}
}
-
-bool QuantifiersRewriter::isConditionalVariableElim( Node n, int pol ){
- if( n.getKind()==NOT ){
- return isConditionalVariableElim( n[0], -pol );
- }else if( ( n.getKind()==AND && pol>=0 ) || ( n.getKind()==OR && pol<=0 ) ){
- pol = n.getKind()==AND ? 1 : -1;
- for( unsigned i=0; i<n.getNumChildren(); i++ ){
- if( isConditionalVariableElim( n[i], pol ) ){
- return true;
- }
- }
- }else if( n.getKind()==EQUAL ){
- for (unsigned i = 0; i < 2; i++)
- {
- if (n[i].getKind() == BOUND_VARIABLE)
- {
- if (!expr::hasSubterm(n[1 - i], n[i]))
- {
- return true;
- }
- }
- }
- }else if( n.getKind()==BOUND_VARIABLE ){
- return true;
- }
- return false;
-}
-
-Node QuantifiersRewriter::computeCondSplit( Node body, QAttributes& qa ){
- if( options::iteDtTesterSplitQuant() && body.getKind()==ITE ){
+Node QuantifiersRewriter::computeCondSplit(Node body,
+ const std::vector<Node>& args,
+ QAttributes& qa)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ Kind bk = body.getKind();
+ if (options::iteDtTesterSplitQuant() && bk == ITE
+ && body[0].getKind() == APPLY_TESTER)
+ {
Trace("quantifiers-rewrite-ite-debug") << "DTT split : " << body << std::endl;
std::map< Node, Node > pcons;
std::map< Node, std::map< int, Node > > ncons;
for( unsigned i=0; i<conj.size(); i++ ){
Trace("quantifiers-rewrite-ite") << " " << conj[i] << std::endl;
}
- return NodeManager::currentNM()->mkNode( AND, conj );
+ return nm->mkNode(AND, conj);
}
}
- if( options::condVarSplitQuant() ){
- if( body.getKind()==ITE || ( body.getKind()==EQUAL && body[0].getType().isBoolean() && options::condVarSplitQuantAgg() ) ){
- Assert( !qa.isFunDef() );
- Trace("quantifiers-rewrite-debug") << "Conditional var elim split " << body << "?" << std::endl;
- bool do_split = false;
- unsigned index_max = body.getKind()==ITE ? 0 : 1;
- for( unsigned index=0; index<=index_max; index++ ){
- if( isConditionalVariableElim( body[index] ) ){
- do_split = true;
- break;
- }
+ if (!options::condVarSplitQuant())
+ {
+ return body;
+ }
+ Trace("cond-var-split-debug")
+ << "Conditional var elim split " << body << "?" << std::endl;
+
+ if (bk == ITE
+ || (bk == EQUAL && body[0].getType().isBoolean()
+ && options::condVarSplitQuantAgg()))
+ {
+ Assert(!qa.isFunDef());
+ bool do_split = false;
+ unsigned index_max = bk == ITE ? 0 : 1;
+ std::vector<Node> tmpArgs = args;
+ for (unsigned index = 0; index <= index_max; index++)
+ {
+ if (hasVarElim(body[index], true, tmpArgs)
+ || hasVarElim(body[index], false, tmpArgs))
+ {
+ do_split = true;
+ break;
}
- if( do_split ){
- Node pos;
- Node neg;
- if( body.getKind()==ITE ){
- pos = NodeManager::currentNM()->mkNode( OR, body[0].negate(), body[1] );
- neg = NodeManager::currentNM()->mkNode( OR, body[0], body[2] );
- }else{
- pos = NodeManager::currentNM()->mkNode( OR, body[0].negate(), body[1] );
- neg = NodeManager::currentNM()->mkNode( OR, body[0], body[1].negate() );
- }
- Trace("quantifiers-rewrite-debug") << "*** Split (conditional variable eq) " << body << " into : " << std::endl;
- Trace("quantifiers-rewrite-debug") << " " << pos << std::endl;
- Trace("quantifiers-rewrite-debug") << " " << neg << std::endl;
- return NodeManager::currentNM()->mkNode( AND, pos, neg );
- }
- }else if( body.getKind()==OR && options::condVarSplitQuantAgg() ){
- std::vector< Node > bchildren;
- std::vector< Node > nchildren;
- for( unsigned i=0; i<body.getNumChildren(); i++ ){
- bool split = false;
- if( nchildren.empty() ){
- if( body[i].getKind()==AND ){
- std::vector< Node > children;
- for( unsigned j=0; j<body[i].getNumChildren(); j++ ){
- if( ( body[i][j].getKind()==NOT && body[i][j][0].getKind()==EQUAL && isConditionalVariableElim( body[i][j][0] ) ) ||
- body[i][j].getKind()==BOUND_VARIABLE ){
- nchildren.push_back( body[i][j] );
- }else{
- children.push_back( body[i][j] );
- }
+ }
+ if (do_split)
+ {
+ Node pos;
+ Node neg;
+ if (bk == ITE)
+ {
+ pos = nm->mkNode(OR, body[0].negate(), body[1]);
+ neg = nm->mkNode(OR, body[0], body[2]);
+ }
+ else
+ {
+ pos = nm->mkNode(OR, body[0].negate(), body[1]);
+ neg = nm->mkNode(OR, body[0], body[1].negate());
+ }
