--- /dev/null
+# This file is Copyright (c) 2020 bunnie <bunnie@kosagi.com>
+# License: BSD
+
+from litex.soc.interconnect.csr_eventmanager import *
+from litex.soc.interconnect import wishbone
+from litex.soc.integration.doc import AutoDoc, ModuleDoc
+from migen.genlib.cdc import MultiReg
+
+class i2s_slave(Module, AutoCSR, AutoDoc):
+ def __init__(self, pads, fifodepth=256):
+ self.intro = ModuleDoc("""
+ Intro
+ *******
+
+ I2S slave creates a slave audio interface instance. Tx and Rx interfaces are inferred
+ based upon the presence or absence of the respective pins in the "pads" argument.
+
+ The interface is I2S-like, but note the deviation that the bits are justified
+ left without a 1-bit pad after sync edges. This isn't a problem for talking to the LM49352
+ codec this was designed for, as the bit offset is programmable, but this will not work well if
+ are talking to a CODEC without a programmable bit offset!
+
+ System Interface
+ =================
+
+ Audio interchange is done with the system using 16-bit stereo samples, with the right channel
+ mapped to the least significant word of a 32-bit word. Thus each 32-bit word is a single
+ stereo sample. As this is a slave I2S interface, sampling rate and framing is set by the programming
+ of the audio CODEC chip. A slave situation is preferred because this defers the generation of
+ audio clocks to the CODEC, which has PLLs specialized to generate the correct frequencies for
+ audio sampling rates.
+
+ `fifodepth` is the depth at which either a read interrupt is fired (guaranteeing at least `fifodepth`
+ stereo samples in the receive FIFO) or a write interrupt is fired (guaranteeing at least `fifodepth`
+ free space in the transmit FIFO). The maximum depth is 512.
+
+ To receive audio data:
+
+ - reset the Rx FIFO, to guarantee all pointers at zero
+ - hook the Rx full interrupt with an interrupt handler (optional)
+ - if the CODEC is not yet transmitting data, initiate data transmission
+ - enable Rx FIFO to run
+ - poll or wait for interrupt; upon interrupt, read `fifodepth` words. Repeat.
+ - to close the stream, simply clear the Rx FIFO enable bit. The next initiation should call a
+ reset of the FIFO to ensure leftover previous data is cleared from the FIFO.
+
+ To transmit audio data:
+
+ - reset the Tx FIFO, to guarantee all pointers at zero
+ - hook the Tx available interrupt with an interrupt handler (optional)
+ - write 512 words of data into the Tx FIFO, filling it to the max
+ - if the CODEC is not yet requesting data and unmuted, unmute and initiate reception
+ - enable the Tx FIFO to run
+ - poll or wait for interrupt; upon interrupt, write `fifodepth` words. Repeat.
+ - to close stream, mute the DAC and stop the request clock. Ideally, this can be completed before
+ the FIFO is emptied, so there is no jarring pop or truncation of data
+ - stop FIFO running. Next initiation should reset the FIFO to ensure leftover previous data in
+ FIFO is cleared.
+
+ CODEC Interface
+ ================
+
+ The interface assumes we have a sysclk domain running around 100MHz, and that our typical
+ max audio rate is 44.1kHz * 24bits * 2channels = 2.1168MHz audio clock. Thus, the architecture
+ treats the audio clock and data as asynchronous inputs that are MultiReg-syncd into the clock
+ domain. Probably the slowest sysclk rate this might work with is around 20-25MHz (10x over
+ sampling), but at 100MHz things will be quite comfortable.
+
+ The upside of the fully asynchronous implementation is that we can leave the I/O unconstrained,
+ giving the place/route more latitude to do its job.
