theory/uf/equality_engine.cpp
theory/uf/equality_engine.h
theory/uf/equality_engine_types.h
+ theory/uf/ho_extension.cpp
+ theory/uf/ho_extension.h
theory/uf/symmetry_breaker.cpp
theory/uf/symmetry_breaker.h
theory/uf/theory_uf.cpp
--- /dev/null
+/********************* */
+/*! \file ho_extension.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of the higher-order extension of TheoryUF.
+ **
+ **/
+
+#include "theory/uf/ho_extension.h"
+
+#include "expr/node_algorithm.h"
+#include "options/uf_options.h"
+#include "theory/theory_model.h"
+#include "theory/uf/theory_uf.h"
+#include "theory/uf/theory_uf_rewriter.h"
+
+using namespace std;
+using namespace CVC4::kind;
+
+namespace CVC4 {
+namespace theory {
+namespace uf {
+
+HoExtension::HoExtension(TheoryUF& p,
+ context::Context* c,
+ context::UserContext* u)
+ : d_parent(p), d_extensionality(u), d_uf_std_skolem(u)
+{
+ d_true = NodeManager::currentNM()->mkConst(true);
+}
+
+Node HoExtension::expandDefinition(Node node)
+{
+ // convert HO_APPLY to APPLY_UF if fully applied
+ if (node[0].getType().getNumChildren() == 2)
+ {
+ Trace("uf-ho") << "uf-ho : expanding definition : " << node << std::endl;
+ Node ret = getApplyUfForHoApply(node);
+ Trace("uf-ho") << "uf-ho : expandDefinition : " << node << " to " << ret
+ << std::endl;
+ return ret;
+ }
+ return node;
+}
+
+Node HoExtension::getExtensionalityDeq(TNode deq)
+{
+ Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
+ Assert(deq[0][0].getType().isFunction());
+ std::map<Node, Node>::iterator it = d_extensionality_deq.find(deq);
+ if (it == d_extensionality_deq.end())
+ {
+ TypeNode tn = deq[0][0].getType();
+ std::vector<TypeNode> argTypes = tn.getArgTypes();
+ std::vector<Node> skolems;
+ NodeManager* nm = NodeManager::currentNM();
+ for (unsigned i = 0, nargs = argTypes.size(); i < nargs; i++)
+ {
+ Node k =
+ nm->mkSkolem("k", argTypes[i], "skolem created for extensionality.");
+ skolems.push_back(k);
+ }
+ Node t[2];
+ for (unsigned i = 0; i < 2; i++)
+ {
+ std::vector<Node> children;
+ Node curr = deq[0][i];
+ while (curr.getKind() == HO_APPLY)
+ {
+ children.push_back(curr[1]);
+ curr = curr[0];
+ }
+ children.push_back(curr);
+ std::reverse(children.begin(), children.end());
+ children.insert(children.end(), skolems.begin(), skolems.end());
+ t[i] = nm->mkNode(APPLY_UF, children);
+ }
+ Node conc = t[0].eqNode(t[1]).negate();
+ d_extensionality_deq[deq] = conc;
+ return conc;
+ }
+ return it->second;
+}
+
+unsigned HoExtension::applyExtensionality(TNode deq)
+{
+ Assert(deq.getKind() == NOT && deq[0].getKind() == EQUAL);
+ Assert(deq[0][0].getType().isFunction());
+ // apply extensionality
+ if (d_extensionality.find(deq) == d_extensionality.end())
+ {
+ d_extensionality.insert(deq);
+ Node conc = getExtensionalityDeq(deq);
+ Node lem = NodeManager::currentNM()->mkNode(OR, deq[0], conc);
+ Trace("uf-ho-lemma") << "uf-ho-lemma : extensionality : " << lem
+ << std::endl;
+ d_parent.getOutputChannel().lemma(lem);
+ return 1;
+ }
+ return 0;
+}
+
+Node HoExtension::getApplyUfForHoApply(Node node)
+{
+ Assert(node[0].getType().getNumChildren() == 2);
+ std::vector<TNode> args;
+ Node f = TheoryUfRewriter::decomposeHoApply(node, args, true);
+ Node new_f = f;
+ NodeManager* nm = NodeManager::currentNM();
+ if (!TheoryUfRewriter::canUseAsApplyUfOperator(f))
+ {
+ NodeNodeMap::const_iterator itus = d_uf_std_skolem.find(f);
+ if (itus == d_uf_std_skolem.end())
+ {
+ std::unordered_set<Node, NodeHashFunction> fvs;
+ expr::getFreeVariables(f, fvs);
+ Node lem;
+ if (!fvs.empty())
+ {
+ std::vector<TypeNode> newTypes;
+ std::vector<Node> vs;
+ std::vector<Node> nvs;
+ for (const Node& v : fvs)
+ {
+ TypeNode vt = v.getType();
+ newTypes.push_back(vt);
+ Node nv = nm->mkBoundVar(vt);
+ vs.push_back(v);
+ nvs.push_back(nv);
+ }
+ TypeNode ft = f.getType();
+ std::vector<TypeNode> argTypes = ft.getArgTypes();
+ TypeNode rangeType = ft.getRangeType();
+
+ newTypes.insert(newTypes.end(), argTypes.begin(), argTypes.end());
+ TypeNode nft = nm->mkFunctionType(newTypes, rangeType);
+ new_f = nm->mkSkolem("app_uf", nft);
+ for (const Node& v : vs)
+ {
+ new_f = nm->mkNode(HO_APPLY, new_f, v);
+ }
+ Assert(new_f.getType() == f.getType());
+ Node eq = new_f.eqNode(f);
+ Node seq = eq.substitute(vs.begin(), vs.end(), nvs.begin(), nvs.end());
+ lem = nm->mkNode(
+ FORALL, nm->mkNode(BOUND_VAR_LIST, nvs), seq);
+ }
+ else
+ {
+ // introduce skolem to make a standard APPLY_UF
+ new_f = nm->mkSkolem("app_uf", f.getType());
+ lem = new_f.eqNode(f);
+ }
+ Trace("uf-ho-lemma")
+ << "uf-ho-lemma : Skolem definition for apply-conversion : " << lem
+ << std::endl;
+ d_parent.getOutputChannel().lemma(lem);
+ d_uf_std_skolem[f] = new_f;
+ }
+ else
+ {
+ new_f = (*itus).second;
+ }
+ // unroll the HO_APPLY, adding to the first argument position
+ // Note arguments in the vector args begin at position 1.
