
- struct brw_reg regY,
- struct brw_reg clampX0,
- struct brw_reg clampY0,
- struct brw_reg clampX1,
- struct brw_reg clampY1)
-{
- emit_max(regX, regX, clampX0);
- emit_max(regY, regY, clampY0);
- emit_min(regX, regX, clampX1);
- emit_min(regY, regY, clampY1);
-}
-
-
-
-void
-brw_blorp_blit_program::manual_blend_average(unsigned num_samples)
-{
- if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
- mcs_fetch();
-
- assert(key->texture_data_type == BRW_REGISTER_TYPE_F);
-
- /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
- *
- * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
- *
- * This ensures that when all samples have the same value, no numerical
- * precision is lost, since each addition operation always adds two equal
- * values, and summing two equal floating point values does not lose
- * precision.
- *
- * We perform this computation by treating the texture_data array as a
- * stack and performing the following operations:
- *
- * - push sample 0 onto stack
- * - push sample 1 onto stack
- * - add top two stack entries
- * - push sample 2 onto stack
- * - push sample 3 onto stack
- * - add top two stack entries
- * - add top two stack entries
- * - divide top stack entry by 4
- *
- * Note that after pushing sample i onto the stack, the number of add
- * operations we do is equal to the number of trailing 1 bits in i. This
- * works provided the total number of samples is a power of two, which it
- * always is for i965.
- *
- * For integer formats, we replace the add operations with average
- * operations and skip the final division.
- */
- unsigned stack_depth = 0;
- for (unsigned i = 0; i < num_samples; ++i) {
- assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
-
- /* Push sample i onto the stack */
- assert(stack_depth < ARRAY_SIZE(texture_data));
- if (i == 0) {
- s_is_zero = true;
- } else {
- s_is_zero = false;
- emit_mov(vec16(S), brw_imm_ud(i));
- }
- texel_fetch(texture_data[stack_depth++]);
-
- if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
- /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
- * suggests an optimization:
- *
- * "A simple optimization with probable large return in
- * performance is to compare the MCS value to zero (indicating
- * all samples are on sample slice 0), and sample only from
- * sample slice 0 using ld2dss if MCS is zero."
- *
- * Note that in the case where the MCS value is zero, sampling from
- * sample slice 0 using ld2dss and sampling from sample 0 using
- * ld2dms are equivalent (since all samples are on sample slice 0).
- * Since we have already sampled from sample 0, all we need to do is
- * skip the remaining fetches and averaging if MCS is zero.
- */
- emit_cmp_if(BRW_CONDITIONAL_NZ, mcs_data, brw_imm_ud(0));
- }
-
- /* Do count_trailing_one_bits(i) times */
- for (int j = count_trailing_one_bits(i); j-- > 0; ) {
- assert(stack_depth >= 2);
- --stack_depth;
-
- /* TODO: should use a smaller loop bound for non_RGBA formats */
- for (int k = 0; k < 4; ++k) {
- emit_combine(BRW_OPCODE_ADD,
- offset(texture_data[stack_depth - 1], 2*k),
- offset(vec8(texture_data[stack_depth - 1]), 2*k),
- offset(vec8(texture_data[stack_depth]), 2*k));
- }
- }
- }
-
- /* We should have just 1 sample on the stack now. */
- assert(stack_depth == 1);
-
- /* Scale the result down by a factor of num_samples */
- /* TODO: should use a smaller loop bound for non-RGBA formats */
- for (int j = 0; j < 4; ++j) {
- emit_mul(offset(texture_data[0], 2*j),
- offset(vec8(texture_data[0]), 2*j),
- brw_imm_f(1.0f / num_samples));
- }
-
- if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