+
+ Here's the timing format targeted by this I2S interface:
+
+ .. wavedrom::
+ :caption: Timing format of the I2S interface
+
+ { "signal" : [
+ { "name": "clk", "wave": "n....|.......|......" },
+ { "name": "sync", "wave": "1.0..|....1..|....0." },
+ { "name": "tx/rx", "wave": ".====|==x.===|==x.=x", "data": ["L15", "L14", "...", "L1", "L0", "R15", "R14", "...", "R1", "R0", "L15"] },
+ ]}
+
+ - Data is updated on the falling edge
+ - Data is sampled on the rising edge
+ - Words are MSB-to-LSB, left-justified (**NOTE: this is a deviation from strict I2S, which offsets by 1 from the left**)
+ - Sync is an input (FPGA is slave, codec is master): low => left channel, high => right channel
+ - Sync can be longer than the wordlen, extra bits are just ignored
+ - Tx is data to the codec (SDI pin on LM49352)
+ - Rx is data from the codec (SDO pin on LM49352)
+
+ """)
+
+ # one cache line is 8 32-bit words, need to always have enough space for one line or else nothing works
+ if fifodepth > 504:
+ fifodepth = 504
+ print("I2S warning: fifo depth greater than 504 selected; truncating to 504")
+ if fifodepth < 8:
+ fifodepth = 8
+ print("I2S warning: fifo depth less than 8 selected; truncating to 8")
+
+ # connect pins, synchronizers, and edge detectors
+ if hasattr(pads, 'tx'):
+ tx_pin = Signal()
+ self.comb += pads.tx.eq(tx_pin)
+ if hasattr(pads, 'rx'):
+ rx_pin = Signal()
+ self.specials += MultiReg(pads.rx, rx_pin)
+ sync_pin = Signal()
+ self.specials += MultiReg(pads.sync, sync_pin)
+
+ clk_pin = Signal()
+ self.specials += MultiReg(pads.clk, clk_pin)
+ clk_d = Signal()
+ self.sync += clk_d.eq(clk_pin)
+ rising_edge = Signal()
+ falling_edge = Signal()
+ self.comb += [rising_edge.eq(clk_pin & ~clk_d), falling_edge.eq(~clk_pin & clk_d)]
+
+ # wishbone bus
+ self.bus = wishbone.Interface()
+ rd_ack = Signal()
+ wr_ack = Signal()
+ self.comb +=[
+ If(self.bus.we,
+ self.bus.ack.eq(wr_ack),
+ ).Else(
+ self.bus.ack.eq(rd_ack),
+ )
+ ]
+
+ # interrupts
+ self.submodules.ev = EventManager()
+ if hasattr(pads, 'rx'):
+ self.ev.rx_ready = EventSourcePulse() # rising edge triggered, indicates FIFO is ready to read
+ self.ev.rx_error = EventSourcePulse() # indicates a rx error has happened
+ if hasattr(pads, 'tx'):
+ self.ev.tx_ready = EventSourcePulse() # indicates space available in Tx buffer for next quantum
+ self.ev.tx_error = EventSourcePulse() # indicates a tx error has happened
+ self.ev.finalize()
+
+
+ # build the RX subsystem
+ if hasattr(pads, 'rx'):
+ rx_rd_d = Signal(32)
+ rx_almostfull = Signal()
+ rx_almostempty = Signal()
+ rx_full = Signal()
+ rx_empty = Signal()
+ rx_rdcount = Signal(9)
+ rx_rderr = Signal()
+ rx_wrerr = Signal()
+ rx_wrcount = Signal(9)
+ rx_rden = Signal()
+ rx_wr_d = Signal(32)
+ rx_wren = Signal()
+
