--- /dev/null
+/*
+ * Copyright 2019 Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * on the rights to use, copy, modify, merge, publish, distribute, sub
+ * license, and/or sell copies of the Software, and to permit persons to whom
+ * the Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
+ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
+ * USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#include "si_pipe.h"
+#include "si_shader_internal.h"
+#include "sid.h"
+#include "si_build_pm4.h"
+#include "ac_llvm_cull.h"
+
+#include "util/u_prim.h"
+#include "util/u_suballoc.h"
+#include "util/u_upload_mgr.h"
+#include "util/fast_idiv_by_const.h"
+
+/* Based on:
+ * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
+ */
+
+/* This file implements primitive culling using asynchronous compute.
+ * It's written to be GL conformant.
+ *
+ * It takes a monolithic VS in LLVM IR returning gl_Position and invokes it
+ * in a compute shader. The shader processes 1 primitive/thread by invoking
+ * the VS for each vertex to get the positions, decomposes strips and fans
+ * into triangles (if needed), eliminates primitive restart (if needed),
+ * does (W<0) culling, face culling, view XY culling, zero-area and
+ * small-primitive culling, and generates a new index buffer that doesn't
+ * contain culled primitives.
+ *
+ * The index buffer is generated using the Ordered Count feature of GDS,
+ * which is an atomic counter that is incremented in the wavefront launch
+ * order, so that the original primitive order is preserved.
+ *
+ * Another GDS ordered counter is used to eliminate primitive restart indices.
+ * If a restart index lands on an even thread ID, the compute shader has to flip
+ * the primitive orientation of the whole following triangle strip. The primitive
+ * orientation has to be correct after strip and fan decomposition for two-sided
+ * shading to behave correctly. The decomposition also needs to be aware of
+ * which vertex is the provoking vertex for flat shading to behave correctly.
+ *
+ * IB = a GPU command buffer
+ *
+ * Both the compute and gfx IBs run in parallel sort of like CE and DE.
+ * The gfx IB has a CP barrier (REWIND packet) before a draw packet. REWIND
+ * doesn't continue if its word isn't 0x80000000. Once compute shaders are
+ * finished culling, the last wave will write the final primitive count from
+ * GDS directly into the count word of the draw packet in the gfx IB, and
+ * a CS_DONE event will signal the REWIND packet to continue. It's really
+ * a direct draw with command buffer patching from the compute queue.
+ *
+ * The compute IB doesn't have to start when its corresponding gfx IB starts,
+ * but can start sooner. The compute IB is signaled to start after the last
+ * execution barrier in the *previous* gfx IB. This is handled as follows.
+ * The kernel GPU scheduler starts the compute IB after the previous gfx IB has
+ * started. The compute IB then waits (WAIT_REG_MEM) for a mid-IB fence that
+ * represents the barrier in the previous gfx IB.
+ *
+ * Features:
+ * - Triangle strips and fans are decomposed into an indexed triangle list.
+ * The decomposition differs based on the provoking vertex state.
+ * - Instanced draws are converted into non-instanced draws for 16-bit indices.
+ * (InstanceID is stored in the high bits of VertexID and unpacked by VS)
+ * - Primitive restart is fully supported with triangle strips, including
+ * correct primitive orientation across multiple waves. (restart indices
+ * reset primitive orientation)
+ * - W<0 culling (W<0 is behind the viewer, sort of like near Z culling).
+ * - Back face culling, incl. culling zero-area / degenerate primitives.
+ * - View XY culling.
+ * - View Z culling (disabled due to limited impact with perspective projection).
+ * - Small primitive culling for all MSAA modes and all quant modes.
+ *
+ * The following are not implemented:
+ * - ClipVertex/ClipDistance/CullDistance-based culling.
+ * - Scissor culling.
+ * - HiZ culling.
+ *
+ * Limitations (and unimplemented features that may be possible to implement):
+ * - Only triangles, triangle strips, and triangle fans are supported.
+ * - Primitive restart is only supported with triangle strips.
+ * - Instancing and primitive restart can't be used together.
+ * - Instancing is only supported with 16-bit indices and instance count <= 2^16.
+ * - The instance divisor buffer is unavailable, so all divisors must be
+ * either 0 or 1.
+ * - Multidraws where the vertex shader reads gl_DrawID are unsupported.
+ * - No support for tessellation and geometry shaders.
+ * (patch elimination where tess factors are 0 would be possible to implement)
+ * - The vertex shader must not contain memory stores.
+ * - All VS resources must not have a write usage in the command buffer.
+ * (TODO: all shader buffers currently set the write usage)
+ * - Bindless textures and images must not occur in the vertex shader.
+ *
+ * User data SGPR layout:
+ * INDEX_BUFFERS: pointer to constants
+ * 0..3: input index buffer - typed buffer view
+ * 4..7: output index buffer - typed buffer view
+ * 8..11: viewport state - scale.xy, translate.xy
+ * VERTEX_COUNTER: counter address or first primitive ID
+ * - If unordered memory counter: address of "count" in the draw packet
+ * and is incremented atomically by the shader.
+ * - If unordered GDS counter: address of "count" in GDS starting from 0,
+ * must be initialized to 0 before the dispatch.
+ * - If ordered GDS counter: the primitive ID that should reset the vertex
+ * counter to 0 in GDS
+ * LAST_WAVE_PRIM_ID: the primitive ID that should write the final vertex
+ * count to memory if using GDS ordered append
+ * VERTEX_COUNT_ADDR: where the last wave should write the vertex count if
+ * using GDS ordered append
+ * VS.VERTEX_BUFFERS: same value as VS
+ * VS.CONST_AND_SHADER_BUFFERS: same value as VS
+ * VS.SAMPLERS_AND_IMAGES: same value as VS
+ * VS.BASE_VERTEX: same value as VS
+ * VS.START_INSTANCE: same value as VS
+ * NUM_PRIMS_UDIV_MULTIPLIER: For fast 31-bit division by the number of primitives
+ * per instance for instancing.
+ * NUM_PRIMS_UDIV_TERMS:
+ * - Bits [0:4]: "post_shift" for fast 31-bit division for instancing.
+ * - Bits [5:31]: The number of primitives per instance for computing the remainder.
+ * PRIMITIVE_RESTART_INDEX
+ * SMALL_PRIM_CULLING_PRECISION: Scale the primitive bounding box by this number.
+ *
+ *
+ * The code contains 3 codepaths:
+ * - Unordered memory counter (for debugging, random primitive order, no primitive restart)
+ * - Unordered GDS counter (for debugging, random primitive order, no primitive restart)
+ * - Ordered GDS counter (it preserves the primitive order)
+ *
+ * How to test primitive restart (the most complicated part because it needs
+ * to get the primitive orientation right):
+ * Set THREADGROUP_SIZE to 2 to exercise both intra-wave and inter-wave
+ * primitive orientation flips with small draw calls, which is what most tests use.
+ * You can also enable draw call splitting into draw calls with just 2 primitives.
+ */
+
+/* At least 256 is needed for the fastest wave launch rate from compute queues
+ * due to hw constraints. Nothing in the code needs more than 1 wave/threadgroup. */
+#define THREADGROUP_SIZE 256 /* high numbers limit available VGPRs */
+#define THREADGROUPS_PER_CU 1 /* TGs to launch on 1 CU before going onto the next, max 8 */
+#define MAX_WAVES_PER_SH 0 /* no limit */
+#define INDEX_STORES_USE_SLC 1 /* don't cache indices if L2 is full */
+/* Don't cull Z. We already do (W < 0) culling for primitives behind the viewer. */
+#define CULL_Z 0
+/* 0 = unordered memory counter, 1 = unordered GDS counter, 2 = ordered GDS counter */
+#define VERTEX_COUNTER_GDS_MODE 2
+#define GDS_SIZE_UNORDERED (4 * 1024) /* only for the unordered GDS counter */
+
+/* Grouping compute dispatches for small draw calls: How many primitives from multiple
+ * draw calls to process by compute before signaling the gfx IB. This reduces the number
+ * of EOP events + REWIND packets, because they decrease performance. */
+#define PRIMS_PER_BATCH (512 * 1024)
+/* Draw call splitting at the packet level. This allows signaling the gfx IB
+ * for big draw calls sooner, but doesn't allow context flushes between packets.