+ while (new_f.getKind() == HO_APPLY)
+ {
+ args.insert(args.begin() + 1, new_f[1]);
+ new_f = new_f[0];
+ }
+ }
+ Assert(TheoryUfRewriter::canUseAsApplyUfOperator(new_f));
+ args[0] = new_f;
+ Node ret = nm->mkNode(APPLY_UF, args);
+ Assert(ret.getType() == node.getType());
+ return ret;
+}
+
+unsigned HoExtension::checkExtensionality(TheoryModel* m)
+{
+ eq::EqualityEngine* ee = d_parent.getEqualityEngine();
+ unsigned num_lemmas = 0;
+ bool isCollectModel = (m != nullptr);
+ Trace("uf-ho") << "HoExtension::checkExtensionality, collectModel="
+ << isCollectModel << "..." << std::endl;
+ std::map<TypeNode, std::vector<Node> > func_eqcs;
+ eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
+ while (!eqcs_i.isFinished())
+ {
+ Node eqc = (*eqcs_i);
+ TypeNode tn = eqc.getType();
+ if (tn.isFunction())
+ {
+ // if during collect model, must have an infinite type
+ // if not during collect model, must have a finite type
+ if (tn.isInterpretedFinite() != isCollectModel)
+ {
+ func_eqcs[tn].push_back(eqc);
+ Trace("uf-ho-debug")
+ << " func eqc : " << tn << " : " << eqc << std::endl;
+ }
+ }
+ ++eqcs_i;
+ }
+
+ for (std::map<TypeNode, std::vector<Node> >::iterator itf = func_eqcs.begin();
+ itf != func_eqcs.end();
+ ++itf)
+ {
+ for (unsigned j = 0, sizej = itf->second.size(); j < sizej; j++)
+ {
+ for (unsigned k = (j + 1), sizek = itf->second.size(); k < sizek; k++)
+ {
+ // if these equivalence classes are not explicitly disequal, do
+ // extensionality to ensure distinctness
+ if (!ee->areDisequal(itf->second[j], itf->second[k], false))
+ {
+ Node deq =
+ Rewriter::rewrite(itf->second[j].eqNode(itf->second[k]).negate());
+ // either add to model, or add lemma
+ if (isCollectModel)
+ {
+ // add extentionality disequality to the model
+ Node edeq = getExtensionalityDeq(deq);
+ Assert(edeq.getKind() == NOT && edeq[0].getKind() == EQUAL);
+ // introducing terms, must add required constraints, e.g. to
+ // force equalities between APPLY_UF and HO_APPLY terms
+ for (unsigned r = 0; r < 2; r++)
+ {
+ if (!collectModelInfoHoTerm(edeq[0][r], m))
+ {
+ return 1;
+ }
+ }
+ Trace("uf-ho-debug")
+ << "Add extensionality deq to model : " << edeq << std::endl;
+ if (!m->assertEquality(edeq[0][0], edeq[0][1], false))
+ {
+ return 1;
+ }
+ }
+ else
+ {
+ // apply extensionality lemma
+ num_lemmas += applyExtensionality(deq);
+ }
+ }
+ }
+ }
+ }
+ return num_lemmas;
+}
+
+unsigned HoExtension::applyAppCompletion(TNode n)
+{
+ Assert(n.getKind() == APPLY_UF);
+
+ eq::EqualityEngine* ee = d_parent.getEqualityEngine();
+ // must expand into APPLY_HO version if not there already
+ Node ret = TheoryUfRewriter::getHoApplyForApplyUf(n);
+ if (!ee->hasTerm(ret) || !ee->areEqual(ret, n))
+ {
+ Node eq = ret.eqNode(n);
+ Trace("uf-ho-lemma") << "uf-ho-lemma : infer, by apply-expand : " << eq
+ << std::endl;
+ ee->assertEquality(eq, true, d_true);
+ return 1;
+ }
+ Trace("uf-ho-debug") << " ...already have " << ret << " == " << n << "."