+ self.rx_ctl = CSRStorage(description="Rx data path control",
+ fields=[
+ CSRField("enable", size=1, description="Enable the receiving data"),
+ CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
+ ])
+ self.rx_stat = CSRStatus(description="Rx data path status",
+ fields=[
+ CSRField("overflow", size=1, description="Rx overflow"),
+ CSRField("underflow", size=1, description="Rx underflow"),
+ CSRField("dataready", size=1, description="{} words of data loaded and ready to read".format(fifodepth)),
+ CSRField("empty", size=1, description="No data available in FIFO to read"), # next flags probably never used
+ CSRField("wrcount", size=9, description="Write count"),
+ CSRField("rdcount", size=9, description="Read count"),
+ CSRField("fifodepth", size=9, description="FIFO depth as synthesized")
+ ])
+ self.comb += self.rx_stat.fields.fifodepth.eq(fifodepth)
+
+ rx_rst_cnt = Signal(3)
+ rx_reset = Signal()
+ self.sync += [
+ If(self.rx_ctl.fields.reset,
+ rx_rst_cnt.eq(5), # 5 cycles reset required by design
+ rx_reset.eq(1)
+ ).Else(
+ If(rx_rst_cnt == 0,
+ rx_reset.eq(0)
+ ).Else(
+ rx_rst_cnt.eq(rx_rst_cnt - 1),
+ rx_reset.eq(1)
+ )
+ )
+ ]
+ # at a width of 32 bits, an 18kiB fifo is 512 entries deep
+ self.specials += Instance("FIFO_SYNC_MACRO",
+ p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
+ p_ALMOST_EMPTY_OFFSET=8, p_ALMOST_FULL_OFFSET=(512 - fifodepth),
+ p_DO_REG=0,
+
+ o_ALMOSTFULL=rx_almostfull, o_ALMOSTEMPTY=rx_almostempty,
+ o_DO=rx_rd_d, o_EMPTY=rx_empty, o_FULL=rx_full,
+ o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
+ i_DI=rx_wr_d, i_CLK=ClockSignal(), i_RDEN=rx_rden & ~rx_reset,
+ i_WREN=rx_wren & ~rx_reset, i_RST=rx_reset,
+ )
+ self.comb += [ # wire up the status signals and interrupts
+ self.rx_stat.fields.overflow.eq(rx_wrerr),
+ self.rx_stat.fields.underflow.eq(rx_rderr),
+ self.rx_stat.fields.dataready.eq(rx_almostfull),
+ self.rx_stat.fields.wrcount.eq(rx_wrcount),
+ self.rx_stat.fields.rdcount.eq(rx_rdcount),
+ self.ev.rx_ready.trigger.eq(rx_almostfull),
+ self.ev.rx_error.trigger.eq(rx_wrerr | rx_rderr),
+ ]
+ bus_read = Signal()
+ bus_read_d = Signal()
+ rd_ack_pipe = Signal()
+ self.comb += bus_read.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 0))
+ self.sync += [ # this is the bus responder -- only works for uncached memory regions
+ bus_read_d.eq(bus_read),
+ If(bus_read & ~bus_read_d, # one response, one cycle
+ rd_ack_pipe.eq(1),
+ If(~rx_empty,
+ self.bus.dat_r.eq(rx_rd_d),
+ rx_rden.eq(1),
+ ).Else(
+ self.bus.dat_r.eq(0xDEADBEEF), # don't stall the bus indefinitely if we try to read from an empty fifo...just return garbage
+ rx_rden.eq(0),
+ )
+ ).Else(
+ rx_rden.eq(0),
+ rd_ack_pipe.eq(0),
+ ),
+ rd_ack.eq(rd_ack_pipe),
+ ]
+
+ rx_cnt = Signal(5)
+ self.submodules.rxi2s = rxi2s = FSM(reset_state="IDLE")
