#endif
-/***
- *** IS_NEGATIVE: test if float is negative
- ***/
-#if defined(USE_IEEE)
-static inline int GET_FLOAT_BITS( float x )
-{
- fi_type fi;
- fi.f = x;
- return fi.i;
-}
-#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
-#else
-#define IS_NEGATIVE(x) (x < 0.0F)
-#endif
-
-
-/***
- *** DIFFERENT_SIGNS: test if two floats have opposite signs
- ***/
-#if defined(USE_IEEE)
-#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
-#else
-/* Could just use (x*y<0) except for the flatshading requirements.
- * Maybe there's a better way?
- */
-#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
-#endif
-
-
/***
*** CEILF: ceiling of float
*** FLOORF: floor of float
}
+/** Is float value negative? */
+static inline GLboolean
+IS_NEGATIVE(float x)
+{
+#if defined(USE_IEEE)
+ fi_type fi;
+ fi.f = x;
+ return fi.i < 0;
+#else
+ return x < 0.0F;
+#endif
+}
+
+
+/** Test two floats have opposite signs */
+static inline GLboolean
+DIFFERENT_SIGNS(GLfloat x, GLfloat y)
+{
+#if defined(USE_IEEE)
+ fi_type xfi, yfi;
+ xfi.f = x;
+ yfi.f = y;
+ return (xfi.i ^ yfi.i) & (1u << 31);
+#else
+ /* Could just use (x*y<0) except for the flatshading requirements.
+ * Maybe there's a better way?
+ */
+ return ((x) * (y) <= 0.0F && (x) - (y) != 0.0F);
+#endif
+}
+
+
/** Compute ceiling of integer quotient of A divided by B. */
#define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )