//log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
// count_gates, GetSize(signal_list), count_input, count_output);
+#if 0
+ Pass::call(design, stringf("write_verilog -noexpr -norename %s/before.xaig", tempdir_name.c_str()));
+#endif
Pass::call(design, stringf("write_xaiger -map %s/input.sym %s/input.xaig", tempdir_name.c_str(), tempdir_name.c_str()));
std::string buffer;
// in preparation for stitching mapped_mod in
// Short $_FF_ cells used by ABC (FIXME)
dict<IdString, decltype(RTLIL::Cell::parameters)> erased_boxes;
+ std::vector<RTLIL::Cell*> abc_dff;
for (auto it = module->cells_.begin(); it != module->cells_.end(); ) {
RTLIL::Cell* cell = it->second;
if (cell->type.in("$_AND_", "$_NOT_")) {
it = module->cells_.erase(it);
continue;
}
- else if (cell->type.in("$_FF_")) {
- RTLIL::Wire *D = cell->getPort("\\D").as_wire();
- RTLIL::Wire *Q = cell->getPort("\\Q").as_wire();
- Q->attributes.swap(D->attributes);
- module->connect(Q, D);
- it = module->cells_.erase(it);
- continue;
- }
- RTLIL::Module* box_module = design->module(cell->type);
- if (box_module && box_module->attributes.count("\\abc_box_id")) {
- erased_boxes.insert(std::make_pair(it->first, std::move(cell->parameters)));
- it = module->cells_.erase(it);
- continue;
+ if (cell->type.in("$__ABC_FF_"))
+ abc_dff.emplace_back(cell);
+ else {
+ RTLIL::Module* box_module = design->module(cell->type);
+ if (box_module && box_module->attributes.count("\\abc_box_id")) {
+ erased_boxes.insert(std::make_pair(it->first, std::move(cell->parameters)));
+ it = module->cells_.erase(it);
+ continue;
+ }
}
++it;
}
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
+ // TODO: iterate using ports
for (auto &it : mapped_mod->wires_) {
RTLIL::Wire *w = it.second;
if (!w->port_input && !w->port_output)
}
}
+ for (auto cell : abc_dff) {
+ RTLIL::SigBit D = cell->getPort("\\D");
+ RTLIL::SigBit Q = cell->getPort("\\Q");
+ module->connect(Q, D);
+ module->remove(cell);
+ }
+
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
`else
wire Q_next;
\$__ABC_FDRE #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q_next), .Q_past(Q), .C(C), .CE(1'b1), .R(1'b0));
- \$_FF_ abc_dff (.D(Q_next), .Q(Q));
+ \$__ABC_FF_ abc_dff (.D(Q_next), .Q(Q));
`endif
endmodule
module \$_DFFE_NP_ (input D, C, E, output Q); FDRE_1 #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(E), .R(1'b0)); endmodule
-module \$_DFFE_PP_ (input D, C, E, output Q); FDRE #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(E), .R(1'b0)); endmodule
+module \$_DFFE_PP_ (input D, C, E, output Q);
+`ifndef _ABC
+ FDRE #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(E), .R(1'b0));
+`else
+ wire Q_next;
+ \$__ABC_FDRE #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q_next), .Q_past(Q), .C(C), .CE(E), .R(1'b0));
+ \$__ABC_FF_ abc_dff (.D(Q_next), .Q(Q));
+`endif
+endmodule
module \$_DFF_NN0_ (input D, C, R, output Q); FDCE_1 #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR(!R)); endmodule
module \$_DFF_NP0_ (input D, C, R, output Q); FDCE_1 #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR( R)); endmodule