+ rxi2s.act("IDLE",
+ NextValue(rx_wr_d, 0),
+ If(self.rx_ctl.fields.enable,
+ If(rising_edge & sync_pin, # wait_sync guarantees we start at the beginning of a left frame, and not in the middle
+ NextState("WAIT_SYNC"),
+ )
+ )
+ ),
+ rxi2s.act("WAIT_SYNC",
+ If(rising_edge & ~sync_pin,
+ NextState("LEFT"),
+ NextValue(rx_cnt, 16),
+ ),
+ )
+ rxi2s.act("LEFT",
+ If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
+ NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
+ NextValue(rx_cnt, rx_cnt - 1),
+ NextState("LEFT_WAIT"),
+ )
+ )
+ rxi2s.act("LEFT_WAIT",
+ If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
+ If(rising_edge,
+ If((rx_cnt == 0) & sync_pin,
+ NextValue(rx_cnt, 16),
+ NextState("RIGHT")
+ ).Elif(rx_cnt > 0,
+ NextState("LEFT"),
+ )
+ )
+ )
+ )
+ rxi2s.act("RIGHT",
+ If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
+ NextValue(rx_wr_d, Cat(rx_pin, rx_wr_d[:-1])),
+ NextValue(rx_cnt, rx_cnt - 1),
+ NextState("RIGHT_WAIT"),
+ )
+ )
+ rxi2s.act("RIGHT_WAIT",
+ If(~self.rx_ctl.fields.enable, NextState("IDLE")).Else(
+ If(rising_edge,
+ If((rx_cnt == 0) & ~sync_pin,
+ NextValue(rx_cnt, 16),
+ NextState("LEFT"),
+ rx_wren.eq(1), # pulse rx_wren to write the current data word
+ ).Elif(rx_cnt > 0,
+ NextState("RIGHT"),
+ )
+ )
+ )
+ )
+
+
+ # build the TX subsystem
+ if hasattr(pads, 'tx'):
+ tx_rd_d = Signal(32)
+ tx_almostfull = Signal()
+ tx_almostempty = Signal()
+ tx_full = Signal()
+ tx_empty = Signal()
+ tx_rdcount = Signal(9)
+ tx_rderr = Signal()
+ tx_wrerr = Signal()
+ tx_wrcount = Signal(9)
+ tx_rden = Signal()
+ tx_wr_d = Signal(32)
+ tx_wren = Signal()
+
+ self.tx_ctl = CSRStorage(description="Tx data path control",
+ fields=[
+ CSRField("enable", size=1, description="Enable the transmission data"),
+ CSRField("reset", size=1, description="Writing `1` resets the FIFO. Reset happens regardless of enable state.", pulse=1)
+ ])
+ self.tx_stat = CSRStatus(description="Tx data path status",
+ fields=[
+ CSRField("overflow", size=1, description="Tx overflow"),
+ CSRField("underflow", size=1, description="Tx underflow"),
+ CSRField("free", size=1, description="At least {} words of space free".format(fifodepth)),
+ CSRField("almostfull", size=1, description="Less than 8 words space available"), # the next few flags should be rarely used
+ CSRField("full", size=1, description="FIFO is full or overfull"),
+ CSRField("empty", size=1, description="FIFO is empty"),
+ CSRField("wrcount", size=9, description="Tx write count"),
+ CSRField("rdcount", size=9, description="Tx read count"),
+ ])
+
+ tx_rst_cnt = Signal(3)
+ tx_reset = Signal()
+ self.sync += [
+ If(self.tx_ctl.fields.reset,
+ tx_rst_cnt.eq(5), # 5 cycles reset required by design
+ tx_reset.eq(1)
+ ).Else(
+ If(tx_rst_cnt == 0,