+ Trace("cond-var-split-debug") << "*** Split (conditional variable eq) "
+ << body << " into : " << std::endl;
+ Trace("cond-var-split-debug") << " " << pos << std::endl;
+ Trace("cond-var-split-debug") << " " << neg << std::endl;
+ return nm->mkNode(AND, pos, neg);
+ }
+ }
+
+ if (bk == OR)
+ {
+ unsigned size = body.getNumChildren();
+ bool do_split = false;
+ unsigned split_index = 0;
+ for (unsigned i = 0; i < size; i++)
+ {
+ // check if this child is a (conditional) variable elimination
+ Node b = body[i];
+ if (b.getKind() == AND)
+ {
+ std::vector<Node> vars;
+ std::vector<Node> subs;
+ std::vector<Node> tmpArgs = args;
+ for (unsigned j = 0, bsize = b.getNumChildren(); j < bsize; j++)
+ {
+ if (getVarElimLit(b[j], false, tmpArgs, vars, subs))
+ {
+ Trace("cond-var-split-debug") << "Variable elimination in child #"
+ << j << " under " << i << std::endl;
+ // Figure out if we should split
+ // Currently we split if the aggressive option is set, or
+ // if the top-level OR is binary.
+ if (options::condVarSplitQuantAgg() || size == 2)
+ {
+ do_split = true;
}
- if( !nchildren.empty() ){
- if( !children.empty() ){
- nchildren.push_back( children.size()==1 ? children[0] : NodeManager::currentNM()->mkNode( AND, children ) );
- }
- split = true;
+ // other splitting criteria go here
+
+ if (do_split)
+ {
+ split_index = i;
+ break;
}
+ vars.clear();
+ subs.clear();
+ tmpArgs = args;
}
}
- if( !split ){
- bchildren.push_back( body[i] );
- }
}
- if( !nchildren.empty() ){
- Trace("quantifiers-rewrite-debug") << "*** Split (conditional variable eq) " << body << " into : " << std::endl;
- for( unsigned i=0; i<nchildren.size(); i++ ){
- bchildren.push_back( nchildren[i] );
- nchildren[i] = NodeManager::currentNM()->mkNode( OR, bchildren );
- Trace("quantifiers-rewrite-debug") << " " << nchildren[i] << std::endl;
- bchildren.pop_back();
- }
- return NodeManager::currentNM()->mkNode( AND, nchildren );
+ if (do_split)
+ {
+ break;
+ }
+ }
+ if (do_split)
+ {
+ std::vector<Node> children;
+ for (TNode bc : body)
+ {
+ children.push_back(bc);
}
+ std::vector<Node> split_children;
+ for (TNode bci : body[split_index])
+ {
+ children[split_index] = bci;
+ split_children.push_back(nm->mkNode(OR, children));
+ }
+ // split the AND child, for example:
+ // ( x!=a ^ P(x) ) V Q(x) ---> ( x!=a V Q(x) ) ^ ( P(x) V Q(x) )
+ return nm->mkNode(AND, split_children);
}
}
+
return body;
}
-bool QuantifiersRewriter::isVariableElim(Node v, Node s)
+bool QuantifiersRewriter::isVarElim(Node v, Node s)
{
+ Assert(v.getKind() == BOUND_VARIABLE);
return !expr::hasSubterm(s, v) && s.getType().isSubtypeOf(v.getType());
}
-void QuantifiersRewriter::isVariableBoundElig( Node n, std::map< Node, int >& exclude, std::map< Node, std::map< int, bool > >& visited, bool hasPol, bool pol,
- std::map< Node, bool >& elig_vars ) {
- int vindex = hasPol ? ( pol ? 1 : -1 ) : 0;
- if( visited[n].find( vindex )==visited[n].end() ){
- visited[n][vindex] = true;
- if( elig_vars.find( n )!=elig_vars.end() ){
- //variable contained in a place apart from bounds, no longer eligible for elimination
- elig_vars.erase( n );
- Trace("var-elim-ineq-debug") << "...found occurrence of " << n << ", mark ineligible" << std::endl;
- }else{
- if( hasPol ){
- std::map< Node, int >::iterator itx = exclude.find( n );
- if( itx!=exclude.end() && itx->second==vindex ){
- //already processed this literal
- return;
- }
- }
- for( unsigned j=0; j<n.getNumChildren(); j++ ){
- bool newHasPol;
- bool newPol;
- QuantPhaseReq::getPolarity( n, j, hasPol, pol, newHasPol, newPol );
- isVariableBoundElig( n[j], exclude, visited, newHasPol, newPol, elig_vars );
- if( elig_vars.empty() ){
- break;
- }
- }
- }
- }else{
- //already visited
- }
-}
-
-Node QuantifiersRewriter::computeVariableElimLitBv(Node lit,
- std::vector<Node>& args,
- Node& var)
+Node QuantifiersRewriter::getVarElimLitBv(Node lit,
+ std::vector<Node>& args,
+ Node& var)
{
if (Trace.isOn("quant-velim-bv"))
{
// if this is a proper variable elimination, that is, var = slv where
// var is not in the free variables of slv, then we can return this
// as the variable elimination for lit.
- if (isVariableElim(var, slv))
+ if (isVarElim(var, slv))
{
return slv;
}
return Node::null();
}
-bool QuantifiersRewriter::computeVariableElimLit(
- Node lit,
- bool pol,
- std::vector<Node>& args,
- std::vector<Node>& vars,
- std::vector<Node>& subs,
- std::map<Node, std::map<bool, std::map<Node, bool> > >& num_bounds)
+bool QuantifiersRewriter::getVarElimLit(Node lit,
+ bool pol,
+ std::vector<Node>& args,
+ std::vector<Node>& vars,
+ std::vector<Node>& subs)
{
+ if (lit.getKind() == NOT)
+ {
+ return getVarElimLit(lit[0], !pol, args, vars, subs);
+ }
+ NodeManager* nm = NodeManager::currentNM();
Trace("var-elim-quant-debug")
<< "Eliminate : " << lit << ", pol = " << pol << "?" << std::endl;
- if (lit.getKind() == EQUAL && options::varElimQuant())
+ if (lit.getKind() == APPLY_TESTER && pol && lit[0].getKind() == BOUND_VARIABLE
+ && options::dtVarExpandQuant())
+ {
+ Trace("var-elim-dt") << "Expand datatype variable based on : " << lit
+ << std::endl;
+ std::vector<Node>::iterator ita =
+ std::find(args.begin(), args.end(), lit[0]);
+ if (ita != args.end())
+ {
+ vars.push_back(lit[0]);
+ Expr testerExpr = lit.getOperator().toExpr();
+ int index = Datatype::indexOf(testerExpr);
+ const Datatype& dt = Datatype::datatypeOf(testerExpr);
+ const DatatypeConstructor& c = dt[index];
+ std::vector<Node> newChildren;
+ newChildren.push_back(Node::fromExpr(c.getConstructor()));
+ std::vector<Node> newVars;
+ for (unsigned j = 0, nargs = c.getNumArgs(); j < nargs; j++)
+ {
+ TypeNode tn = TypeNode::fromType(c[j].getRangeType());
+ Node v = nm->mkBoundVar(tn);
+ newChildren.push_back(v);
+ newVars.push_back(v);
+ }
+ subs.push_back(nm->mkNode(APPLY_CONSTRUCTOR, newChildren));
+ Trace("var-elim-dt") << "...apply substitution " << subs[0] << "/"
+ << vars[0] << std::endl;
+ args.erase(ita);
+ args.insert(args.end(), newVars.begin(), newVars.end());
+ return true;
+ }
+ }
+ // all eliminations below guarded by varElimQuant()
+ if (!options::varElimQuant())
+ {
+ return false;
+ }
+
+ if (lit.getKind() == EQUAL)
{
if (pol || lit[0].getType().isBoolean())
{
std::find(args.begin(), args.end(), v_slv);
if (ita != args.end())
{
- if (isVariableElim(v_slv, lit[1 - i]))
+ if (isVarElim(v_slv, lit[1 - i]))
{
Node slv = lit[1 - i];
if (!tpol)
}
}
}
- }else if( lit.getKind()==APPLY_TESTER && pol && lit[0].getKind()==BOUND_VARIABLE && options::dtVarExpandQuant() ){
- Trace("var-elim-dt") << "Expand datatype variable based on : " << lit << std::endl;
- std::vector< Node >::iterator ita = std::find( args.begin(), args.end(), lit[0] );
- if( ita!=args.end() ){
- vars.push_back( lit[0] );
- Expr testerExpr = lit.getOperator().toExpr();
- int index = Datatype::indexOf( testerExpr );
- const Datatype& dt = Datatype::datatypeOf(testerExpr);
- const DatatypeConstructor& c = dt[index];
- std::vector< Node > newChildren;
- newChildren.push_back( Node::fromExpr( c.getConstructor() ) );
- std::vector< Node > newVars;
- for( unsigned j=0; j<c.getNumArgs(); j++ ){
- TypeNode tn = TypeNode::fromType( c[j].getRangeType() );
- Node v = NodeManager::currentNM()->mkBoundVar( tn );
- newChildren.push_back( v );
- newVars.push_back( v );
- }
- subs.push_back( NodeManager::currentNM()->mkNode( APPLY_CONSTRUCTOR, newChildren ) );
- Trace("var-elim-dt") << "...apply substitution " << subs[0] << "/" << vars[0] << std::endl;
- args.erase( ita );
- args.insert( args.end(), newVars.begin(), newVars.end() );
- return true;
- }
- }else if( lit.getKind()==BOUND_VARIABLE && options::varElimQuant() ){
+ }
+ if (lit.getKind() == BOUND_VARIABLE)
+ {
std::vector< Node >::iterator ita = std::find( args.begin(), args.end(), lit );
if( ita!=args.end() ){
Trace("var-elim-bool") << "Variable eliminate : " << lit << std::endl;
return true;
}
}
- if( ( lit.getKind()==EQUAL && lit[0].getType().isReal() && pol && options::varElimQuant() ) ||
- ( ( lit.getKind()==GEQ || lit.getKind()==GT ) && options::varIneqElimQuant() ) ){
