bool is_exact() const { return type == ALIAS || type == CONST; }
};
-// Tests for a SigSpec that is backed by a specific slice of a wire, this is used
-// instead of .is_wire() on clocks because they can be only a portion of an underlying
-// wire
-bool is_wire_slice(const RTLIL::SigSpec& sig) {
- return sig.is_chunk() && sig.chunks()[0].wire;
+// Tests for a SigSpec that is a valid clock input, clocks have to have a backing wire and be a single bit
+// using this instead of sig.is_wire() solves issues when the clock is a slice instead of a full wire
+bool is_valid_clock(const RTLIL::SigSpec& sig) {
+ return sig.is_chunk() && sig.is_bit() && sig[0].wire;
}
struct CxxrtlWorker {
} else if (is_ff_cell(cell->type)) {
log_assert(!for_debug);
// Clocks might be slices of larger signals but should only ever be single bit
- if (cell->hasPort(ID::CLK) && is_wire_slice(cell->getPort(ID::CLK))) {
+ if (cell->hasPort(ID::CLK) && is_valid_clock(cell->getPort(ID::CLK))) {
// Edge-sensitive logic
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
{
signal = sigmap(signal);
- log_assert(signal.is_wire() && signal.is_bit());
+ log_assert(is_valid_clock(signal));
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
RTLIL::SigBit sigbit = signal[0];
edge_types[sigbit] = type;
else if (edge_types[sigbit] != type)
edge_types[sigbit] = RTLIL::STe;
- edge_wires.insert(signal.as_wire());
+ // Cannot use as_wire because signal might not be a full wire, instead extract the wire from the sigbit
+ edge_wires.insert(sigbit.wire);
}
void analyze_design(RTLIL::Design *design)
// Various DFF cells are treated like posedge/negedge processes, see above for details.
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
- if (sigmap(cell->getPort(ID::CLK)).is_wire())
+ if (is_valid_clock(cell->getPort(ID::CLK)))
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
// Similar for memory port cells.
if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
- if (sigmap(cell->getPort(ID::CLK)).is_wire())
+ if (is_valid_clock(cell->getPort(ID::CLK)))
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
if (cell->type == ID($memwr))
writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
// Collect groups of memory write ports in the same domain.
- if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_wire_slice(cell->getPort(ID::CLK))) {
+ if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK))) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
memwr_per_domain[{clk_bit, memory}].insert(cell);
}
for (auto cell : module->cells()) {
// Collect groups of memory write ports read by every transparent read port.
- if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_wire_slice(cell->getPort(ID::CLK)) &&
+ if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && is_valid_clock(cell->getPort(ID::CLK)) &&
cell->getParam(ID::TRANSPARENT).as_bool()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];