+ * Primitive restart is supported. Only implemented for ordered append. */
+#define SPLIT_PRIMS_PACKET_LEVEL_VALUE PRIMS_PER_BATCH
+/* If there is not enough ring buffer space for the current IB, split draw calls into
+ * this number of primitives, so that we can flush the context and get free ring space. */
+#define SPLIT_PRIMS_DRAW_LEVEL PRIMS_PER_BATCH
+
+/* Derived values. */
+#define WAVES_PER_TG DIV_ROUND_UP(THREADGROUP_SIZE, 64)
+#define SPLIT_PRIMS_PACKET_LEVEL (VERTEX_COUNTER_GDS_MODE == 2 ? \
+ SPLIT_PRIMS_PACKET_LEVEL_VALUE : \
+ UINT_MAX & ~(THREADGROUP_SIZE - 1))
+
+#define REWIND_SIGNAL_BIT 0x80000000
+/* For emulating the rewind packet on CI. */
+#define FORCE_REWIND_EMULATION 0
+
+void si_initialize_prim_discard_tunables(struct si_context *sctx)
+{
+ sctx->prim_discard_vertex_count_threshold = UINT_MAX; /* disable */
+
+ if (sctx->chip_class == GFX6 || /* SI support is not implemented */
+ !sctx->screen->info.has_gds_ordered_append ||
+ sctx->screen->debug_flags & DBG(NO_PD) ||
+ /* If aux_context == NULL, we are initializing aux_context right now. */
+ !sctx->screen->aux_context)
+ return;
+
+ /* TODO: enable this after the GDS kernel memory management is fixed */
+ bool enable_on_pro_graphics_by_default = false;
+
+ if (sctx->screen->debug_flags & DBG(ALWAYS_PD) ||
+ sctx->screen->debug_flags & DBG(PD) ||
+ (enable_on_pro_graphics_by_default &&
+ sctx->screen->info.is_pro_graphics &&
+ (sctx->family == CHIP_BONAIRE ||
+ sctx->family == CHIP_HAWAII ||
+ sctx->family == CHIP_TONGA ||
+ sctx->family == CHIP_FIJI ||
+ sctx->family == CHIP_POLARIS10 ||
+ sctx->family == CHIP_POLARIS11 ||
+ sctx->family == CHIP_VEGA10 ||
+ sctx->family == CHIP_VEGA20))) {
+ sctx->prim_discard_vertex_count_threshold = 6000 * 3; /* 6K triangles */
+
+ if (sctx->screen->debug_flags & DBG(ALWAYS_PD))
+ sctx->prim_discard_vertex_count_threshold = 0; /* always enable */
+
+ const uint32_t MB = 1024 * 1024;
+ const uint64_t GB = 1024 * 1024 * 1024;
+
+ /* The total size is double this per context.
+ * Greater numbers allow bigger gfx IBs.
+ */
+ if (sctx->screen->info.vram_size <= 2 * GB)
+ sctx->index_ring_size_per_ib = 64 * MB;
+ else if (sctx->screen->info.vram_size <= 4 * GB)
+ sctx->index_ring_size_per_ib = 128 * MB;
+ else
+ sctx->index_ring_size_per_ib = 256 * MB;
+ }
+}
+
+/* Opcode can be "add" or "swap". */
+static LLVMValueRef
+si_build_ds_ordered_op(struct si_shader_context *ctx, const char *opcode,
+ LLVMValueRef m0, LLVMValueRef value, unsigned ordered_count_index,
+ bool release, bool done)
+{
+ LLVMValueRef args[] = {
+ LLVMBuildIntToPtr(ctx->ac.builder, m0,
+ LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), ""),
+ value,
+ LLVMConstInt(ctx->i32, LLVMAtomicOrderingMonotonic, 0), /* ordering */
+ ctx->i32_0, /* scope */
+ ctx->i1false, /* volatile */
+ LLVMConstInt(ctx->i32, ordered_count_index, 0),
+ LLVMConstInt(ctx->i1, release, 0),
+ LLVMConstInt(ctx->i1, done, 0),
+ };
+
+ char intrinsic[64];
+ snprintf(intrinsic, sizeof(intrinsic), "llvm.amdgcn.ds.ordered.%s", opcode);
+ return ac_build_intrinsic(&ctx->ac, intrinsic, ctx->i32, args, ARRAY_SIZE(args), 0);
+}
+
+static LLVMValueRef si_expand_32bit_pointer(struct si_shader_context *ctx, LLVMValueRef ptr)
+{
+ uint64_t hi = (uint64_t)ctx->screen->info.address32_hi << 32;
+ ptr = LLVMBuildZExt(ctx->ac.builder, ptr, ctx->i64, "");
+ ptr = LLVMBuildOr(ctx->ac.builder, ptr, LLVMConstInt(ctx->i64, hi, 0), "");
+ return LLVMBuildIntToPtr(ctx->ac.builder, ptr,
+ LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GLOBAL), "");
+}
+
+struct si_thread0_section {
+ struct si_shader_context *ctx;
+ struct lp_build_if_state if_thread0;
+ LLVMValueRef vgpr_result; /* a VGPR for the value on thread 0. */
+ LLVMValueRef saved_exec;
+};
+
+/* Enter a section that only executes on thread 0. */
+static void si_enter_thread0_section(struct si_shader_context *ctx,
+ struct si_thread0_section *section,
+ LLVMValueRef thread_id)
+{
+ section->ctx = ctx;
+ section->vgpr_result = ac_build_alloca_undef(&ctx->ac, ctx->i32, "result0");
+
+ /* This IF has 4 instructions:
+ * v_and_b32_e32 v, 63, v ; get the thread ID
+ * v_cmp_eq_u32_e32 vcc, 0, v ; thread ID == 0
+ * s_and_saveexec_b64 s, vcc
+ * s_cbranch_execz BB0_4
+ *
+ * It could just be s_and_saveexec_b64 s, 1.
+ */
+ lp_build_if(§ion->if_thread0, &ctx->gallivm,
+ LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, thread_id,
+ ctx->i32_0, ""));
+}
+
+/* Exit a section that only executes on thread 0 and broadcast the result
+ * to all threads. */
+static void si_exit_thread0_section(struct si_thread0_section *section,
+ LLVMValueRef *result)
+{
+ struct si_shader_context *ctx = section->ctx;
+
+ LLVMBuildStore(ctx->ac.builder, *result, section->vgpr_result);
+
+ lp_build_endif(§ion->if_thread0);
+
+ /* Broadcast the result from thread 0 to all threads. */
+ *result = ac_build_readlane(&ctx->ac,
+ LLVMBuildLoad(ctx->ac.builder, section->vgpr_result, ""), NULL);
+}
+
+void si_build_prim_discard_compute_shader(struct si_shader_context *ctx)
+{
+ struct si_shader_key *key = &ctx->shader->key;
+ LLVMBuilderRef builder = ctx->ac.builder;
+ LLVMValueRef vs = ctx->main_fn;
+
+ /* Always inline the VS function. */
+ ac_add_function_attr(ctx->ac.context, vs, -1, AC_FUNC_ATTR_ALWAYSINLINE);
+ LLVMSetLinkage(vs, LLVMPrivateLinkage);
+
+ LLVMTypeRef const_desc_type;
+ if (ctx->shader->selector->info.const_buffers_declared == 1 &&
+ ctx->shader->selector->info.shader_buffers_declared == 0)
+ const_desc_type = ctx->f32;
+ else
+ const_desc_type = ctx->v4i32;
+
+ struct si_function_info fninfo;
+ si_init_function_info(&fninfo);
+
+ LLVMValueRef index_buffers_and_constants, vertex_counter, vb_desc, const_desc;
+ LLVMValueRef base_vertex, start_instance, block_id, local_id, ordered_wave_id;
+ LLVMValueRef restart_index, vp_scale[2], vp_translate[2], smallprim_precision;
+ LLVMValueRef num_prims_udiv_multiplier, num_prims_udiv_terms, sampler_desc;
+ LLVMValueRef last_wave_prim_id, vertex_count_addr;
+
+ add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
+ &index_buffers_and_constants);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_counter);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &last_wave_prim_id);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &vertex_count_addr);
+ add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v4i32),
+ &vb_desc);
+ add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(const_desc_type),
+ &const_desc);
+ add_arg_assign(&fninfo, ARG_SGPR, ac_array_in_const32_addr_space(ctx->v8i32),
+ &sampler_desc);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &base_vertex);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &start_instance);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_multiplier);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &num_prims_udiv_terms);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &restart_index);
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->f32, &smallprim_precision);
+
+ /* Block ID and thread ID inputs. */
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &block_id);
+ if (VERTEX_COUNTER_GDS_MODE == 2)
+ add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ordered_wave_id);
+ add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &local_id);
+
+ /* Create the compute shader function. */
+ unsigned old_type = ctx->type;
+ ctx->type = PIPE_SHADER_COMPUTE;
+ si_create_function(ctx, "prim_discard_cs", NULL, 0, &fninfo, THREADGROUP_SIZE);
+ ctx->type = old_type;
+
+ if (VERTEX_COUNTER_GDS_MODE == 1) {
+ ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size",
+ GDS_SIZE_UNORDERED);
+ }
+
+ /* Assemble parameters for VS. */
+ LLVMValueRef vs_params[16];
+ unsigned num_vs_params = 0;
+ unsigned param_vertex_id, param_instance_id;
+
+ vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 0))); /* RW_BUFFERS */
+ vs_params[num_vs_params++] = LLVMGetUndef(LLVMTypeOf(LLVMGetParam(vs, 1))); /* BINDLESS */
+ vs_params[num_vs_params++] = const_desc;
+ vs_params[num_vs_params++] = sampler_desc;
+ vs_params[num_vs_params++] = LLVMConstInt(ctx->i32,
+ S_VS_STATE_INDEXED(key->opt.cs_indexed), 0);
+ vs_params[num_vs_params++] = base_vertex;
+ vs_params[num_vs_params++] = start_instance;
+ vs_params[num_vs_params++] = ctx->i32_0; /* DrawID */
+ vs_params[num_vs_params++] = vb_desc;
+
+ vs_params[(param_vertex_id = num_vs_params++)] = NULL; /* VertexID */
+ vs_params[(param_instance_id = num_vs_params++)] = NULL; /* InstanceID */
+ vs_params[num_vs_params++] = ctx->i32_0; /* unused (PrimID) */
+ vs_params[num_vs_params++] = ctx->i32_0; /* unused */
+
+ assert(num_vs_params <= ARRAY_SIZE(vs_params));
+ assert(num_vs_params == LLVMCountParamTypes(LLVMGetElementType(LLVMTypeOf(vs))));
+
+ /* Load descriptors. (load 8 dwords at once) */
+ LLVMValueRef input_indexbuf, output_indexbuf, tmp, desc[8];
+
+ tmp = LLVMBuildPointerCast(builder, index_buffers_and_constants,
+ ac_array_in_const32_addr_space(ctx->v8i32), "");
+ tmp = ac_build_load_to_sgpr(&ctx->ac, tmp, ctx->i32_0);
+
+ for (unsigned i = 0; i < 8; i++)
+ desc[i] = ac_llvm_extract_elem(&ctx->ac, tmp, i);
+
+ input_indexbuf = ac_build_gather_values(&ctx->ac, desc, 4);
+ output_indexbuf = ac_build_gather_values(&ctx->ac, desc + 4, 4);
+
+ /* Compute PrimID and InstanceID. */
+ LLVMValueRef global_thread_id =
+ ac_build_imad(&ctx->ac, block_id,
+ LLVMConstInt(ctx->i32, THREADGROUP_SIZE, 0), local_id);
+ LLVMValueRef prim_id = global_thread_id; /* PrimID within an instance */
+ LLVMValueRef instance_id = ctx->i32_0;
+
+ if (key->opt.cs_instancing) {
+ /* Unpack num_prims_udiv_terms. */
+ LLVMValueRef post_shift = LLVMBuildAnd(builder, num_prims_udiv_terms,
+ LLVMConstInt(ctx->i32, 0x1f, 0), "");
+ LLVMValueRef prims_per_instance = LLVMBuildLShr(builder, num_prims_udiv_terms,
+ LLVMConstInt(ctx->i32, 5, 0), "");
+ /* Divide the total prim_id by the number of prims per instance. */
+ instance_id = ac_build_fast_udiv_u31_d_not_one(&ctx->ac, prim_id,
+ num_prims_udiv_multiplier,
+ post_shift);
+ /* Compute the remainder. */
+ prim_id = LLVMBuildSub(builder, prim_id,
+ LLVMBuildMul(builder, instance_id,
+ prims_per_instance, ""), "");
+ }
+
+ /* Generate indices (like a non-indexed draw call). */
+ LLVMValueRef index[4] = {NULL, NULL, NULL, LLVMGetUndef(ctx->i32)};
+ unsigned vertices_per_prim = 3;
+
+ switch (key->opt.cs_prim_type) {
+ case PIPE_PRIM_TRIANGLES:
+ for (unsigned i = 0; i < 3; i++) {
+ index[i] = ac_build_imad(&ctx->ac, prim_id,
+ LLVMConstInt(ctx->i32, 3, 0),
+ LLVMConstInt(ctx->i32, i, 0));
+ }
+ break;
+ case PIPE_PRIM_TRIANGLE_STRIP:
+ for (unsigned i = 0; i < 3; i++) {
+ index[i] = LLVMBuildAdd(builder, prim_id,
+ LLVMConstInt(ctx->i32, i, 0), "");
+ }
+ break;
+ case PIPE_PRIM_TRIANGLE_FAN:
+ /* Vertex 1 is first and vertex 2 is last. This will go to the hw clipper
+ * and rasterizer as a normal triangle, so we need to put the provoking
+ * vertex into the correct index variable and preserve orientation at the same time.
+ * gl_VertexID is preserved, because it's equal to the index.
+ */
+ if (key->opt.cs_provoking_vertex_first) {
+ index[0] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
+ index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
+ index[2] = ctx->i32_0;
+ } else {
+ index[0] = ctx->i32_0;
+ index[1] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 1, 0), "");
+ index[2] = LLVMBuildAdd(builder, prim_id, LLVMConstInt(ctx->i32, 2, 0), "");
+ }
+ break;
+ default:
+ unreachable("unexpected primitive type");
+ }
+
+ /* Fetch indices. */
+ if (key->opt.cs_indexed) {
+ for (unsigned i = 0; i < 3; i++) {
+ index[i] = ac_build_buffer_load_format(&ctx->ac, input_indexbuf,
+ index[i], ctx->i32_0, 1,
+ false, true);
+ index[i] = ac_to_integer(&ctx->ac, index[i]);
+ }
+ }
+
+ /* Extract the ordered wave ID. */
+ if (VERTEX_COUNTER_GDS_MODE == 2) {
+ ordered_wave_id = LLVMBuildLShr(builder, ordered_wave_id,
+ LLVMConstInt(ctx->i32, 6, 0), "");
+ ordered_wave_id = LLVMBuildAnd(builder, ordered_wave_id,
+ LLVMConstInt(ctx->i32, 0xfff, 0), "");
+ }
+ LLVMValueRef thread_id =
+ LLVMBuildAnd(builder, local_id, LLVMConstInt(ctx->i32, 63, 0), "");
+
+ /* Every other triangle in a strip has a reversed vertex order, so we
+ * need to swap vertices of odd primitives to get the correct primitive
+ * orientation when converting triangle strips to triangles. Primitive
+ * restart complicates it, because a strip can start anywhere.
+ */
+ LLVMValueRef prim_restart_accepted = ctx->i1true;
+
+ if (key->opt.cs_prim_type == PIPE_PRIM_TRIANGLE_STRIP) {
+ /* Without primitive restart, odd primitives have reversed orientation.
+ * Only primitive restart can flip it with respect to the first vertex
+ * of the draw call.
+ */
+ LLVMValueRef first_is_odd = ctx->i1false;
+
+ /* Handle primitive restart. */
+ if (key->opt.cs_primitive_restart) {
+ /* Get the GDS primitive restart continue flag and clear
+ * the flag in vertex_counter. This flag is used when the draw
+ * call was split and we need to load the primitive orientation
+ * flag from GDS for the first wave too.
+ */
+ LLVMValueRef gds_prim_restart_continue =
+ LLVMBuildLShr(builder, vertex_counter,
+ LLVMConstInt(ctx->i32, 31, 0), "");
+ gds_prim_restart_continue =
+ LLVMBuildTrunc(builder, gds_prim_restart_continue, ctx->i1, "");
+ vertex_counter = LLVMBuildAnd(builder, vertex_counter,
+ LLVMConstInt(ctx->i32, 0x7fffffff, 0), "");
+
+ LLVMValueRef index0_is_reset;
+
+ for (unsigned i = 0; i < 3; i++) {
+ LLVMValueRef not_reset = LLVMBuildICmp(builder, LLVMIntNE, index[i],
+ restart_index, "");
+ if (i == 0)
+ index0_is_reset = LLVMBuildNot(builder, not_reset, "");
+ prim_restart_accepted = LLVMBuildAnd(builder, prim_restart_accepted,
+ not_reset, "");
+ }
+
+ /* If the previous waves flip the primitive orientation
+ * of the current triangle strip, it will be stored in GDS.
+ *
+ * Sometimes the correct orientation is not needed, in which case
+ * we don't need to execute this.
+ */
+ if (key->opt.cs_need_correct_orientation && VERTEX_COUNTER_GDS_MODE == 2) {
+ /* If there are reset indices in this wave, get the thread index
+ * where the most recent strip starts relative to each thread.
+ */
+ LLVMValueRef preceding_threads_mask =
+ LLVMBuildSub(builder,
+ LLVMBuildShl(builder, ctx->ac.i64_1,
+ LLVMBuildZExt(builder, thread_id, ctx->i64, ""), ""),
+ ctx->ac.i64_1, "");
+
+ LLVMValueRef reset_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, index0_is_reset);
+ LLVMValueRef preceding_reset_threadmask =
+ LLVMBuildAnd(builder, reset_threadmask, preceding_threads_mask, "");
+ LLVMValueRef strip_start =
+ ac_build_umsb(&ctx->ac, preceding_reset_threadmask, NULL);
+ strip_start = LLVMBuildAdd(builder, strip_start, ctx->i32_1, "");
+
+ /* This flips the orientatino based on reset indices within this wave only. */
+ first_is_odd = LLVMBuildTrunc(builder, strip_start, ctx->i1, "");
+
+ LLVMValueRef last_strip_start, prev_wave_state, ret, tmp;
+ LLVMValueRef is_first_wave, current_wave_resets_index;
+
+ /* Get the thread index where the last strip starts in this wave.
+ *
+ * If the last strip doesn't start in this wave, the thread index
+ * will be 0.
+ *
+ * If the last strip starts in the next wave, the thread index will
+ * be 64.
+ */
+ last_strip_start = ac_build_umsb(&ctx->ac, reset_threadmask, NULL);
+ last_strip_start = LLVMBuildAdd(builder, last_strip_start, ctx->i32_1, "");
+
+ struct si_thread0_section section;
+ si_enter_thread0_section(ctx, §ion, thread_id);
+
+ /* This must be done in the thread 0 section, because
+ * we expect PrimID to be 0 for the whole first wave
+ * in this expression.
+ *
+ * NOTE: This will need to be different if we wanna support
+ * instancing with primitive restart.
+ */
+ is_first_wave = LLVMBuildICmp(builder, LLVMIntEQ, prim_id, ctx->i32_0, "");
+ is_first_wave = LLVMBuildAnd(builder, is_first_wave,
+ LLVMBuildNot(builder,
+ gds_prim_restart_continue, ""), "");
+ current_wave_resets_index = LLVMBuildICmp(builder, LLVMIntNE,
+ last_strip_start, ctx->i32_0, "");
+
+ ret = ac_build_alloca_undef(&ctx->ac, ctx->i32, "prev_state");
+
+ /* Save the last strip start primitive index in GDS and read
+ * the value that previous waves stored.
+ *
+ * if (is_first_wave || current_wave_resets_strip)
+ * // Read the value that previous waves stored and store a new one.
+ * first_is_odd = ds.ordered.swap(last_strip_start);
+ * else
+ * // Just read the value that previous waves stored.
+ * first_is_odd = ds.ordered.add(0);
+ */
+ struct lp_build_if_state if_overwrite_counter;
+ lp_build_if(&if_overwrite_counter, &ctx->gallivm,
+ LLVMBuildOr(builder, is_first_wave,
+ current_wave_resets_index, ""));
+ {
+ /* The GDS address is always 0 with ordered append. */
+ tmp = si_build_ds_ordered_op(ctx, "swap",
+ ordered_wave_id, last_strip_start,
+ 1, true, false);
+ LLVMBuildStore(builder, tmp, ret);
+ }
+ lp_build_else(&if_overwrite_counter);
+ {
+ /* Just read the value from GDS. */
+ tmp = si_build_ds_ordered_op(ctx, "add",
+ ordered_wave_id, ctx->i32_0,
+ 1, true, false);
+ LLVMBuildStore(builder, tmp, ret);
+ }
+ lp_build_endif(&if_overwrite_counter);
+
+ prev_wave_state = LLVMBuildLoad(builder, ret, "");
+ /* Ignore the return value if this is the first wave. */
+ prev_wave_state = LLVMBuildSelect(builder, is_first_wave,
+ ctx->i32_0, prev_wave_state, "");
+ si_exit_thread0_section(§ion, &prev_wave_state);
+ prev_wave_state = LLVMBuildTrunc(builder, prev_wave_state, ctx->i1, "");
+
+ /* If the strip start appears to be on thread 0 for the current primitive
+ * (meaning the reset index is not present in this wave and might have
+ * appeared in previous waves), use the value from GDS to determine
+ * primitive orientation.
+ *
+ * If the strip start is in this wave for the current primitive, use
+ * the value from the current wave to determine primitive orientation.
+ */
+ LLVMValueRef strip_start_is0 = LLVMBuildICmp(builder, LLVMIntEQ,
+ strip_start, ctx->i32_0, "");
+ first_is_odd = LLVMBuildSelect(builder, strip_start_is0, prev_wave_state,
+ first_is_odd, "");
+ }
+ }
+ /* prim_is_odd = (first_is_odd + current_is_odd) % 2. */
+ LLVMValueRef prim_is_odd =
+ LLVMBuildXor(builder, first_is_odd,
+ LLVMBuildTrunc(builder, thread_id, ctx->i1, ""), "");
+
+ /* Determine the primitive orientation.
+ * Only swap the vertices that are not the provoking vertex. We need to keep
+ * the provoking vertex in place.
+ */
+ if (key->opt.cs_provoking_vertex_first) {
+ LLVMValueRef index1 = index[1];
+ LLVMValueRef index2 = index[2];
+ index[1] = LLVMBuildSelect(builder, prim_is_odd, index2, index1, "");
+ index[2] = LLVMBuildSelect(builder, prim_is_odd, index1, index2, "");
+ } else {
+ LLVMValueRef index0 = index[0];
+ LLVMValueRef index1 = index[1];
+ index[0] = LLVMBuildSelect(builder, prim_is_odd, index1, index0, "");
+ index[1] = LLVMBuildSelect(builder, prim_is_odd, index0, index1, "");
+ }
+ }
+
+ /* Execute the vertex shader for each vertex to get vertex positions. */
+ LLVMValueRef pos[3][4];
+ for (unsigned i = 0; i < vertices_per_prim; i++) {
+ vs_params[param_vertex_id] = index[i];
+ vs_params[param_instance_id] = instance_id;
+
+ LLVMValueRef ret = LLVMBuildCall(builder, vs, vs_params, num_vs_params, "");
+ for (unsigned chan = 0; chan < 4; chan++)
+ pos[i][chan] = LLVMBuildExtractValue(builder, ret, chan, "");
+ }
+
+ /* Divide XYZ by W. */
+ for (unsigned i = 0; i < vertices_per_prim; i++) {
+ for (unsigned chan = 0; chan < 3; chan++)
+ pos[i][chan] = ac_build_fdiv(&ctx->ac, pos[i][chan], pos[i][3]);
+ }
+
+ /* Load the viewport state. */
+ LLVMValueRef vp = ac_build_load_invariant(&ctx->ac, index_buffers_and_constants,
+ LLVMConstInt(ctx->i32, 2, 0));
+ vp = LLVMBuildBitCast(builder, vp, ctx->v4f32, "");
+ vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
+ vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
+ vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
+ vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
+
+ /* Do culling. */
+ struct ac_cull_options options = {};
+ options.cull_front = key->opt.cs_cull_front;
+ options.cull_back = key->opt.cs_cull_back;
+ options.cull_view_xy = true;
+ options.cull_view_near_z = CULL_Z && key->opt.cs_cull_z;
+ options.cull_view_far_z = CULL_Z && key->opt.cs_cull_z;
+ options.cull_small_prims = true;
+ options.cull_zero_area = true;
+ options.cull_w = true;
+ options.use_halfz_clip_space = key->opt.cs_halfz_clip_space;
+
+ LLVMValueRef accepted =
+ ac_cull_triangle(&ctx->ac, pos, prim_restart_accepted,
+ vp_scale, vp_translate, smallprim_precision,
+ &options);
+
+ LLVMValueRef accepted_threadmask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
+
+ /* Count the number of active threads by doing bitcount(accepted). */
+ LLVMValueRef num_prims_accepted =
+ ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i64", ctx->i64,
+ &accepted_threadmask, 1, AC_FUNC_ATTR_READNONE);
+ num_prims_accepted = LLVMBuildTrunc(builder, num_prims_accepted, ctx->i32, "");
+
+ LLVMValueRef start;
+
+ /* Execute atomic_add on the vertex count. */
+ struct si_thread0_section section;
+ si_enter_thread0_section(ctx, §ion, thread_id);
+ {
+ if (VERTEX_COUNTER_GDS_MODE == 0) {
+ LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
+ LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
+ vertex_counter = si_expand_32bit_pointer(ctx, vertex_counter);
+ start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
+ vertex_counter, num_indices,
+ LLVMAtomicOrderingMonotonic, false);
+ } else if (VERTEX_COUNTER_GDS_MODE == 1) {
+ LLVMValueRef num_indices = LLVMBuildMul(builder, num_prims_accepted,
+ LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
+ vertex_counter = LLVMBuildIntToPtr(builder, vertex_counter,
+ LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS), "");
+ start = LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
+ vertex_counter, num_indices,
+ LLVMAtomicOrderingMonotonic, false);
+ } else if (VERTEX_COUNTER_GDS_MODE == 2) {
+ LLVMValueRef tmp_store = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
+
+ /* If the draw call was split into multiple subdraws, each using
+ * a separate draw packet, we need to start counting from 0 for
+ * the first compute wave of the subdraw.
+ *
+ * vertex_counter contains the primitive ID of the first thread
+ * in the first wave.
+ *
+ * This is only correct with VERTEX_COUNTER_GDS_MODE == 2:
+ */
+ LLVMValueRef is_first_wave =
+ LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
+ vertex_counter, "");
+
+ /* Store the primitive count for ordered append, not vertex count.
+ * The idea is to avoid GDS initialization via CP DMA. The shader
+ * effectively stores the first count using "swap".
+ *
+ * if (first_wave) {
+ * ds.ordered.swap(num_prims_accepted); // store the first primitive count
+ * previous = 0;
+ * } else {
+ * previous = ds.ordered.add(num_prims_accepted) // add the primitive count
+ * }
+ */
+ struct lp_build_if_state if_first_wave;
+ lp_build_if(&if_first_wave, &ctx->gallivm, is_first_wave);
+ {
+ /* The GDS address is always 0 with ordered append. */
+ si_build_ds_ordered_op(ctx, "swap", ordered_wave_id,
+ num_prims_accepted, 0, true, true);
+ LLVMBuildStore(builder, ctx->i32_0, tmp_store);
+ }
+ lp_build_else(&if_first_wave);
+ {
+ LLVMBuildStore(builder,
+ si_build_ds_ordered_op(ctx, "add", ordered_wave_id,
+ num_prims_accepted, 0,
+ true, true),
+ tmp_store);
+ }
+ lp_build_endif(&if_first_wave);
+
+ start = LLVMBuildLoad(builder, tmp_store, "");
+ }
+ }
+ si_exit_thread0_section(§ion, &start);
+
+ /* Write the final vertex count to memory. An EOS/EOP event could do this,
+ * but those events are super slow and should be avoided if performance
+ * is a concern. Thanks to GDS ordered append, we can emulate a CS_DONE
+ * event like this.
+ */
+ if (VERTEX_COUNTER_GDS_MODE == 2) {
+ struct lp_build_if_state if_last_wave;
+ lp_build_if(&if_last_wave, &ctx->gallivm,
+ LLVMBuildICmp(builder, LLVMIntEQ, global_thread_id,
+ last_wave_prim_id, ""));
+ LLVMValueRef count = LLVMBuildAdd(builder, start, num_prims_accepted, "");
+ count = LLVMBuildMul(builder, count,
+ LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
+
+ /* VI needs to disable caching, so that the CP can see the stored value.
+ * MTYPE=3 bypasses TC L2.
+ */
+ if (ctx->screen->info.chip_class <= GFX8) {
+ LLVMValueRef desc[] = {
+ vertex_count_addr,
+ LLVMConstInt(ctx->i32,
+ S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0),
+ LLVMConstInt(ctx->i32, 4, 0),
+ LLVMConstInt(ctx->i32, S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
+ S_008F0C_MTYPE(3 /* uncached */), 0),
+ };
+ LLVMValueRef rsrc = ac_build_gather_values(&ctx->ac, desc, 4);
+ ac_build_buffer_store_dword(&ctx->ac, rsrc, count, 1, ctx->i32_0,
+ ctx->i32_0, 0, true, true, true, false);
+ } else {
+ LLVMBuildStore(builder, count,
+ si_expand_32bit_pointer(ctx, vertex_count_addr));
+ }
+ lp_build_endif(&if_last_wave);
+ } else {
+ /* For unordered modes that increment a vertex count instead of
+ * primitive count, convert it into the primitive index.
+ */
+ start = LLVMBuildUDiv(builder, start,
+ LLVMConstInt(ctx->i32, vertices_per_prim, 0), "");
+ }
+
+ /* Now we need to store the indices of accepted primitives into
+ * the output index buffer.
+ */
+ struct lp_build_if_state if_accepted;
+ lp_build_if(&if_accepted, &ctx->gallivm, accepted);
+ {
+ /* Get the number of bits set before the index of this thread. */
+ LLVMValueRef prim_index = ac_build_mbcnt(&ctx->ac, accepted_threadmask);
+
+ /* We have lowered instancing. Pack the instance ID into vertex ID. */
+ if (key->opt.cs_instancing) {
+ instance_id = LLVMBuildShl(builder, instance_id,
+ LLVMConstInt(ctx->i32, 16, 0), "");
+
+ for (unsigned i = 0; i < vertices_per_prim; i++)
+ index[i] = LLVMBuildOr(builder, index[i], instance_id, "");
+ }
+
+ if (VERTEX_COUNTER_GDS_MODE == 2) {
+ /* vertex_counter contains the first primitive ID
+ * for this dispatch. If the draw call was split into
+ * multiple subdraws, the first primitive ID is > 0
+ * for subsequent subdraws. Each subdraw uses a different
+ * portion of the output index buffer. Offset the store
+ * vindex by the first primitive ID to get the correct
+ * store address for the subdraw.
+ */
+ start = LLVMBuildAdd(builder, start, vertex_counter, "");
+ }
+
+ /* Write indices for accepted primitives. */
+ LLVMValueRef buf_args[] = {
+ ac_to_float(&ctx->ac, ac_build_expand_to_vec4(&ctx->ac,
+ ac_build_gather_values(&ctx->ac, index, 3), 3)),
+ output_indexbuf,
+ LLVMBuildAdd(builder, start, prim_index, ""),
+ ctx->i32_0, /* voffset */
+ ctx->i1true, /* glc */
+ LLVMConstInt(ctx->i1, INDEX_STORES_USE_SLC, 0),
+ };
+ ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32",
+ ctx->voidt, buf_args, 6,
+ ac_get_store_intr_attribs(true));
+ }
+ lp_build_endif(&if_accepted);
+
+ LLVMBuildRetVoid(builder);
+}
+
+/* Return false if the shader isn't ready. */
+static bool si_shader_select_prim_discard_cs(struct si_context *sctx,
+ const struct pipe_draw_info *info)
+{
+ struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
+ struct si_shader_key key;
+
+ /* Primitive restart needs ordered counters. */
+ assert(!info->primitive_restart || VERTEX_COUNTER_GDS_MODE == 2);
+ assert(!info->primitive_restart || info->instance_count == 1);
+
+ memset(&key, 0, sizeof(key));
+ si_shader_selector_key_vs(sctx, sctx->vs_shader.cso, &key, &key.part.vs.prolog);
+ assert(!key.part.vs.prolog.instance_divisor_is_fetched);
+
+ key.part.vs.prolog.unpack_instance_id_from_vertex_id = 0;
+ key.opt.vs_as_prim_discard_cs = 1;
+ key.opt.cs_prim_type = info->mode;
+ key.opt.cs_indexed = info->index_size != 0;
+ key.opt.cs_instancing = info->instance_count > 1;
+ key.opt.cs_primitive_restart = info->primitive_restart;
+ key.opt.cs_provoking_vertex_first = rs->provoking_vertex_first;
+
+ /* Primitive restart with triangle strips needs to preserve primitive
+ * orientation for cases where front and back primitive orientation matters.
+ */
+ if (info->primitive_restart) {
+ struct si_shader_selector *ps = sctx->ps_shader.cso;
+
+ key.opt.cs_need_correct_orientation =
+ rs->cull_front != rs->cull_back ||
+ ps->info.uses_frontface ||
+ (rs->two_side && ps->info.colors_read);
+ }
+
+ if (rs->rasterizer_discard) {
+ /* Just for performance testing and analysis of trivial bottlenecks.
+ * This should result in a very short compute shader. */
+ key.opt.cs_cull_front = 1;
+ key.opt.cs_cull_back = 1;
+ } else {
+ key.opt.cs_cull_front =
+ sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front;
+ key.opt.cs_cull_back =
+ sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back;
+ }
+
+ if (!rs->depth_clamp_any && CULL_Z) {
+ key.opt.cs_cull_z = 1;
+ key.opt.cs_halfz_clip_space = rs->clip_halfz;
+ }
+
+ sctx->cs_prim_discard_state.cso = sctx->vs_shader.cso;
+ sctx->cs_prim_discard_state.current = NULL;
+
+ struct si_compiler_ctx_state compiler_state;
+ compiler_state.compiler = &sctx->compiler;
+ compiler_state.debug = sctx->debug;
+ compiler_state.is_debug_context = sctx->is_debug;
+
+ return si_shader_select_with_key(sctx->screen, &sctx->cs_prim_discard_state,
+ &compiler_state, &key, -1, true) == 0 &&
+ /* Disallow compute shaders using the scratch buffer. */
+ sctx->cs_prim_discard_state.current->config.scratch_bytes_per_wave == 0;
+}
+
+static bool si_initialize_prim_discard_cmdbuf(struct si_context *sctx)
+{
+ if (sctx->index_ring)
+ return true;
+
+ if (!sctx->prim_discard_compute_cs) {
+ struct radeon_winsys *ws = sctx->ws;
+ unsigned gds_size = VERTEX_COUNTER_GDS_MODE == 1 ? GDS_SIZE_UNORDERED :
+ VERTEX_COUNTER_GDS_MODE == 2 ? 8 : 0;
+ unsigned num_oa_counters = VERTEX_COUNTER_GDS_MODE == 2 ? 2 : 0;
+
+ if (gds_size) {
+ sctx->gds = ws->buffer_create(ws, gds_size, 4,
+ RADEON_DOMAIN_GDS, 0);
+ if (!sctx->gds)
+ return false;
+
+ ws->cs_add_buffer(sctx->gfx_cs, sctx->gds,
+ RADEON_USAGE_READWRITE, 0, 0);
+ }
+ if (num_oa_counters) {
+ assert(gds_size);
+ sctx->gds_oa = ws->buffer_create(ws, num_oa_counters,
+ 1, RADEON_DOMAIN_OA, 0);
+ if (!sctx->gds_oa)
+ return false;
+
+ ws->cs_add_buffer(sctx->gfx_cs, sctx->gds_oa,
+ RADEON_USAGE_READWRITE, 0, 0);
+ }
+
+ sctx->prim_discard_compute_cs =
+ ws->cs_add_parallel_compute_ib(sctx->gfx_cs,
+ num_oa_counters > 0);
+ if (!sctx->prim_discard_compute_cs)
+ return false;
+ }
+
+ if (!sctx->index_ring) {
+ sctx->index_ring =
+ si_aligned_buffer_create(sctx->b.screen,
+ SI_RESOURCE_FLAG_UNMAPPABLE,
+ PIPE_USAGE_DEFAULT,
+ sctx->index_ring_size_per_ib * 2,
+ 2 * 1024 * 1024);
+ if (!sctx->index_ring)
+ return false;
+ }
+ return true;
+}
+
+static bool si_check_ring_space(struct si_context *sctx, unsigned out_indexbuf_size)
+{
+ return sctx->index_ring_offset +
+ align(out_indexbuf_size, sctx->screen->info.tcc_cache_line_size) <=
+ sctx->index_ring_size_per_ib;
+}
+
+enum si_prim_discard_outcome
+si_prepare_prim_discard_or_split_draw(struct si_context *sctx,
+ const struct pipe_draw_info *info)
+{
+ /* If the compute shader compilation isn't finished, this returns false. */
+ if (!si_shader_select_prim_discard_cs(sctx, info))
+ return SI_PRIM_DISCARD_DISABLED;
+
+ if (!si_initialize_prim_discard_cmdbuf(sctx))
+ return SI_PRIM_DISCARD_DISABLED;
+
+ struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
+ unsigned prim = info->mode;
+ unsigned count = info->count;
+ unsigned instance_count = info->instance_count;
+ unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(prim, count);
+ unsigned num_prims = num_prims_per_instance * instance_count;
+ unsigned out_indexbuf_size = num_prims * 12;
+ bool ring_full = !si_check_ring_space(sctx, out_indexbuf_size);
+ const unsigned split_prims_draw_level = SPLIT_PRIMS_DRAW_LEVEL;
+
+ /* Split draws at the draw call level if the ring is full. This makes
+ * better use of the ring space.