- //for arithmetic, solve the (in)equality
+ if (lit.getKind() == EQUAL && lit[0].getType().isReal() && pol)
+ {
+ // for arithmetic, solve the equality
std::map< Node, Node > msum;
if (ArithMSum::getMonomialSumLit(lit, msum))
{
if( !itm->first.isNull() ){
std::vector< Node >::iterator ita = std::find( args.begin(), args.end(), itm->first );
if( ita!=args.end() ){
- if( lit.getKind()==EQUAL ){
- Assert( pol );
- Node veq_c;
- Node val;
- int ires =
- ArithMSum::isolate(itm->first, msum, veq_c, val, EQUAL);
- if( ires!=0 && veq_c.isNull() && isVariableElim( itm->first, val ) ){
- Trace("var-elim-quant") << "Variable eliminate based on solved equality : " << itm->first << " -> " << val << std::endl;
- vars.push_back( itm->first );
- subs.push_back( val );
- args.erase( ita );
- return true;
- }
- }else{
- Assert( lit.getKind()==GEQ || lit.getKind()==GT );
- //store that this literal is upper/lower bound for itm->first
- Node veq_c;
- Node val;
- int ires = ArithMSum::isolate(
- itm->first, msum, veq_c, val, lit.getKind());
- if( ires!=0 && veq_c.isNull() ){
- bool is_upper = pol!=( ires==1 );
- Trace("var-elim-ineq-debug") << lit << " is a " << ( is_upper ? "upper" : "lower" ) << " bound for " << itm->first << std::endl;
- Trace("var-elim-ineq-debug") << " pol/ires = " << pol << " " << ires << std::endl;
- num_bounds[itm->first][is_upper][lit] = pol;
- }else{
- Trace("var-elim-ineq-debug") << "...ineligible " << itm->first << " since it cannot be solved for (" << ires << ", " << veq_c << ")." << std::endl;
- num_bounds[itm->first][true].clear();
- num_bounds[itm->first][false].clear();
- }
- }
- }else{
- if( lit.getKind()==GEQ || lit.getKind()==GT ){
- //compute variables in itm->first, these are not eligible for elimination
- std::vector< Node > bvs;
- TermUtil::getBoundVars( itm->first, bvs );
- for( unsigned j=0; j<bvs.size(); j++ ){
- Trace("var-elim-ineq-debug") << "...ineligible " << bvs[j] << " since it is contained in monomial." << std::endl;
- num_bounds[bvs[j]][true].clear();
- num_bounds[bvs[j]][false].clear();
- }
+ Assert(pol);
+ Node veq_c;
+ Node val;
+ int ires = ArithMSum::isolate(itm->first, msum, veq_c, val, EQUAL);
+ if (ires != 0 && veq_c.isNull() && isVarElim(itm->first, val))
+ {
+ Trace("var-elim-quant")
+ << "Variable eliminate based on solved equality : "
+ << itm->first << " -> " << val << std::endl;
+ vars.push_back(itm->first);
+ subs.push_back(val);
+ args.erase(ita);
+ return true;
}
}
}
}
}
}
- else if (lit.getKind() == EQUAL && lit[0].getType().isBitVector() && pol
- && options::varElimQuant())
+ if (lit.getKind() == EQUAL && lit[0].getType().isBitVector() && pol)
{
Node var;
- Node slv = computeVariableElimLitBv(lit, args, var);
+ Node slv = getVarElimLitBv(lit, args, var);
if (!slv.isNull())
{
Assert(!var.isNull());
return true;
}
}
-
return false;
}
-Node QuantifiersRewriter::computeVarElimination2( Node body, std::vector< Node >& args, QAttributes& qa ){
- Trace("var-elim-quant-debug") << "Compute var elimination for " << body << std::endl;
- std::map< Node, std::map< bool, std::map< Node, bool > > > num_bounds;
- QuantPhaseReq qpr( body );
+bool QuantifiersRewriter::getVarElim(Node n,
+ bool pol,
+ std::vector<Node>& args,
+ std::vector<Node>& vars,
+ std::vector<Node>& subs)
+{
+ Kind nk = n.getKind();
+ if (nk == NOT)
+ {
+ return getVarElim(n[0], !pol, args, vars, subs);
+ }
+ else if ((nk == AND && pol) || (nk == OR && !pol))
+ {
+ for (const Node& cn : n)
+ {
+ if (getVarElim(cn, pol, args, vars, subs))
+ {
+ return true;
+ }
+ }
+ return false;
+ }
+ return getVarElimLit(n, pol, args, vars, subs);
+}
+
+bool QuantifiersRewriter::hasVarElim(Node n, bool pol, std::vector<Node>& args)
+{
std::vector< Node > vars;
std::vector< Node > subs;
- for( std::map< Node, bool >::iterator it = qpr.d_phase_reqs.begin(); it != qpr.d_phase_reqs.end(); ++it ){
- Trace("var-elim-quant-debug") << " phase req : " << it->first << " -> " << ( it->second ? "true" : "false" ) << std::endl;