- emit_endif();
-}
-
-void
-brw_blorp_blit_program::manual_blend_bilinear(unsigned num_samples)
-{
- /* We do this computation by performing the following operations:
- *
- * In case of 4x, 8x MSAA:
- * - Compute the pixel coordinates and sample numbers (a, b, c, d)
- * which are later used for interpolation
- * - linearly interpolate samples a and b in X
- * - linearly interpolate samples c and d in X
- * - linearly interpolate the results of last two operations in Y
- *
- * result = lrp(lrp(a + b) + lrp(c + d))
- */
- struct brw_reg Xp_f = retype(Xp, BRW_REGISTER_TYPE_F);
- struct brw_reg Yp_f = retype(Yp, BRW_REGISTER_TYPE_F);
- struct brw_reg t1_f = retype(t1, BRW_REGISTER_TYPE_F);
- struct brw_reg t2_f = retype(t2, BRW_REGISTER_TYPE_F);
-
- for (unsigned i = 0; i < 4; ++i) {
- assert(i < ARRAY_SIZE(texture_data));
- s_is_zero = false;
-
- /* Compute pixel coordinates */
- emit_add(vec16(x_sample_coords), Xp_f,
- brw_imm_f((float)(i & 0x1) * (1.0f / key->x_scale)));
- emit_add(vec16(y_sample_coords), Yp_f,
- brw_imm_f((float)((i >> 1) & 0x1) * (1.0f / key->y_scale)));
- emit_mov(vec16(X), x_sample_coords);
- emit_mov(vec16(Y), y_sample_coords);
-
- /* The MCS value we fetch has to match up with the pixel that we're
- * sampling from. Since we sample from different pixels in each
- * iteration of this "for" loop, the call to mcs_fetch() should be
- * here inside the loop after computing the pixel coordinates.
- */
- if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
- mcs_fetch();
-
- /* Compute sample index and map the sample index to a sample number.
- * Sample index layout shows the numbering of slots in a rectangular
- * grid of samples with in a pixel. Sample number layout shows the
- * rectangular grid of samples roughly corresponding to the real sample
- * locations with in a pixel.
- * In case of 4x MSAA, layout of sample indices matches the layout of
- * sample numbers:
- * ---------
- * | 0 | 1 |
- * ---------
- * | 2 | 3 |
- * ---------
- *
- * In case of 8x MSAA the two layouts don't match.
- * sample index layout : --------- sample number layout : ---------
- * | 0 | 1 | | 5 | 2 |
- * --------- ---------
- * | 2 | 3 | | 4 | 6 |
- * --------- ---------
- * | 4 | 5 | | 0 | 3 |
- * --------- ---------
- * | 6 | 7 | | 7 | 1 |
- * --------- ---------
- *
- * Fortunately, this can be done fairly easily as:
- * S' = (0x17306425 >> (S * 4)) & 0xf
- */
- emit_frc(vec16(t1_f), x_sample_coords);
- emit_frc(vec16(t2_f), y_sample_coords);
- emit_mul(vec16(t1_f), t1_f, brw_imm_f(key->x_scale));
- emit_mul(vec16(t2_f), t2_f, brw_imm_f(key->x_scale * key->y_scale));
- emit_add(vec16(t1_f), t1_f, t2_f);
- emit_mov(vec16(S), t1_f);
-
- if (num_samples == 8) {
- emit_mov(vec16(t2), brw_imm_d(0x17306425));
- emit_shl(vec16(S), S, brw_imm_d(2));
- emit_shr(vec16(S), t2, S);
- emit_and(vec16(S), S, brw_imm_d(0xf));
- }
- texel_fetch(texture_data[i]);
- }
-
-#define SAMPLE(x, y) offset(texture_data[x], y)
- for (int index = 3; index > 0; ) {
- /* Since we're doing SIMD16, 4 color channels fits in to 8 registers.
- * Counter value of 8 in 'for' loop below is used to interpolate all
- * the color components.
- */
- for (int k = 0; k < 8; k += 2)
- emit_lrp(vec8(SAMPLE(index - 1, k)),
- x_frac,
- vec8(SAMPLE(index, k)),
- vec8(SAMPLE(index - 1, k)));
- index -= 2;
- }
- for (int k = 0; k < 8; k += 2)
- emit_lrp(vec8(SAMPLE(0, k)),
- y_frac,
- vec8(SAMPLE(2, k)),
- vec8(SAMPLE(0, k)));
-#undef SAMPLE
-}
-
-/**
- * Emit code to look up a value in the texture using the SAMPLE message (which
- * does blending of MSAA surfaces).
- */
-void
-brw_blorp_blit_program::sample(struct brw_reg dst)
-{
- static const sampler_message_arg args[2] = {
- SAMPLER_MESSAGE_ARG_U_FLOAT,
- SAMPLER_MESSAGE_ARG_V_FLOAT
- };
-
- texture_lookup(dst, SHADER_OPCODE_TEX, args, ARRAY_SIZE(args));
-}
-
-/**
- * Emit code to look up a value in the texture using the SAMPLE_LD message
- * (which does a simple texel fetch).
- */
-void
-brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
-{
- static const sampler_message_arg gen6_args[5] = {
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT,
- SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
- SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
- SAMPLER_MESSAGE_ARG_SI_INT
- };
- static const sampler_message_arg gen7_ld_args[] = {
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
- SAMPLER_MESSAGE_ARG_V_INT,
- SAMPLER_MESSAGE_ARG_R_INT
- };
- static const sampler_message_arg gen7_ld2dss_args[3] = {
- SAMPLER_MESSAGE_ARG_SI_INT,
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT
- };
- static const sampler_message_arg gen7_ld2dms_args[4] = {
- SAMPLER_MESSAGE_ARG_SI_INT,
- SAMPLER_MESSAGE_ARG_MCS_INT,
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT
- };
- static const sampler_message_arg gen9_ld_args[] = {
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT,
- SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
- SAMPLER_MESSAGE_ARG_R_INT
- };
-
- switch (brw->gen) {
- case 6:
- texture_lookup(dst, SHADER_OPCODE_TXF, gen6_args, s_is_zero ? 2 : 5);
- break;
- case 7:
- case 8:
- case 9:
- switch (key->tex_layout) {
- case INTEL_MSAA_LAYOUT_IMS:
- /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
- * Format):
- *
- * If this field is MSFMT_DEPTH_STENCIL
- * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
- * messages allowed are "ld2dms", "resinfo", and "sampleinfo".
- *
- * So fall through to emit the same message as we use for
- * INTEL_MSAA_LAYOUT_CMS.
- */
- case INTEL_MSAA_LAYOUT_CMS:
- texture_lookup(dst, SHADER_OPCODE_TXF_CMS,
- gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
- break;
- case INTEL_MSAA_LAYOUT_UMS:
- texture_lookup(dst, SHADER_OPCODE_TXF_UMS,
- gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
- break;
- case INTEL_MSAA_LAYOUT_NONE:
- assert(s_is_zero);
- if (brw->gen < 9) {
- texture_lookup(dst, SHADER_OPCODE_TXF, gen7_ld_args,
- ARRAY_SIZE(gen7_ld_args));
- } else {
- texture_lookup(dst, SHADER_OPCODE_TXF, gen9_ld_args,
- ARRAY_SIZE(gen9_ld_args));
- }
- break;
- }
- break;
- default:
- unreachable("Should not get here.");
- };
-}
-
-void
-brw_blorp_blit_program::mcs_fetch()
-{
- static const sampler_message_arg gen7_ld_mcs_args[2] = {
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT
- };
- texture_lookup(vec16(mcs_data), SHADER_OPCODE_TXF_MCS,
- gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
-}
-
-void
-brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
- enum opcode op,
- const sampler_message_arg *args,
- int num_args)
-{
- struct brw_reg mrf =
- retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
- for (int arg = 0; arg < num_args; ++arg) {
- switch (args[arg]) {
- case SAMPLER_MESSAGE_ARG_U_FLOAT:
- if (key->bilinear_filter)
- emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
- retype(X, BRW_REGISTER_TYPE_F));
- else
- emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), X);
- break;
- case SAMPLER_MESSAGE_ARG_V_FLOAT:
- if (key->bilinear_filter)
- emit_mov(retype(mrf, BRW_REGISTER_TYPE_F),
- retype(Y, BRW_REGISTER_TYPE_F));
- else
- emit_mov(retype(mrf, BRW_REGISTER_TYPE_F), Y);
- break;
- case SAMPLER_MESSAGE_ARG_U_INT:
- emit_mov(mrf, X);
- break;
- case SAMPLER_MESSAGE_ARG_V_INT:
- emit_mov(mrf, Y);
- break;
- case SAMPLER_MESSAGE_ARG_R_INT:
- emit_mov(mrf, src_z);
- break;
- case SAMPLER_MESSAGE_ARG_SI_INT:
- /* Note: on Gen7, this code may be reached with s_is_zero==true
- * because in Gen7's ld2dss message, the sample index is the first
- * argument. When this happens, we need to move a 0 into the
- * appropriate message register.