+ */
+ if (ring_full &&
+ num_prims > split_prims_draw_level &&
+ instance_count == 1 && /* TODO: support splitting instanced draws */
+ (1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) |
+ (1 << PIPE_PRIM_TRIANGLE_STRIP))) {
+ /* Split draws. */
+ struct pipe_draw_info split_draw = *info;
+ unsigned base_start = split_draw.start;
+
+ if (prim == PIPE_PRIM_TRIANGLES) {
+ unsigned vert_count_per_subdraw = split_prims_draw_level * 3;
+ assert(vert_count_per_subdraw < count);
+
+ for (unsigned start = 0; start < count; start += vert_count_per_subdraw) {
+ split_draw.start = base_start + start;
+ split_draw.count = MIN2(count - start, vert_count_per_subdraw);
+
+ sctx->b.draw_vbo(&sctx->b, &split_draw);
+ }
+ } else if (prim == PIPE_PRIM_TRIANGLE_STRIP) {
+ /* No primitive pair can be split, because strips reverse orientation
+ * for odd primitives. */
+ STATIC_ASSERT(split_prims_draw_level % 2 == 0);
+
+ unsigned vert_count_per_subdraw = split_prims_draw_level;
+
+ for (unsigned start = 0; start < count - 2; start += vert_count_per_subdraw) {
+ split_draw.start = base_start + start;
+ split_draw.count = MIN2(count - start, vert_count_per_subdraw + 2);
+
+ sctx->b.draw_vbo(&sctx->b, &split_draw);
+
+ if (start == 0 &&
+ split_draw.primitive_restart &&
+ sctx->cs_prim_discard_state.current->key.opt.cs_need_correct_orientation)
+ sctx->preserve_prim_restart_gds_at_flush = true;
+ }
+ sctx->preserve_prim_restart_gds_at_flush = false;
+ } else {
+ assert(0);
+ }
+
+ return SI_PRIM_DISCARD_DRAW_SPLIT;
+ }
+
+ /* Just quit if the draw call doesn't fit into the ring and can't be split. */
+ if (out_indexbuf_size > sctx->index_ring_size_per_ib) {
+ if (SI_PRIM_DISCARD_DEBUG)
+ puts("PD failed: draw call too big, can't be split");
+ return SI_PRIM_DISCARD_DISABLED;
+ }
+
+ unsigned num_subdraws = DIV_ROUND_UP(num_prims, SPLIT_PRIMS_PACKET_LEVEL);
+ unsigned need_compute_dw = 11 /* shader */ + 34 /* first draw */ +
+ 24 * (num_subdraws - 1) + /* subdraws */
+ 20; /* leave some space at the end */
+ unsigned need_gfx_dw = si_get_minimum_num_gfx_cs_dwords(sctx);
+
+ if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION)
+ need_gfx_dw += 9; /* NOP(2) + WAIT_REG_MEM(7), then chain */
+ else
+ need_gfx_dw += num_subdraws * 8; /* use REWIND(2) + DRAW(6) */
+
+ if (ring_full ||
+ (VERTEX_COUNTER_GDS_MODE == 1 && sctx->compute_gds_offset + 8 > GDS_SIZE_UNORDERED) ||
+ !sctx->ws->cs_check_space(gfx_cs, need_gfx_dw, false)) {
+ /* If the current IB is empty but the size is too small, add a NOP
+ * packet to force a flush and get a bigger IB.
+ */
+ if (!radeon_emitted(gfx_cs, sctx->initial_gfx_cs_size) &&
+ gfx_cs->current.cdw + need_gfx_dw > gfx_cs->current.max_dw) {
+ radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
+ radeon_emit(gfx_cs, 0);
+ }
+
+ si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
+ }
+
+ /* The compute IB is always chained, but we need to call cs_check_space to add more space. */
+ struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
+ bool compute_has_space = sctx->ws->cs_check_space(cs, need_compute_dw, false);
+ assert(compute_has_space);
+ assert(si_check_ring_space(sctx, out_indexbuf_size));
+ return SI_PRIM_DISCARD_ENABLED;
+}
+
+void si_compute_signal_gfx(struct si_context *sctx)
+{
+ struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
+ unsigned writeback_L2_flags = 0;
+
+ /* The writeback L2 flags vary with each chip generation. */
+ /* CI needs to flush vertex indices to memory. */
+ if (sctx->chip_class <= GFX7)
+ writeback_L2_flags = EVENT_TC_WB_ACTION_ENA;
+ else if (sctx->chip_class == GFX8 && VERTEX_COUNTER_GDS_MODE == 0)
+ writeback_L2_flags = EVENT_TC_WB_ACTION_ENA | EVENT_TC_NC_ACTION_ENA;
+
+ if (!sctx->compute_num_prims_in_batch)
+ return;
+
+ assert(sctx->compute_rewind_va);
+
+ /* After the queued dispatches are done and vertex counts are written to
+ * the gfx IB, signal the gfx IB to continue. CP doesn't wait for
+ * the dispatches to finish, it only adds the CS_DONE event into the event
+ * queue.