+ << std::endl;
+ return 0;
+}
+
+unsigned HoExtension::checkAppCompletion()
+{
+ Trace("uf-ho") << "HoExtension::checkApplyCompletion..." << std::endl;
+ // compute the operators that are relevant (those for which an HO_APPLY exist)
+ std::set<TNode> rlvOp;
+ eq::EqualityEngine* ee = d_parent.getEqualityEngine();
+ eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
+ std::map<TNode, std::vector<Node> > apply_uf;
+ while (!eqcs_i.isFinished())
+ {
+ Node eqc = (*eqcs_i);
+ Trace("uf-ho-debug") << " apply completion : visit eqc " << eqc
+ << std::endl;
+ eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
+ while (!eqc_i.isFinished())
+ {
+ Node n = *eqc_i;
+ if (n.getKind() == APPLY_UF || n.getKind() == HO_APPLY)
+ {
+ int curr_sum = 0;
+ std::map<TNode, bool> curr_rops;
+ if (n.getKind() == APPLY_UF)
+ {
+ TNode rop = ee->getRepresentative(n.getOperator());
+ if (rlvOp.find(rop) != rlvOp.end())
+ {
+ // try if its operator is relevant
+ curr_sum = applyAppCompletion(n);
+ if (curr_sum > 0)
+ {
+ return curr_sum;
+ }
+ }
+ else
+ {
+ // add to pending list
+ apply_uf[rop].push_back(n);
+ }
+ // arguments are also relevant operators FIXME (github issue #1115)
+ for (unsigned k = 0; k < n.getNumChildren(); k++)
+ {
+ if (n[k].getType().isFunction())
+ {
+ TNode rop = ee->getRepresentative(n[k]);
+ curr_rops[rop] = true;
+ }
+ }
+ }
+ else
+ {
+ Assert(n.getKind() == HO_APPLY);
+ TNode rop = ee->getRepresentative(n[0]);
+ curr_rops[rop] = true;
+ }
+ for (std::map<TNode, bool>::iterator itc = curr_rops.begin();
+ itc != curr_rops.end();
+ ++itc)
+ {
+ TNode rop = itc->first;
+ if (rlvOp.find(rop) == rlvOp.end())
+ {
+ rlvOp.insert(rop);
+ // now, try each pending APPLY_UF for this operator
+ std::map<TNode, std::vector<Node> >::iterator itu =
+ apply_uf.find(rop);
+ if (itu != apply_uf.end())
+ {
+ for (unsigned j = 0, size = itu->second.size(); j < size; j++)
+ {
+ curr_sum = applyAppCompletion(itu->second[j]);
+ if (curr_sum > 0)
+ {
+ return curr_sum;
+ }
+ }
+ }
+ }
+ }
+ }
+ ++eqc_i;
+ }
+ ++eqcs_i;
+ }
+ return 0;
+}
+
+unsigned HoExtension::check()
+{
+ Trace("uf-ho") << "HoExtension::checkHigherOrder..." << std::endl;
+
+ // infer new facts based on apply completion until fixed point
+ unsigned num_facts;
+ do
+ {
+ num_facts = checkAppCompletion();
+ if (d_parent.inConflict())
+ {
+ Trace("uf-ho") << "...conflict during app-completion." << std::endl;
+ return 1;
+ }
+ } while (num_facts > 0);
+
+ if (options::ufHoExt())
+ {
+ unsigned num_lemmas = 0;
+
+ num_lemmas = checkExtensionality();
+ if (num_lemmas > 0)
+ {
+ Trace("uf-ho") << "...extensionality returned " << num_lemmas
+ << " lemmas." << std::endl;
+ return num_lemmas;
+ }
+ }
+
+ Trace("uf-ho") << "...finished check higher order." << std::endl;
+
+ return 0;
+}
+
+bool HoExtension::collectModelInfoHo(std::set<Node>& termSet, TheoryModel* m)
+{
+ for (std::set<Node>::iterator it = termSet.begin(); it != termSet.end(); ++it)
+ {
+ Node n = *it;
+ // For model-building with ufHo, we require that APPLY_UF is always
+ // expanded to HO_APPLY. That is, we always expand to a fully applicative
+ // encoding during model construction.
+ if (!collectModelInfoHoTerm(n, m))
+ {
+ return false;
+ }
+ }
+ int addedLemmas = checkExtensionality(m);
+ return addedLemmas == 0;
+}
+
+bool HoExtension::collectModelInfoHoTerm(Node n, TheoryModel* m)
+{
+ if (n.getKind() == APPLY_UF)
+ {
+ Node hn = TheoryUfRewriter::getHoApplyForApplyUf(n);
+ if (!m->assertEquality(n, hn, true))
+ {
+ return false;
+ }
+ }
+ return true;
+}
+
+} // namespace uf
+} // namespace theory
+} // namespace CVC4
--- /dev/null
+/********************* */
+/*! \file ho_extension.h
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief The higher-order extension of TheoryUF.
+ **/
+
+#include "cvc4_private.h"
+
+#ifndef __CVC4__THEORY__UF__HO_EXTENSION_H
+#define __CVC4__THEORY__UF__HO_EXTENSION_H
+
+#include "context/cdhashmap.h"
+#include "context/cdhashset.h"
+#include "context/cdo.h"
+#include "expr/node.h"
+#include "theory/theory_model.h"
+
+namespace CVC4 {
+namespace theory {
+namespace uf {
+
+class TheoryUF;
+
+/** The higher-order extension of the theory of uninterpreted functions
+ *
+ * This extension is capable of handling UF constraints involving partial
+ * applications via the applicative encoding (kind HO_APPLY), and
+ * (dis)equalities involving function sorts. It uses a lazy applicative
+ * encoding and implements two axiom schemes, at a high level:
+ *
+ * (1) Extensionality, where disequalities between functions witnessed by
+ * arguments where the two functions differ,
+ *
+ * (2) App-Encode, where full applications of UF (kind APPLY_UF) are equated
+ * with curried applications (kind HO_APPLY).