- if( computeVariableElimLit( it->first, it->second, args, vars, subs, num_bounds ) ){
- break;
+ return getVarElim(n, pol, args, vars, subs);
+}
+
+bool QuantifiersRewriter::getVarElimIneq(Node body,
+ std::vector<Node>& args,
+ std::vector<Node>& bounds,
+ std::vector<Node>& subs,
+ QAttributes& qa)
+{
+ // elimination based on inequalities
+ std::map<Node, std::map<bool, std::map<Node, bool> > > num_bounds;
+ QuantPhaseReq qpr(body);
+ for (const std::pair<const Node, bool>& pr : qpr.d_phase_reqs)
+ {
+ // an inequality that is entailed with a given polarity
+ Node lit = pr.first;
+ if (lit.getKind() != GEQ)
+ {
+ continue;
+ }
+ bool pol = pr.second;
+ Trace("var-elim-quant-debug") << "Process inequality bounds : " << lit
+ << ", pol = " << pol << "..." << std::endl;
+ // solve the inequality
+ std::map<Node, Node> msum;
+ if (!ArithMSum::getMonomialSumLit(lit, msum))
+ {
+ // not an inequality, cannot use
+ continue;
+ }
+ for (const std::pair<const Node, Node>& m : msum)
+ {
+ if (!m.first.isNull())
+ {
+ std::vector<Node>::iterator ita =
+ std::find(args.begin(), args.end(), m.first);
+ if (ita != args.end())
+ {
+ // store that this literal is upper/lower bound for itm->first
+ Node veq_c;
+ Node val;
+ int ires =
+ ArithMSum::isolate(m.first, msum, veq_c, val, lit.getKind());
+ if (ires != 0 && veq_c.isNull())
+ {
+ bool is_upper = pol != (ires == 1);
+ Trace("var-elim-ineq-debug")
+ << lit << " is a " << (is_upper ? "upper" : "lower")
+ << " bound for " << m.first << std::endl;
+ Trace("var-elim-ineq-debug")
+ << " pol/ires = " << pol << " " << ires << std::endl;
+ num_bounds[m.first][is_upper][lit] = pol;
+ }
+ else
+ {
+ Trace("var-elim-ineq-debug")
+ << "...ineligible " << m.first
+ << " since it cannot be solved for (" << ires << ", " << veq_c
+ << ")." << std::endl;
+ num_bounds[m.first][true].clear();
+ num_bounds[m.first][false].clear();
+ }
+ }
+ else
+ {
+ // compute variables in itm->first, these are not eligible for
+ // elimination
+ std::vector<Node> bvs;
+ TermUtil::getBoundVars(m.first, bvs);
+ for (TNode v : bvs)
+ {
+ Trace("var-elim-ineq-debug")
+ << "...ineligible " << v
+ << " since it is contained in monomial." << std::endl;
+ num_bounds[v][true].clear();
+ num_bounds[v][false].clear();
+ }
+ }
+ }
}
}
-
- if( !vars.empty() ){
- Trace("var-elim-quant-debug") << "VE " << vars.size() << "/" << args.size() << std::endl;
- //remake with eliminated nodes
- body = body.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
- body = Rewriter::rewrite( body );
- if( !qa.d_ipl.isNull() ){
- qa.d_ipl = qa.d_ipl.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
+
+ // collect all variables that have only upper/lower bounds
+ std::map<Node, bool> elig_vars;
+ for (const std::pair<const Node, std::map<bool, std::map<Node, bool> > >& nb :
+ num_bounds)
+ {
+ if (nb.second.find(true) == nb.second.end())
+ {
+ Trace("var-elim-ineq-debug")
+ << "Variable " << nb.first << " has only lower bounds." << std::endl;
+ elig_vars[nb.first] = false;
}
- Trace("var-elim-quant") << "Return " << body << std::endl;
- }else{
- //collect all variables that have only upper/lower bounds
- std::map< Node, bool > elig_vars;
- for( std::map< Node, std::map< bool, std::map< Node, bool > > >::iterator it = num_bounds.begin(); it != num_bounds.end(); ++it ){
- if( it->second.find( true )==it->second.end() ){
- Trace("var-elim-ineq-debug") << "Variable " << it->first << " has only lower bounds." << std::endl;
- elig_vars[it->first] = false;
- }else if( it->second.find( false )==it->second.end() ){
- Trace("var-elim-ineq-debug") << "Variable " << it->first << " has only upper bounds." << std::endl;
- elig_vars[it->first] = true;
- }
- }
- if( !elig_vars.empty() ){
- std::vector< Node > inactive_vars;
- std::map< Node, std::map< int, bool > > visited;
- std::map< Node, int > exclude;