+ */
+ si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, writeback_L2_flags,
+ sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
+ writeback_L2_flags ? EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM :
+ EOP_INT_SEL_NONE,
+ EOP_DATA_SEL_VALUE_32BIT,
+ NULL,
+ sctx->compute_rewind_va |
+ ((uint64_t)sctx->screen->info.address32_hi << 32),
+ REWIND_SIGNAL_BIT, /* signaling value for the REWIND packet */
+ SI_NOT_QUERY);
+
+ sctx->compute_rewind_va = 0;
+ sctx->compute_num_prims_in_batch = 0;
+}
+
+/* Dispatch a primitive discard compute shader. */
+void si_dispatch_prim_discard_cs_and_draw(struct si_context *sctx,
+ const struct pipe_draw_info *info,
+ unsigned index_size,
+ unsigned base_vertex,
+ uint64_t input_indexbuf_va,
+ unsigned input_indexbuf_num_elements)
+{
+ struct radeon_cmdbuf *gfx_cs = sctx->gfx_cs;
+ struct radeon_cmdbuf *cs = sctx->prim_discard_compute_cs;
+ unsigned num_prims_per_instance = u_decomposed_prims_for_vertices(info->mode, info->count);
+ if (!num_prims_per_instance)
+ return;
+
+ unsigned num_prims = num_prims_per_instance * info->instance_count;
+ unsigned vertices_per_prim, output_indexbuf_format;
+
+ switch (info->mode) {
+ case PIPE_PRIM_TRIANGLES:
+ case PIPE_PRIM_TRIANGLE_STRIP:
+ case PIPE_PRIM_TRIANGLE_FAN:
+ vertices_per_prim = 3;
+ output_indexbuf_format = V_008F0C_BUF_DATA_FORMAT_32_32_32;
+ break;
+ default:
+ unreachable("unsupported primitive type");
+ return;
+ }
+
+ unsigned out_indexbuf_offset;
+ uint64_t output_indexbuf_size = num_prims * vertices_per_prim * 4;
+ bool first_dispatch = !sctx->prim_discard_compute_ib_initialized;
+
+ /* Initialize the compute IB if it's empty. */
+ if (!sctx->prim_discard_compute_ib_initialized) {
+ /* 1) State initialization. */
+ sctx->compute_gds_offset = 0;
+ sctx->compute_ib_last_shader = NULL;
+
+ if (sctx->last_ib_barrier_fence) {
+ assert(!sctx->last_ib_barrier_buf);
+ sctx->ws->cs_add_fence_dependency(gfx_cs,
+ sctx->last_ib_barrier_fence,
+ RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY);
+ }
+
+ /* 2) IB initialization. */
+ /* Restore the GDS prim restart counter if needed. */
+ if (sctx->preserve_prim_restart_gds_at_flush) {
+ si_cp_copy_data(sctx, cs,
+ COPY_DATA_GDS, NULL, 4,
+ COPY_DATA_SRC_MEM, sctx->wait_mem_scratch, 4);
+ }
+
+ si_emit_initial_compute_regs(sctx, cs);
+
+ radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
+ S_00B860_WAVES(sctx->scratch_waves) |
+ S_00B860_WAVESIZE(0)); /* no scratch */
+
+ /* Only 1D grids are launched. */
+ radeon_set_sh_reg_seq(cs, R_00B820_COMPUTE_NUM_THREAD_Y, 2);
+ radeon_emit(cs, S_00B820_NUM_THREAD_FULL(1) |
+ S_00B820_NUM_THREAD_PARTIAL(1));
+ radeon_emit(cs, S_00B824_NUM_THREAD_FULL(1) |
+ S_00B824_NUM_THREAD_PARTIAL(1));
+
+ radeon_set_sh_reg_seq(cs, R_00B814_COMPUTE_START_Y, 2);
+ radeon_emit(cs, 0);
+ radeon_emit(cs, 0);
+
+ /* Disable ordered alloc for OA resources. */
+ for (unsigned i = 0; i < 2; i++) {
+ radeon_set_uconfig_reg_seq(cs, R_031074_GDS_OA_CNTL, 3);
+ radeon_emit(cs, S_031074_INDEX(i));
+ radeon_emit(cs, 0);
+ radeon_emit(cs, S_03107C_ENABLE(0));
+ }
+
+ if (sctx->last_ib_barrier_buf) {
+ assert(!sctx->last_ib_barrier_fence);
+ radeon_add_to_buffer_list(sctx, gfx_cs, sctx->last_ib_barrier_buf,
+ RADEON_USAGE_READ, RADEON_PRIO_FENCE);
+ si_cp_wait_mem(sctx, cs,
+ sctx->last_ib_barrier_buf->gpu_address +
+ sctx->last_ib_barrier_buf_offset, 1, 1,
+ WAIT_REG_MEM_EQUAL);
+ }
+
+ sctx->prim_discard_compute_ib_initialized = true;
+ }
+
+ /* Allocate the output index buffer. */
+ output_indexbuf_size = align(output_indexbuf_size,
+ sctx->screen->info.tcc_cache_line_size);
+ assert(sctx->index_ring_offset + output_indexbuf_size <= sctx->index_ring_size_per_ib);
+ out_indexbuf_offset = sctx->index_ring_base + sctx->index_ring_offset;
+ sctx->index_ring_offset += output_indexbuf_size;
+
+ radeon_add_to_buffer_list(sctx, gfx_cs, sctx->index_ring, RADEON_USAGE_READWRITE,
+ RADEON_PRIO_SHADER_RW_BUFFER);
+ uint64_t out_indexbuf_va = sctx->index_ring->gpu_address + out_indexbuf_offset;
+
+ /* Prepare index buffer descriptors. */
+ struct si_resource *indexbuf_desc = NULL;
+ unsigned indexbuf_desc_offset;
+ unsigned desc_size = 12 * 4;
+ uint32_t *desc;
+
+ u_upload_alloc(sctx->b.const_uploader, 0, desc_size,
+ si_optimal_tcc_alignment(sctx, desc_size),
+ &indexbuf_desc_offset, (struct pipe_resource**)&indexbuf_desc,
+ (void**)&desc);
+ radeon_add_to_buffer_list(sctx, gfx_cs, indexbuf_desc, RADEON_USAGE_READ,
+ RADEON_PRIO_DESCRIPTORS);
+
+ /* Input index buffer. */
+ desc[0] = input_indexbuf_va;
+ desc[1] = S_008F04_BASE_ADDRESS_HI(input_indexbuf_va >> 32) |
+ S_008F04_STRIDE(index_size);
+ desc[2] = input_indexbuf_num_elements * (sctx->chip_class == GFX8 ? index_size : 1);
+ desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
+ S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
+ S_008F0C_DATA_FORMAT(index_size == 1 ? V_008F0C_BUF_DATA_FORMAT_8 :
+ index_size == 2 ? V_008F0C_BUF_DATA_FORMAT_16 :
+ V_008F0C_BUF_DATA_FORMAT_32);
+
+ /* Output index buffer. */
+ desc[4] = out_indexbuf_va;
+ desc[5] = S_008F04_BASE_ADDRESS_HI(out_indexbuf_va >> 32) |
+ S_008F04_STRIDE(vertices_per_prim * 4);
+ desc[6] = num_prims * (sctx->chip_class == GFX8 ? vertices_per_prim * 4 : 1);
+ desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
+ S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
+ S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
+ S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_0) |
+ S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
+ S_008F0C_DATA_FORMAT(output_indexbuf_format);
+
+ /* Viewport state.
+ * This is needed by the small primitive culling, because it's done
+ * in screen space.
+ */
+ float scale[2], translate[2];
+
+ scale[0] = sctx->viewports.states[0].scale[0];
+ scale[1] = sctx->viewports.states[0].scale[1];
+ translate[0] = sctx->viewports.states[0].translate[0];
+ translate[1] = sctx->viewports.states[0].translate[1];
+
+ /* The viewport shouldn't flip the X axis for the small prim culling to work. */
+ assert(-scale[0] + translate[0] <= scale[0] + translate[0]);
+
+ /* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
+ * This is because the viewport transformation inverts the clip space
+ * bounding box, so min becomes max, which breaks small primitive
+ * culling.
+ */
+ if (sctx->viewports.y_inverted) {
+ scale[1] = -scale[1];
+ translate[1] = -translate[1];
+ }
+
+ /* Scale the framebuffer up, so that samples become pixels and small
+ * primitive culling is the same for all sample counts.
+ * This only works with the standard DX sample positions, because
+ * the samples are evenly spaced on both X and Y axes.
+ */
+ unsigned num_samples = sctx->framebuffer.nr_samples;
+ assert(num_samples >= 1);
+
+ for (unsigned i = 0; i < 2; i++) {
+ scale[i] *= num_samples;
+ translate[i] *= num_samples;
+ }
+
+ desc[8] = fui(scale[0]);
+ desc[9] = fui(scale[1]);
+ desc[10] = fui(translate[0]);
+ desc[11] = fui(translate[1]);
+
+ /* Better subpixel precision increases the efficiency of small
+ * primitive culling. */
+ unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
+ float small_prim_cull_precision;
+
+ if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
+ small_prim_cull_precision = num_samples / 4096.0;
+ else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
+ small_prim_cull_precision = num_samples / 1024.0;
+ else
+ small_prim_cull_precision = num_samples / 256.0;
+
+ /* Set user data SGPRs. */
+ /* This can't be greater than 14 if we want the fastest launch rate. */
+ unsigned user_sgprs = 13;
+
+ uint64_t index_buffers_va = indexbuf_desc->gpu_address + indexbuf_desc_offset;
+ unsigned vs_const_desc = si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX);
+ unsigned vs_sampler_desc = si_sampler_and_image_descriptors_idx(PIPE_SHADER_VERTEX);
+ uint64_t vs_const_desc_va = sctx->descriptors[vs_const_desc].gpu_address;
+ uint64_t vs_sampler_desc_va = sctx->descriptors[vs_sampler_desc].gpu_address;
+ uint64_t vb_desc_va = sctx->vb_descriptors_buffer ?
+ sctx->vb_descriptors_buffer->gpu_address +
+ sctx->vb_descriptors_offset : 0;
+ unsigned gds_offset, gds_size;
+ struct si_fast_udiv_info32 num_prims_udiv = {};
+
+ if (info->instance_count > 1)
+ num_prims_udiv = si_compute_fast_udiv_info32(num_prims_per_instance, 31);
+
+ /* Limitations on how these two are packed in the user SGPR. */
+ assert(num_prims_udiv.post_shift < 32);
+ assert(num_prims_per_instance < 1 << 27);
+
+ si_resource_reference(&indexbuf_desc, NULL);
+
+ if (VERTEX_COUNTER_GDS_MODE == 1) {
+ gds_offset = sctx->compute_gds_offset;
+ gds_size = info->primitive_restart ? 8 : 4;
+ sctx->compute_gds_offset += gds_size;
+
+ /* Reset the counters in GDS for the first dispatch using WRITE_DATA.
+ * The remainder of the GDS will be cleared after the dispatch packet
+ * in parallel with compute shaders.