+ *
+ * For more details, see "Extending SMT Solvers to Higher-Order", Barbosa et al.
+ */
+class HoExtension
+{
+ typedef context::CDHashSet<Node, NodeHashFunction> NodeSet;
+ typedef context::CDHashMap<Node, Node, NodeHashFunction> NodeNodeMap;
+
+ public:
+ HoExtension(TheoryUF& p, context::Context* c, context::UserContext* u);
+
+ /** expand definition
+ *
+ * This returns the expanded form of node.
+ *
+ * In particular, this function will convert applications of HO_APPLY
+ * to applications of APPLY_UF if they are fully applied, and introduce
+ * function variables for function heads that are not variables via the
+ * getApplyUfForHoApply method below.
+ */
+ Node expandDefinition(Node node);
+
+ /** check higher order
+ *
+ * This is called at full effort and infers facts and sends lemmas
+ * based on higher-order reasoning (specifically, extentionality and
+ * app completion). It returns the number of lemmas plus facts
+ * added to the equality engine.
+ */
+ unsigned check();
+
+ /** applyExtensionality
+ *
+ * Given disequality deq f != g, if not already cached, this sends a lemma of
+ * the form:
+ * f = g V (f k) != (g k) for fresh constant k on the output channel of the
+ * parent TheoryUF object. This is an "extensionality lemma".
+ * Return value is the number of lemmas of this form sent on the output
+ * channel.
+ */
+ unsigned applyExtensionality(TNode deq);
+
+ /** collect model info
+ *
+ * This method adds the necessary equalities to the model m such that
+ * model construction is possible if this method returns true. These
+ * equalities may include HO_APPLY versions of all APPLY_UF terms.
+ *
+ * The argument termSet is the set of relevant terms that the parent TheoryUF
+ * object has added to m that belong to TheoryUF.
+ *
+ * This method ensures that the function variables in termSet
+ * respect extensionality. If some pair does not, then this method adds an
+ * extensionality equality directly to the equality engine of m.
+ *
+ * In more detail, functions f and g do not respect extensionality if f and g
+ * are not equal in the model, and there is not a pair of unequal witness
+ * terms f(k), g(k). In this case, we add the disequality
+ * f(k') != g(k')
+ * for fresh (tuple) of variables k' to the equality engine of m. Notice
+ * this is done only for functions whose type has infinite cardinality,
+ * since all functions with finite cardinality are ensured to respect
+ * extensionality by this point due to our extentionality inference schema.
+ *
+ * If this method returns true, then all pairs of functions that are in
+ * distinct equivalence classes will be guaranteed to be assigned different
+ * values in m. It returns false if any (dis)equality added to m led to
+ * an inconsistency in m.
+ */
+ bool collectModelInfoHo(std::set<Node>& termSet, TheoryModel* m);
+
+ protected:
+ /** get apply uf for ho apply
+ *
+ * This returns the APPLY_UF equivalent for the HO_APPLY term node, where
+ * node has non-functional return type (that is, it corresponds to a fully
+ * applied function term).
+ * This call may introduce a skolem for the head operator and send out a lemma
+ * specifying the definition.
+ */
+ Node getApplyUfForHoApply(Node node);
+
+ /** get extensionality disequality
+ *
+ * Given disequality deq f != g, this returns the disequality:
+ * (f k) != (g k) for fresh constant(s) k.
+ */
+ Node getExtensionalityDeq(TNode deq);
+
+ /**
+ * Check whether extensionality should be applied for any pair of terms in the
+ * equality engine.
+ *
+ * If we pass a null model m to this function, then we add extensionality
+ * lemmas to the output channel and return the total number of lemmas added.
+ * We only add lemmas for functions whose type is finite, since pairs of
+ * functions whose types are infinite can be made disequal in a model by
+ * witnessing a point they are disequal.
+ *
+ * If we pass a non-null model m to this function, then we add disequalities
+ * that correspond to the conclusion of extensionality lemmas to the model's
+ * equality engine. We return 0 if the equality engine of m is consistent
+ * after this call, and 1 otherwise. We only add disequalities for functions
+ * whose type is infinite, since our decision procedure guarantees that
+ * extensionality lemmas are added for all pairs of functions whose types are
+ * finite.
+ */
+ unsigned checkExtensionality(TheoryModel* m = nullptr);
+
+ /** applyAppCompletion
+ * This infers a correspondence between APPLY_UF and HO_APPLY
+ * versions of terms for higher-order.
+ * Given APPLY_UF node e.g. (f a b c), this adds the equality to its
+ * HO_APPLY equivalent:
+ * (f a b c) == (@ (@ (@ f a) b) c)
+ * to equality engine, if not already equal.
+ * Return value is the number of equalities added.
+ */
+ unsigned applyAppCompletion(TNode n);
+
+ /** check whether app-completion should be applied for any
+ * pair of terms in the equality engine.
+ */
+ unsigned checkAppCompletion();
+ /** collect model info for higher-order term
+ *
+ * This adds required constraints to m for term n. In particular, if n is
+ * an APPLY_UF term, we add its HO_APPLY equivalent in this call. We return
+ * true if the model m is consistent after this call.