- for( std::map< Node, bool >::iterator it = qpr.d_phase_reqs.begin(); it != qpr.d_phase_reqs.end(); ++it ){
- if( it->first.getKind()==GEQ || it->first.getKind()==GT ){
- exclude[ it->first ] = it->second ? -1 : 1;
- Trace("var-elim-ineq-debug") << "...exclude " << it->first << " at polarity " << exclude[ it->first ] << std::endl;
- }
+ else if (nb.second.find(false) == nb.second.end())
+ {
+ Trace("var-elim-ineq-debug")
+ << "Variable " << nb.first << " has only upper bounds." << std::endl;
+ elig_vars[nb.first] = true;
+ }
+ }
+ if (elig_vars.empty())
+ {
+ return false;
+ }
+ std::vector<Node> inactive_vars;
+ std::map<Node, std::map<int, bool> > visited;
+ std::map<Node, int> exclude;
+ for (const std::pair<Node, bool>& pr : qpr.d_phase_reqs)
+ {
+ if (pr.first.getKind() == GEQ)
+ {
+ exclude[pr.first] = pr.second ? -1 : 1;
+ Trace("var-elim-ineq-debug")
+ << "...exclude " << pr.first << " at polarity " << exclude[pr.first]
+ << std::endl;
+ }
+ }
+ // traverse the body, invalidate variables if they occur in places other than
+ // the bounds they occur in
+ std::unordered_map<TNode, std::unordered_set<int>, TNodeHashFunction>
+ evisited;
+ std::vector<TNode> evisit;
+ std::vector<int> evisit_pol;
+ TNode ecur;
+ int ecur_pol;
+ evisit.push_back(body);
+ evisit_pol.push_back(1);
+ if (!qa.d_ipl.isNull())
+ {
+ // do not eliminate variables that occur in the annotation
+ evisit.push_back(qa.d_ipl);
+ evisit_pol.push_back(0);
+ }
+ do
+ {
+ ecur = evisit.back();
+ evisit.pop_back();
+ ecur_pol = evisit_pol.back();
+ evisit_pol.pop_back();
+ std::unordered_set<int>& epp = evisited[ecur];
+ if (epp.find(ecur_pol) == epp.end())
+ {
+ epp.insert(ecur_pol);
+ if (elig_vars.find(ecur) != elig_vars.end())
+ {
+ // variable contained in a place apart from bounds, no longer eligible
+ // for elimination
+ elig_vars.erase(ecur);
+ Trace("var-elim-ineq-debug") << "...found occurrence of " << ecur
+ << ", mark ineligible" << std::endl;
}
- //traverse the body, invalidate variables if they occur in places other than the bounds they occur in
- isVariableBoundElig( body, exclude, visited, true, true, elig_vars );
-
- if( !elig_vars.empty() ){
- if( !qa.d_ipl.isNull() ){
- isVariableBoundElig( qa.d_ipl, exclude, visited, false, true, elig_vars );
+ else
+ {
+ bool rec = true;
+ bool pol = ecur_pol >= 0;
+ bool hasPol = ecur_pol != 0;
+ if (hasPol)
+ {
+ std::map<Node, int>::iterator itx = exclude.find(ecur);
+ if (itx != exclude.end() && itx->second == ecur_pol)
+ {
+ // already processed this literal as a bound
+ rec = false;
+ }
}
- for( std::map< Node, bool >::iterator itev = elig_vars.begin(); itev != elig_vars.end(); ++itev ){
- Node v = itev->first;
- Trace("var-elim-ineq-debug") << v << " is eligible for elimination." << std::endl;
- //do substitution corresponding to infinite projection, all literals involving unbounded variable go to true/false
- std::vector< Node > terms;
- std::vector< Node > subs;
- for( std::map< Node, bool >::iterator itb = num_bounds[v][elig_vars[v]].begin(); itb != num_bounds[v][elig_vars[v]].end(); ++itb ){
- Trace("var-elim-ineq-debug") << " subs : " << itb->first << " -> " << itb->second << std::endl;
- terms.push_back( itb->first );
- subs.push_back( NodeManager::currentNM()->mkConst( itb->second ) );
+ if (rec)
+ {
+ for (unsigned j = 0, size = ecur.getNumChildren(); j < size; j++)
+ {
+ bool newHasPol;
+ bool newPol;
+ QuantPhaseReq::getPolarity(ecur, j, hasPol, pol, newHasPol, newPol);
+ evisit.push_back(ecur[j]);
+ evisit_pol.push_back(newHasPol ? (newPol ? 1 : -1) : 0);
}
- body = body.substitute( terms.begin(), terms.end(), subs.begin(), subs.end() );
- Trace("var-elim-ineq-debug") << "Return " << body << std::endl;
- //eliminate from args
- std::vector< Node >::iterator ita = std::find( args.begin(), args.end(), v );
- Assert( ita!=args.end() );
- args.erase( ita );
}
- }
+ }
}
- }
- return body;
+ } while (!evisit.empty() && !elig_vars.empty());
+
+ bool ret = false;