+ */
+ if (first_dispatch) {
+ radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + gds_size/4, 0));
+ radeon_emit(cs, S_370_DST_SEL(V_370_GDS) | S_370_WR_CONFIRM(1));
+ radeon_emit(cs, gds_offset);
+ radeon_emit(cs, 0);
+ radeon_emit(cs, 0); /* value to write */
+ if (gds_size == 8)
+ radeon_emit(cs, 0);
+ }
+ }
+
+ /* Set shader registers. */
+ struct si_shader *shader = sctx->cs_prim_discard_state.current;
+
+ if (shader != sctx->compute_ib_last_shader) {
+ radeon_add_to_buffer_list(sctx, gfx_cs, shader->bo, RADEON_USAGE_READ,
+ RADEON_PRIO_SHADER_BINARY);
+ uint64_t shader_va = shader->bo->gpu_address;
+
+ assert(shader->config.scratch_bytes_per_wave == 0);
+ assert(shader->config.num_vgprs * WAVES_PER_TG <= 256 * 4);
+
+ radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
+ radeon_emit(cs, shader_va >> 8);
+ radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
+
+ radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
+ radeon_emit(cs, S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
+ S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
+ S_00B848_FLOAT_MODE(shader->config.float_mode) |
+ S_00B848_DX10_CLAMP(1));
+ radeon_emit(cs, S_00B84C_SCRATCH_EN(0 /* no scratch */) |
+ S_00B84C_USER_SGPR(user_sgprs) |
+ S_00B84C_TGID_X_EN(1 /* only blockID.x is used */) |
+ S_00B84C_TG_SIZE_EN(VERTEX_COUNTER_GDS_MODE == 2 /* need the wave ID */) |
+ S_00B84C_TIDIG_COMP_CNT(0 /* only threadID.x is used */) |
+ S_00B84C_LDS_SIZE(shader->config.lds_size));
+
+ radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
+ si_get_compute_resource_limits(sctx->screen, WAVES_PER_TG,
+ MAX_WAVES_PER_SH, THREADGROUPS_PER_CU));
+ sctx->compute_ib_last_shader = shader;
+ }
+
+ STATIC_ASSERT(SPLIT_PRIMS_PACKET_LEVEL % THREADGROUP_SIZE == 0);
+
+ /* Big draw calls are split into smaller dispatches and draw packets. */
+ for (unsigned start_prim = 0; start_prim < num_prims; start_prim += SPLIT_PRIMS_PACKET_LEVEL) {
+ unsigned num_subdraw_prims;
+
+ if (start_prim + SPLIT_PRIMS_PACKET_LEVEL < num_prims)
+ num_subdraw_prims = SPLIT_PRIMS_PACKET_LEVEL;
+ else
+ num_subdraw_prims = num_prims - start_prim;
+
+ /* Small dispatches are executed back to back until a specific primitive
+ * count is reached. Then, a CS_DONE is inserted to signal the gfx IB
+ * to start drawing the batch. This batching adds latency to the gfx IB,
+ * but CS_DONE and REWIND are too slow.
+ */
+ if (sctx->compute_num_prims_in_batch + num_subdraw_prims > PRIMS_PER_BATCH)
+ si_compute_signal_gfx(sctx);
+
+ if (sctx->compute_num_prims_in_batch == 0) {
+ assert((gfx_cs->gpu_address >> 32) == sctx->screen->info.address32_hi);
+ sctx->compute_rewind_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 1) * 4;
+
+ if (sctx->chip_class <= GFX7 || FORCE_REWIND_EMULATION) {
+ radeon_emit(gfx_cs, PKT3(PKT3_NOP, 0, 0));
+ radeon_emit(gfx_cs, 0);
+
+ si_cp_wait_mem(sctx, gfx_cs,
+ sctx->compute_rewind_va |
+ (uint64_t)sctx->screen->info.address32_hi << 32,
+ REWIND_SIGNAL_BIT, REWIND_SIGNAL_BIT,
+ WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_PFP);
+
+ /* Use INDIRECT_BUFFER to chain to a different buffer
+ * to discard the CP prefetch cache.
+ */
+ sctx->ws->cs_check_space(gfx_cs, 0, true);
+ } else {
+ radeon_emit(gfx_cs, PKT3(PKT3_REWIND, 0, 0));
+ radeon_emit(gfx_cs, 0);
+ }
+ }
+
+ sctx->compute_num_prims_in_batch += num_subdraw_prims;
+
+ uint32_t count_va = gfx_cs->gpu_address + (gfx_cs->current.cdw + 4) * 4;
+ uint64_t index_va = out_indexbuf_va + start_prim * 12;
+
+ /* Emit the draw packet into the gfx IB. */
+ radeon_emit(gfx_cs, PKT3(PKT3_DRAW_INDEX_2, 4, 0));
+ radeon_emit(gfx_cs, num_prims * vertices_per_prim);
+ radeon_emit(gfx_cs, index_va);
+ radeon_emit(gfx_cs, index_va >> 32);
+ radeon_emit(gfx_cs, 0);
+ radeon_emit(gfx_cs, V_0287F0_DI_SRC_SEL_DMA);
+
+ /* Continue with the compute IB. */
+ if (start_prim == 0) {
+ uint32_t gds_prim_restart_continue_bit = 0;
+
+ if (sctx->preserve_prim_restart_gds_at_flush) {
+ assert(info->primitive_restart &&
+ info->mode == PIPE_PRIM_TRIANGLE_STRIP);
+ assert(start_prim < 1 << 31);
+ gds_prim_restart_continue_bit = 1 << 31;
+ }
+
+ radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, user_sgprs);
+ radeon_emit(cs, index_buffers_va);
+ radeon_emit(cs,
+ VERTEX_COUNTER_GDS_MODE == 0 ? count_va :
+ VERTEX_COUNTER_GDS_MODE == 1 ? gds_offset :
+ start_prim |
+ gds_prim_restart_continue_bit);
+ radeon_emit(cs, start_prim + num_subdraw_prims - 1);
+ radeon_emit(cs, count_va);
+ radeon_emit(cs, vb_desc_va);
+ radeon_emit(cs, vs_const_desc_va);
+ radeon_emit(cs, vs_sampler_desc_va);
+ radeon_emit(cs, base_vertex);
+ radeon_emit(cs, info->start_instance);
+ radeon_emit(cs, num_prims_udiv.multiplier);
+ radeon_emit(cs, num_prims_udiv.post_shift |
+ (num_prims_per_instance << 5));
+ radeon_emit(cs, info->restart_index);
+ /* small-prim culling precision (same as rasterizer precision = QUANT_MODE) */
+ radeon_emit(cs, fui(small_prim_cull_precision));
+ } else {
+ assert(VERTEX_COUNTER_GDS_MODE == 2);
+ /* Only update the SGPRs that changed. */
+ radeon_set_sh_reg_seq(cs, R_00B904_COMPUTE_USER_DATA_1, 3);
+ radeon_emit(cs, start_prim);
+ radeon_emit(cs, start_prim + num_subdraw_prims - 1);
+ radeon_emit(cs, count_va);
+ }
+
+ /* Set grid dimensions. */
+ unsigned start_block = start_prim / THREADGROUP_SIZE;
+ unsigned num_full_blocks = num_subdraw_prims / THREADGROUP_SIZE;
+ unsigned partial_block_size = num_subdraw_prims % THREADGROUP_SIZE;
+
+ radeon_set_sh_reg(cs, R_00B810_COMPUTE_START_X, start_block);
+ radeon_set_sh_reg(cs, R_00B81C_COMPUTE_NUM_THREAD_X,
+ S_00B81C_NUM_THREAD_FULL(THREADGROUP_SIZE) |
+ S_00B81C_NUM_THREAD_PARTIAL(partial_block_size));
+
+ radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, 0) |
+ PKT3_SHADER_TYPE_S(1));
+ radeon_emit(cs, start_block + num_full_blocks + !!partial_block_size);
+ radeon_emit(cs, 1);
+ radeon_emit(cs, 1);
+ radeon_emit(cs, S_00B800_COMPUTE_SHADER_EN(1) |
+ S_00B800_PARTIAL_TG_EN(!!partial_block_size) |
+ S_00B800_ORDERED_APPEND_ENBL(VERTEX_COUNTER_GDS_MODE == 2) |
+ S_00B800_ORDER_MODE(0 /* launch in order */));
+
+ /* This is only for unordered append. Ordered append writes this from
+ * the shader.
+ *
+ * Note that EOP and EOS events are super slow, so emulating the event
+ * in a shader is an important optimization.
+ */
+ if (VERTEX_COUNTER_GDS_MODE == 1) {
+ si_cp_release_mem(sctx, cs, V_028A90_CS_DONE, 0,
+ sctx->chip_class <= GFX8 ? EOP_DST_SEL_MEM : EOP_DST_SEL_TC_L2,
+ EOP_INT_SEL_NONE,
+ EOP_DATA_SEL_GDS,
+ NULL,
+ count_va | ((uint64_t)sctx->screen->info.address32_hi << 32),
+ EOP_DATA_GDS(gds_offset / 4, 1),
+ SI_NOT_QUERY);
+
+ /* Now that compute shaders are running, clear the remainder of GDS. */
+ if (first_dispatch) {
+ unsigned offset = gds_offset + gds_size;
+ si_cp_dma_clear_buffer(sctx, cs, NULL, offset,
+ GDS_SIZE_UNORDERED - offset,
+ 0,
+ SI_CPDMA_SKIP_CHECK_CS_SPACE |
+ SI_CPDMA_SKIP_GFX_SYNC |
+ SI_CPDMA_SKIP_SYNC_BEFORE,
+ SI_COHERENCY_NONE, L2_BYPASS);
+ }
+ }
+ first_dispatch = false;
+
+ assert(cs->current.cdw <= cs->current.max_dw);
+ assert(gfx_cs->current.cdw <= gfx_cs->current.max_dw);
+ }
+}