+ */
+ bool collectModelInfoHoTerm(Node n, TheoryModel* m);
+
+ private:
+ /** common constants */
+ Node d_true;
+ /** the parent of this extension */
+ TheoryUF& d_parent;
+ /** extensionality has been applied to these disequalities */
+ NodeSet d_extensionality;
+
+ /** cache of getExtensionalityDeq below */
+ std::map<Node, Node> d_extensionality_deq;
+
+ /** map from non-standard operators to their skolems */
+ NodeNodeMap d_uf_std_skolem;
+}; /* class TheoryUF */
+
+} // namespace uf
+} // namespace theory
+} // namespace CVC4
+
+#endif /* __CVC4__THEORY__UF__HO_EXTENSION_H */
#include "proof/uf_proof.h"
#include "theory/theory_model.h"
#include "theory/type_enumerator.h"
+#include "theory/uf/ho_extension.h"
#include "theory/uf/theory_uf_rewriter.h"
#include "theory/uf/theory_uf_strong_solver.h"
d_thss(NULL),
d_equalityEngine(d_notify, c, instanceName + "theory::uf::ee", true),
d_conflict(c, false),
- d_extensionality(u),
- d_uf_std_skolem(u),
d_functionsTerms(c),
d_symb(u, instanceName)
{
// The kinds we are treating as function application in congruence
d_equalityEngine.addFunctionKind(kind::APPLY_UF, false, options::ufHo());
- if( options::ufHo() ){
- d_equalityEngine.addFunctionKind(kind::HO_APPLY);
- }
}
TheoryUF::~TheoryUF() {
{
d_thss = new StrongSolverTheoryUF(getSatContext(), getUserContext(), *d_out, this);
}
+ if (options::ufHo())
+ {
+ d_equalityEngine.addFunctionKind(kind::HO_APPLY);
+ d_ho = new HoExtension(*this, getSatContext(), getUserContext());
+ }
}
static Node mkAnd(const std::vector<TNode>& conjunctions) {
d_equalityEngine.assertEquality(atom, polarity, fact);
if( options::ufHo() && options::ufHoExt() ){
if( !polarity && !d_conflict && atom[0].getType().isFunction() ){
- applyExtensionality( fact );
+ // apply extensionality eagerly using the ho extension
+ d_ho->applyExtensionality(fact);
}
}
} else if (atom.getKind() == kind::CARDINALITY_CONSTRAINT || atom.getKind() == kind::COMBINED_CARDINALITY_CONSTRAINT) {
}
if(! d_conflict ){
+ // check with the cardinality constraints extension
if (d_thss != NULL) {
d_thss->check(level);
if( d_thss->isConflict() ){
d_conflict = true;
}
}
+ // check with the higher-order extension
if(! d_conflict && fullEffort(level) ){
if( options::ufHo() ){
- checkHigherOrder();
+ d_ho->check();
}
}
}
}/* TheoryUF::check() */
-Node TheoryUF::getApplyUfForHoApply( Node node ) {
- Assert( node[0].getType().getNumChildren()==2 );
- std::vector< TNode > args;
- Node f = TheoryUfRewriter::decomposeHoApply( node, args, true );
- Node new_f = f;
- NodeManager* nm = NodeManager::currentNM();
- if( !TheoryUfRewriter::canUseAsApplyUfOperator( f ) ){
- NodeNodeMap::const_iterator itus = d_uf_std_skolem.find( f );
- if( itus==d_uf_std_skolem.end() ){
- std::unordered_set<Node, NodeHashFunction> fvs;
- expr::getFreeVariables(f, fvs);
- Node lem;
- if (!fvs.empty())
- {
- std::vector<TypeNode> newTypes;
- std::vector<Node> vs;
- std::vector<Node> nvs;
- for (const Node& v : fvs)
- {
- TypeNode vt = v.getType();
- newTypes.push_back(vt);
- Node nv = nm->mkBoundVar(vt);
- vs.push_back(v);
- nvs.push_back(nv);
- }
- TypeNode ft = f.getType();
- std::vector<TypeNode> argTypes = ft.getArgTypes();
- TypeNode rangeType = ft.getRangeType();
-
- newTypes.insert(newTypes.end(), argTypes.begin(), argTypes.end());
- TypeNode nft = nm->mkFunctionType(newTypes, rangeType);
- new_f = nm->mkSkolem("app_uf", nft);
- for (const Node& v : vs)
- {
- new_f = nm->mkNode(kind::HO_APPLY, new_f, v);
- }
- Assert(new_f.getType() == f.getType());
- Node eq = new_f.eqNode(f);
- Node seq = eq.substitute(vs.begin(), vs.end(), nvs.begin(), nvs.end());
- lem = nm->mkNode(
- kind::FORALL, nm->mkNode(kind::BOUND_VAR_LIST, nvs), seq);
- }
- else
- {
- // introduce skolem to make a standard APPLY_UF
- new_f = nm->mkSkolem("app_uf", f.getType());
- lem = new_f.eqNode(f);
- }
- Trace("uf-ho-lemma") << "uf-ho-lemma : Skolem definition for apply-conversion : " << lem << std::endl;
- d_out->lemma( lem );
- d_uf_std_skolem[f] = new_f;
- }else{
- new_f = (*itus).second;
- }
- // unroll the HO_APPLY, adding to the first argument position
- // Note arguments in the vector args begin at position 1.