+ for (const std::pair<Node, bool>& ev : elig_vars)
+ {
+ Node v = ev.first;
+ Trace("var-elim-ineq-debug")
+ << v << " is eligible for elimination." << std::endl;
+ // do substitution corresponding to infinite projection, all literals
+ // involving unbounded variable go to true/false
+ for (const std::pair<const Node, bool>& nb : num_bounds[v][elig_vars[v]])
+ {
+ Trace("var-elim-ineq-debug")
+ << " subs : " << nb.first << " -> " << nb.second << std::endl;
+ bounds.push_back(nb.first);
+ subs.push_back(NodeManager::currentNM()->mkConst(nb.second));
+ }
+ // eliminate from args
+ std::vector<Node>::iterator ita = std::find(args.begin(), args.end(), v);
+ Assert(ita != args.end());
+ args.erase(ita);
+ ret = true;
+ }
+ return ret;
}
Node QuantifiersRewriter::computeVarElimination( Node body, std::vector< Node >& args, QAttributes& qa ){
- if( options::varElimQuant() || options::dtVarExpandQuant() ){
- Node prev;
- do{
- prev = body;
- body = computeVarElimination2( body, args, qa );
- }while( prev!=body && !args.empty() );
+ if (!options::varElimQuant() && !options::dtVarExpandQuant()
+ && !options::varIneqElimQuant())
+ {
+ return body;
+ }
+ Node prev;
+ while (prev != body && !args.empty())
+ {
+ prev = body;
+
+ std::vector<Node> vars;
+ std::vector<Node> subs;
+ // standard variable elimination
+ if (options::varElimQuant())
+ {
+ getVarElim(body, false, args, vars, subs);
+ }
+ // variable elimination based on one-direction inequalities
+ if (vars.empty() && options::varIneqElimQuant())
+ {
+ getVarElimIneq(body, args, vars, subs, qa);
+ }
+ // if we eliminated a variable, update body and reprocess
+ if (!vars.empty())
+ {
+ Trace("var-elim-quant-debug")
+ << "VE " << vars.size() << "/" << args.size() << std::endl;
+ Assert(vars.size() == subs.size());
+ // remake with eliminated nodes
+ body =
+ body.substitute(vars.begin(), vars.end(), subs.begin(), subs.end());
+ body = Rewriter::rewrite(body);
+ if (!qa.d_ipl.isNull())
+ {
+ qa.d_ipl = qa.d_ipl.substitute(
+ vars.begin(), vars.end(), subs.begin(), subs.end());
+ }
+ Trace("var-elim-quant") << "Return " << body << std::endl;
+ }
}
return body;
}
n = NodeManager::currentNM()->mkNode( OR, new_conds );
}
}else if( computeOption==COMPUTE_COND_SPLIT ){
- n = computeCondSplit( n, qa );
+ n = computeCondSplit(n, args, qa);
}else if( computeOption==COMPUTE_PRENEX ){
if( options::prenexQuant()==PRENEX_QUANT_DISJ_NORMAL || options::prenexQuant()==PRENEX_QUANT_NORMAL ){
//will rewrite at preprocess time
std::map< Node, Node >& cache, std::map< Node, Node >& icache,
std::vector< Node >& new_vars, std::vector< Node >& new_conds, bool elimExtArith );
static void computeDtTesterIteSplit( Node n, std::map< Node, Node >& pcons, std::map< Node, std::map< int, Node > >& ncons, std::vector< Node >& conj );
- static bool isConditionalVariableElim( Node n, int pol=0 );
- static bool isVariableElim( Node v, Node s );
- static void isVariableBoundElig( Node n, std::map< Node, int >& exclude, std::map< Node, std::map< int, bool > >& visited, bool hasPol, bool pol,
- std::map< Node, bool >& elig_vars );
- static bool computeVariableElimLit( Node n, bool pol, std::vector< Node >& args, std::vector< Node >& var, std::vector< Node >& subs,
- std::map< Node, std::map< bool, std::map< Node, bool > > >& num_bounds );
- static Node computeVarElimination2( Node body, std::vector< Node >& args, QAttributes& qa );
+ //-------------------------------------variable elimination
+ /** is variable elimination
+ *
+ * Returns true if v is not a subterm of s, and the type of s is a subtype of
+ * the type of v.
+ */
+ static bool isVarElim(Node v, Node s);
+ /** get variable elimination literal
+ *
+ * If n asserted with polarity pol is equivalent to an equality of the form
+ * v = s for some v in args, where isVariableElim( v, s ) holds, then this
+ * method removes v from args, adds v to vars, adds s to subs, and returns
+ * true. Otherwise, it returns false.