- */
- if (s_is_zero)
- emit_mov(mrf, brw_imm_ud(0));
- else
- emit_mov(mrf, S);
- break;
- case SAMPLER_MESSAGE_ARG_MCS_INT:
- switch (key->tex_layout) {
- case INTEL_MSAA_LAYOUT_CMS:
- emit_mov(mrf, mcs_data);
- break;
- case INTEL_MSAA_LAYOUT_IMS:
- /* When sampling from an IMS surface, MCS data is not relevant,
- * and the hardware ignores it. So don't bother populating it.
- */
- break;
- default:
- /* We shouldn't be trying to send MCS data with any other
- * layouts.
- */
- assert (!"Unsupported layout for MCS data");
- break;
- }
- break;
- case SAMPLER_MESSAGE_ARG_ZERO_INT:
- emit_mov(mrf, brw_imm_ud(0));
- break;
- }
- mrf.nr += 2;
- }
-
- emit_texture_lookup(retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
- op,
- base_mrf,
- mrf.nr - base_mrf /* msg_length */);
-}
-
-#undef X
-#undef Y
-#undef U
-#undef V
-#undef S
-#undef SWAP_XY_AND_XPYP
-
static void
brw_blorp_get_blit_kernel(struct brw_context *brw,
struct brw_blorp_params *params,
* method of building shaders manually.
*/
nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key, &prog_data);
- if (nir) {
- struct brw_wm_prog_key wm_key;
- brw_blorp_init_wm_prog_key(&wm_key);
- wm_key.tex.compressed_multisample_layout_mask =
- prog_key->tex_layout == INTEL_MSAA_LAYOUT_CMS;
- wm_key.multisample_fbo = prog_key->rt_samples > 1;
-
- program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
- &prog_data, &program_size);
- } else {
- brw_blorp_blit_program prog(brw, prog_key);
- program = prog.compile(brw, INTEL_DEBUG & DEBUG_BLORP, &program_size);
- prog_data = prog.prog_data;
- }
+ struct brw_wm_prog_key wm_key;
+ brw_blorp_init_wm_prog_key(&wm_key);
+ wm_key.tex.compressed_multisample_layout_mask =
+ prog_key->tex_layout == INTEL_MSAA_LAYOUT_CMS;
+ wm_key.multisample_fbo = prog_key->rt_samples > 1;
+
+ program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
+ &prog_data, &program_size);
brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
prog_key, sizeof(*prog_key),
¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
}
-void
-brw_blorp_blit_program::render_target_write()
-{
- struct brw_reg mrf_rt_write =
- retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
- int mrf_offset = 0;
-
- /* If we may have killed pixels, then we need to send R0 and R1 in a header
- * so that the render target knows which pixels we killed.
- */
- bool use_header = key->use_kill;
- if (use_header) {
- /* Copy R0/1 to MRF */
- emit_mov(retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
- retype(R0, BRW_REGISTER_TYPE_UD));
- mrf_offset += 2;
- }
-
- /* Copy texture data to MRFs */
- for (int i = 0; i < 4; ++i) {
- /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
- emit_mov(offset(mrf_rt_write, mrf_offset),
- offset(vec8(texture_data[0]), 2*i));
- mrf_offset += 2;
- }
-
- /* Now write to the render target and terminate the thread */
- emit_render_target_write(
- mrf_rt_write,
- brw->gen < 8 ? base_mrf : -1,
- mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */,
- use_header);
-}
-
-
static void
brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
GLfloat src0, GLfloat src1,