- while (new_f.getKind() == kind::HO_APPLY)
- {
- args.insert(args.begin() + 1, new_f[1]);
- new_f = new_f[0];
- }
- }
- Assert( TheoryUfRewriter::canUseAsApplyUfOperator( new_f ) );
- args[0] = new_f;
- Node ret = nm->mkNode(kind::APPLY_UF, args);
- Assert(ret.getType() == node.getType());
- return ret;
-}
-
Node TheoryUF::getOperatorForApplyTerm( TNode node ) {
Assert( node.getKind()==kind::APPLY_UF || node.getKind()==kind::HO_APPLY );
if( node.getKind()==kind::APPLY_UF ){
}
Node TheoryUF::expandDefinition(LogicRequest &logicRequest, Node node) {
- Trace("uf-ho-debug") << "uf-ho-debug : expanding definition : " << node << std::endl;
+ Trace("uf-exp-def") << "TheoryUF::expandDefinition: expanding definition : "
+ << node << std::endl;
if( node.getKind()==kind::HO_APPLY ){
if( !options::ufHo() ){
std::stringstream ss;
ss << "Partial function applications are not supported in default mode, try --uf-ho.";
throw LogicException(ss.str());
}
- // convert HO_APPLY to APPLY_UF if fully applied
- if( node[0].getType().getNumChildren()==2 ){
- Trace("uf-ho") << "uf-ho : expanding definition : " << node << std::endl;
- Node ret = getApplyUfForHoApply( node );
- Trace("uf-ho") << "uf-ho : expandDefinition : " << node << " to " << ret << std::endl;
+ Node ret = d_ho->expandDefinition(node);
+ if (ret != node)
+ {
+ Trace("uf-exp-def") << "TheoryUF::expandDefinition: higher-order: "
+ << node << " to " << ret << std::endl;
return ret;
}
}
}
if( options::ufHo() ){
- for( std::set<Node>::iterator it = termSet.begin(); it != termSet.end(); ++it ){
- Node n = *it;
- // for model-building with ufHo, we require that APPLY_UF is always
- // expanded to HO_APPLY
- if (!collectModelInfoHoTerm(n, m))
- {
- return false;
- }
- }
// must add extensionality disequalities for all pairs of (non-disequal)
// function equivalence classes.
- if (checkExtensionality(m) != 0)
+ if (!d_ho->collectModelInfoHo(termSet, m))
{
return false;
}
return true;
}
-bool TheoryUF::collectModelInfoHoTerm(Node n, TheoryModel* m)
-{
- if (n.getKind() == kind::APPLY_UF)
- {
- Node hn = TheoryUfRewriter::getHoApplyForApplyUf(n);
- if (!m->assertEquality(n, hn, true))
- {
- return false;
- }
- }
- return true;
-}
-
void TheoryUF::presolve() {
// TimerStat::CodeTimer codeTimer(d_presolveTimer);
}
}
-Node TheoryUF::getExtensionalityDeq(TNode deq)
-{
- Assert( deq.getKind()==kind::NOT && deq[0].getKind()==kind::EQUAL );
- Assert( deq[0][0].getType().isFunction() );
- std::map<Node, Node>::iterator it = d_extensionality_deq.find(deq);
- if (it == d_extensionality_deq.end())
- {
- TypeNode tn = deq[0][0].getType();
- std::vector<TypeNode> argTypes = tn.getArgTypes();
- std::vector< Node > skolems;
- NodeManager* nm = NodeManager::currentNM();
- for (unsigned i = 0, nargs = argTypes.size(); i < nargs; i++)
- {
- Node k =
- nm->mkSkolem("k", argTypes[i], "skolem created for extensionality.");
- skolems.push_back( k );
- }
- Node t[2];
- for (unsigned i = 0; i < 2; i++)
- {
- std::vector< Node > children;
- Node curr = deq[0][i];
- while( curr.getKind()==kind::HO_APPLY ){
- children.push_back( curr[1] );
- curr = curr[0];
- }
- children.push_back( curr );
- std::reverse( children.begin(), children.end() );
- children.insert( children.end(), skolems.begin(), skolems.end() );
- t[i] = nm->mkNode(kind::APPLY_UF, children);
- }
- Node conc = t[0].eqNode( t[1] ).negate();
- d_extensionality_deq[deq] = conc;
- return conc;
- }
- return it->second;
-}
-
-unsigned TheoryUF::applyExtensionality(TNode deq)
-{
- Assert(deq.getKind() == kind::NOT && deq[0].getKind() == kind::EQUAL);
- Assert(deq[0][0].getType().isFunction());
- // apply extensionality
- if (d_extensionality.find(deq) == d_extensionality.end())
- {
- d_extensionality.insert(deq);
- Node conc = getExtensionalityDeq(deq);
- Node lem = NodeManager::currentNM()->mkNode( kind::OR, deq[0], conc );
- Trace("uf-ho-lemma") << "uf-ho-lemma : extensionality : " << lem << std::endl;
- d_out->lemma( lem );
- return 1;
- }
- return 0;
-}
-
-unsigned TheoryUF::checkExtensionality(TheoryModel* m)
-{
- unsigned num_lemmas = 0;
- bool isCollectModel = (m != nullptr);
- Trace("uf-ho") << "TheoryUF::checkExtensionality, collectModel="
- << isCollectModel << "..." << std::endl;
- std::map< TypeNode, std::vector< Node > > func_eqcs;
- eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &d_equalityEngine );
- while( !eqcs_i.isFinished() ){
- Node eqc = (*eqcs_i);
- TypeNode tn = eqc.getType();
- if( tn.isFunction() ){
- // if during collect model, must have an infinite type
- // if not during collect model, must have a finite type