+ */
+ static bool getVarElimLit(Node n,
+ bool pol,
+ std::vector<Node>& args,
+ std::vector<Node>& vars,
+ std::vector<Node>& subs);
/** variable eliminate for bit-vector literals
*
* If this returns a non-null value ret, then var is updated to a member of
- * args, and lit is equivalent to ( var = ret ).
+ * args, lit is equivalent to ( var = ret ), and var is removed from args.
*/
- static Node computeVariableElimLitBv(Node lit,
- std::vector<Node>& args,
- Node& var);
-
+ static Node getVarElimLitBv(Node lit, std::vector<Node>& args, Node& var);
+ /** get variable elimination
+ *
+ * If n asserted with polarity pol entails a literal lit that corresponds
+ * to a variable elimination for some v via the above method, we return true.
+ * In this case, we update args/vars/subs based on eliminating v.
+ */
+ static bool getVarElim(Node n,
+ bool pol,
+ std::vector<Node>& args,
+ std::vector<Node>& vars,
+ std::vector<Node>& subs);
+ /** has variable elimination
+ *
+ * Returns true if n asserted with polarity pol entails a literal for
+ * which variable elimination is possible.
+ */
+ static bool hasVarElim(Node n, bool pol, std::vector<Node>& args);
+ /** compute variable elimination inequality
+ *
+ * This method eliminates variables from the body of quantified formula
+ * "body" using (global) reasoning about inequalities. In particular, if there
+ * exists a variable x that only occurs in body or annotation qa in literals
+ * of the form x>=t with a fixed polarity P, then we may replace all such
+ * literals with P. For example, note that:
+ * forall xy. x>y OR P(y) is equivalent to forall y. P(y).
+ *
+ * In the case that a variable x from args can be eliminated in this way,
+ * we remove x from args, add x >= t1, ..., x >= tn to bounds, add false, ...,
+ * false to subs, and return true.
+ */
+ static bool getVarElimIneq(Node body,
+ std::vector<Node>& args,
+ std::vector<Node>& bounds,
+ std::vector<Node>& subs,
+ QAttributes& qa);
+ /** compute variable elimination
+ *
+ * This computes variable elimination rewrites for a body of a quantified
+ * formula with bound variables args. This method updates args to args' and
+ * returns a node body' such that (forall args. body) is equivalent to
+ * (forall args'. body'). An example of a variable elimination rewrite is:
+ * forall xy. x != a V P( x,y ) ---> forall y. P( a, y )
+ */
+ static Node computeVarElimination(Node body,
+ std::vector<Node>& args,
+ QAttributes& qa);
+ //-------------------------------------end variable elimination
+ //-------------------------------------conditional splitting
+ /** compute conditional splitting
+ *
+ * This computes conditional splitting rewrites for a body of a quantified
+ * formula with bound variables args. It returns a body' that is equivalent
+ * to body. We split body into a conjunction if variable elimination can
+ * occur in one of the conjuncts. Examples of this are:
+ * ite( x=a, P(x), Q(x) ) ----> ( x!=a V P(x) ) ^ ( x=a V Q(x) )
+ * (x=a) = P(x) ----> ( x!=a V P(x) ) ^ ( x=a V ~P(x) )
+ * ( x!=a ^ P(x) ) V Q(x) ---> ( x!=a V Q(x) ) ^ ( P(x) V Q(x) )
+ * where in each case, x can be eliminated in the first conjunct.
+ */
+ static Node computeCondSplit(Node body,
+ const std::vector<Node>& args,
+ QAttributes& qa);
+ //-------------------------------------end conditional splitting
public:
static Node computeElimSymbols( Node body );
static Node computeMiniscoping( std::vector< Node >& args, Node body, QAttributes& qa );
static Node computeAggressiveMiniscoping( std::vector< Node >& args, Node body );
//cache is dependent upon currCond, icache is not, new_conds are negated conditions
static Node computeProcessTerms( Node body, std::vector< Node >& new_vars, std::vector< Node >& new_conds, Node q, QAttributes& qa );
- static Node computeCondSplit( Node body, QAttributes& qa );
static Node computePrenex( Node body, std::vector< Node >& args, std::vector< Node >& nargs, bool pol, bool prenexAgg );
static Node computePrenexAgg( Node n, bool topLevel, std::map< unsigned, std::map< Node, Node > >& visited );
static Node computeSplit( std::vector< Node >& args, Node body, QAttributes& qa );
- static Node computeVarElimination( Node body, std::vector< Node >& args, QAttributes& qa );
private:
enum{
COMPUTE_ELIM_SYMBOLS = 0,
COMPUTE_PRENEX,
COMPUTE_VAR_ELIMINATION,
COMPUTE_COND_SPLIT,
- //COMPUTE_FLATTEN_ARGS_UF,
- //COMPUTE_CNF,
COMPUTE_LAST
};
static Node computeOperation( Node f, int computeOption, QAttributes& qa );