- if (tn.isInterpretedFinite() != isCollectModel)
- {
- func_eqcs[tn].push_back(eqc);
- Trace("uf-ho-debug")
- << " func eqc : " << tn << " : " << eqc << std::endl;
- }
- }
- ++eqcs_i;
- }
-
- for( std::map< TypeNode, std::vector< Node > >::iterator itf = func_eqcs.begin();
- itf != func_eqcs.end(); ++itf ){
- for( unsigned j=0; j<itf->second.size(); j++ ){
- for( unsigned k=(j+1); k<itf->second.size(); k++ ){
- // if these equivalence classes are not explicitly disequal, do extensionality to ensure distinctness
- if (!d_equalityEngine.areDisequal(
- itf->second[j], itf->second[k], false))
- {
- Node deq = Rewriter::rewrite( itf->second[j].eqNode( itf->second[k] ).negate() );
- // either add to model, or add lemma
- if (isCollectModel)
- {
- // add extentionality disequality to the model
- Node edeq = getExtensionalityDeq(deq);
- Assert(edeq.getKind() == kind::NOT
- && edeq[0].getKind() == kind::EQUAL);
- // introducing terms, must add required constraints, e.g. to
- // force equalities between APPLY_UF and HO_APPLY terms
- for (unsigned r = 0; r < 2; r++)
- {
- if (!collectModelInfoHoTerm(edeq[0][r], m))
- {
- return 1;
- }
- }
- Trace("uf-ho-debug")
- << "Add extensionality deq to model : " << edeq << std::endl;
- if (!m->assertEquality(edeq[0][0], edeq[0][1], false))
- {
- return 1;
- }
- }
- else
- {
- // apply extensionality lemma
- num_lemmas += applyExtensionality(deq);
- }
- }
- }
- }
- }
- return num_lemmas;
-}
-
-unsigned TheoryUF::applyAppCompletion( TNode n ) {
- Assert( n.getKind()==kind::APPLY_UF );
-
- //must expand into APPLY_HO version if not there already
- Node ret = TheoryUfRewriter::getHoApplyForApplyUf( n );
- if( !d_equalityEngine.hasTerm( ret ) || !d_equalityEngine.areEqual( ret, n ) ){
- Node eq = ret.eqNode( n );
- Trace("uf-ho-lemma") << "uf-ho-lemma : infer, by apply-expand : " << eq << std::endl;
- d_equalityEngine.assertEquality(eq, true, d_true);
- return 1;
- }else{
- Trace("uf-ho-debug") << " ...already have " << ret << " == " << n << "." << std::endl;
- return 0;
- }
-}
-
-unsigned TheoryUF::checkAppCompletion() {
- Trace("uf-ho") << "TheoryUF::checkApplyCompletion..." << std::endl;
- // compute the operators that are relevant (those for which an HO_APPLY exist)
- std::set< TNode > rlvOp;
- eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &d_equalityEngine );
- std::map< TNode, std::vector< Node > > apply_uf;
- while( !eqcs_i.isFinished() ){
- Node eqc = (*eqcs_i);
- Trace("uf-ho-debug") << " apply completion : visit eqc " << eqc << std::endl;
- eq::EqClassIterator eqc_i = eq::EqClassIterator( eqc, &d_equalityEngine );
- while( !eqc_i.isFinished() ){
- Node n = *eqc_i;
- if( n.getKind()==kind::APPLY_UF || n.getKind()==kind::HO_APPLY ){
- int curr_sum = 0;
- std::map< TNode, bool > curr_rops;
- if( n.getKind()==kind::APPLY_UF ){
- TNode rop = d_equalityEngine.getRepresentative( n.getOperator() );
- if( rlvOp.find( rop )!=rlvOp.end() ){
- // try if its operator is relevant
- curr_sum = applyAppCompletion( n );
- if( curr_sum>0 ){
- return curr_sum;
- }
- }else{
- // add to pending list
- apply_uf[rop].push_back( n );
- }
- //arguments are also relevant operators FIXME (github issue #1115)
- for( unsigned k=0; k<n.getNumChildren(); k++ ){
- if( n[k].getType().isFunction() ){
- TNode rop = d_equalityEngine.getRepresentative( n[k] );
- curr_rops[rop] = true;
- }
- }
- }else{
- Assert( n.getKind()==kind::HO_APPLY );
- TNode rop = d_equalityEngine.getRepresentative( n[0] );
- curr_rops[rop] = true;
- }
- for( std::map< TNode, bool >::iterator itc = curr_rops.begin(); itc != curr_rops.end(); ++itc ){
- TNode rop = itc->first;
- if( rlvOp.find( rop )==rlvOp.end() ){
- rlvOp.insert( rop );
- // now, try each pending APPLY_UF for this operator
- std::map< TNode, std::vector< Node > >::iterator itu = apply_uf.find( rop );
- if( itu!=apply_uf.end() ){
- for( unsigned j=0; j<itu->second.size(); j++ ){
- curr_sum = applyAppCompletion( itu->second[j] );
- if( curr_sum>0 ){
- return curr_sum;
- }
- }
- }
- }
- }
- }
- ++eqc_i;
- }
- ++eqcs_i;
- }
- return 0;
-}
-
-unsigned TheoryUF::checkHigherOrder() {
- Trace("uf-ho") << "TheoryUF::checkHigherOrder..." << std::endl;
-
- // infer new facts based on apply completion until fixed point
- unsigned num_facts;
- do{
- num_facts = checkAppCompletion();
- if( d_conflict ){
- Trace("uf-ho") << "...conflict during app-completion." << std::endl;
- return 1;
- }
- }while( num_facts>0 );
-
- if( options::ufHoExt() ){
- unsigned num_lemmas = 0;
-
- num_lemmas = checkExtensionality();
- if( num_lemmas>0 ){
- Trace("uf-ho") << "...extensionality returned " << num_lemmas << " lemmas." << std::endl;
- return num_lemmas;
- }
- }
-
- Trace("uf-ho") << "...finished check higher order." << std::endl;
-
- return 0;
-}
-
} /* namespace CVC4::theory::uf */
} /* namespace CVC4::theory */
} /* namespace CVC4 */
#ifndef CVC4__THEORY__UF__THEORY_UF_H
#define CVC4__THEORY__UF__THEORY_UF_H
+#include "context/cdhashmap.h"
#include "context/cdhashset.h"
#include "context/cdo.h"
#include "expr/node.h"
class UfTermDb;
class StrongSolverTheoryUF;
+class HoExtension;
class TheoryUF : public Theory {
/** The conflict node */
Node d_conflictNode;
- /** extensionality has been applied to these disequalities */
- NodeSet d_extensionality;
-
- /** cache of getExtensionalityDeq below */
- std::map<Node, Node> d_extensionality_deq;
-
- /** map from non-standard operators to their skolems */
- NodeNodeMap d_uf_std_skolem;
+ /** the higher-order solver extension */
+ HoExtension* d_ho;
/** node for true */
Node d_true;
/** called when two equivalence classes are made disequal */
void eqNotifyDisequal(TNode t1, TNode t2, TNode reason);
- private: // for higher-order
- /** get extensionality disequality
- *
- * Given disequality deq f != g, this returns the disequality:
- * (f k) != (g k) for fresh constant(s) k.
- */
- Node getExtensionalityDeq(TNode deq);
-
- /** applyExtensionality
- *
- * Given disequality deq f != g, if not already cached, this sends a lemma of
- * the form:
- * f = g V (f k) != (g k) for fresh constant k.
- * on the output channel. This is an "extensionality lemma".
- * Return value is the number of lemmas of this form sent on the output
- * channel.
- */
- unsigned applyExtensionality(TNode deq);
-
- /**
- * Check whether extensionality should be applied for any pair of terms in the
- * equality engine.
- *
- * If we pass a null model m to this function, then we add extensionality
- * lemmas to the output channel and return the total number of lemmas added.
- * We only add lemmas for functions whose type is finite, since pairs of
- * functions whose types are infinite can be made disequal in a model by
- * witnessing a point they are disequal.
- *
- * If we pass a non-null model m to this function, then we add disequalities
- * that correspond to the conclusion of extensionality lemmas to the model's
- * equality engine. We return 0 if the equality engine of m is consistent
- * after this call, and 1 otherwise. We only add disequalities for functions
- * whose type is infinite, since our decision procedure guarantees that
- * extensionality lemmas are added for all pairs of functions whose types are
- * finite.
- */
- unsigned checkExtensionality(TheoryModel* m = nullptr);
-
- /** applyAppCompletion
- * This infers a correspondence between APPLY_UF and HO_APPLY
- * versions of terms for higher-order.
- * Given APPLY_UF node e.g. (f a b c), this adds the equality to its
- * HO_APPLY equivalent:
- * (f a b c) == (@ (@ (@ f a) b) c)
- * to equality engine, if not already equal.
- * Return value is the number of equalities added.
- */
- unsigned applyAppCompletion(TNode n);
-
- /** check whether app-completion should be applied for any
- * pair of terms in the equality engine.
- */
- unsigned checkAppCompletion();
-
- /** check higher order
- * This is called at full effort and infers facts and sends lemmas
- * based on higher-order reasoning (specifically, extentionality and
- * app completion above). It returns the number of lemmas plus facts
- * added to the equality engine.
- */
- unsigned checkHigherOrder();
-
- /** collect model info for higher-order term
- *
- * This adds required constraints to m for term n. In particular, if n is
- * an APPLY_UF term, we add its HO_APPLY equivalent in this call. We return
- * true if the model m is consistent after this call.
- */
- bool collectModelInfoHoTerm(Node n, TheoryModel* m);
-
- /** get apply uf for ho apply
- * This returns the APPLY_UF equivalent for the HO_APPLY term node, where
- * node has non-functional return type (that is, it corresponds to a fully
- * applied function term).
- * This call may introduce a skolem for the head operator and send out a lemma
- * specifying the definition.
- */
- Node getApplyUfForHoApply(Node node);
+ private:
/** get the operator for this node (node should be either APPLY_UF or
* HO_APPLY)
*/
StrongSolverTheoryUF* getStrongSolver() {
return d_thss;
}
-private:
+ /** are we in conflict? */
+ bool inConflict() const { return d_conflict; }
+
+ private:
bool areCareDisequal(TNode x, TNode y);
void addCarePairs(TNodeTrie* t1,
TNodeTrie* t2,