+ tx_reset.eq(0)
+ ).Else(
+ tx_rst_cnt.eq(tx_rst_cnt - 1),
+ tx_reset.eq(1)
+ )
+ )
+ ]
+ # at a width of 32 bits, an 18kiB fifo is 512 entries deep
+ self.specials += Instance("FIFO_SYNC_MACRO",
+ p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32,
+ p_ALMOST_EMPTY_OFFSET=fifodepth, p_ALMOST_FULL_OFFSET=8,
+ p_DO_REG=0,
+
+ o_ALMOSTFULL=tx_almostfull, o_ALMOSTEMPTY=tx_almostempty,
+ o_DO=tx_rd_d, o_EMPTY=tx_empty, o_FULL=tx_full,
+ o_RDCOUNT=tx_rdcount, o_RDERR=tx_rderr, o_WRCOUNT=tx_wrcount, o_WRERR=tx_wrerr,
+ i_DI=tx_wr_d, i_CLK=ClockSignal(), i_RDEN=tx_rden & ~tx_reset,
+ i_WREN=tx_wren & ~tx_reset, i_RST=tx_reset,
+ )
+ self.comb += [ # wire up the status signals and interrupts
+ self.tx_stat.fields.overflow.eq(tx_wrerr),
+ self.tx_stat.fields.underflow.eq(tx_rderr),
+ self.tx_stat.fields.free.eq(tx_almostempty),
+ self.tx_stat.fields.almostfull.eq(tx_almostfull),
+ self.tx_stat.fields.full.eq(tx_full),
+ self.tx_stat.fields.empty.eq(tx_empty),
+ self.tx_stat.fields.rdcount.eq(tx_rdcount),
+ self.tx_stat.fields.wrcount.eq(tx_wrcount),
+ self.ev.tx_ready.trigger.eq(tx_almostempty),
+ self.ev.tx_error.trigger.eq(tx_wrerr | tx_rderr),
+ ]
+ self.sync += [ # this is the bus responder -- need to check how this interacts with uncached memory region
+ If(self.bus.cyc & self.bus.stb & self.bus.we & ~self.bus.ack,
+ If(~tx_full,
+ tx_wr_d.eq(self.bus.dat_w),
+ tx_wren.eq(1),
+ wr_ack.eq(1),
+ ).Else(
+ tx_wren.eq(0),
+ wr_ack.eq(0),
+ )
+ ).Else(
+ tx_wren.eq(0),
+ wr_ack.eq(0),
+ )
+ ]
+
+ tx_cnt = Signal(5)
+ tx_buf = Signal(32)
+ self.submodules.txi2s = txi2s = FSM(reset_state="IDLE")
+ txi2s.act("IDLE",
+ If(self.tx_ctl.fields.enable,
+ If(falling_edge & sync_pin,
+ NextState("WAIT_SYNC"),
+ )
+ )
+ ),
+ txi2s.act("WAIT_SYNC",
+ If(falling_edge & ~sync_pin,
+ NextState("LEFT"),
+ NextValue(tx_cnt, 16),
+ NextValue(tx_buf, tx_rd_d),
+ tx_rden.eq(1),
+ ),
+ )
+ txi2s.act("LEFT",
+ If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
+ NextValue(tx_pin, tx_buf[31]),
+ NextValue(tx_buf, Cat(0, tx_buf[:-1])),
+ NextValue(tx_cnt, tx_cnt - 1),
+ NextState("LEFT_WAIT"),
+ )
+ )
+ txi2s.act("LEFT_WAIT",
+ If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
+ If(falling_edge,
+ If((tx_cnt == 0) & sync_pin,
+ NextValue(tx_cnt, 16),
+ NextState("RIGHT")
+ ).Elif(tx_cnt > 0,
+ NextState("LEFT"),
+ )
+ )
+ )
+ )
+ txi2s.act("RIGHT",
+ If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
+ NextValue(tx_pin, tx_buf[31]),
+ NextValue(tx_buf, Cat(0, tx_buf[:-1])),
+ NextValue(tx_cnt, tx_cnt - 1),
+ NextState("RIGHT_WAIT"),
+ )
+ )
+ txi2s.act("RIGHT_WAIT",
+ If(~self.tx_ctl.fields.enable, NextState("IDLE")).Else(
+ If(falling_edge,
+ If((tx_cnt == 0) & ~sync_pin,
+ NextValue(tx_cnt, 16),
+ NextState("LEFT"),
+ NextValue(tx_buf, tx_rd_d),
+ tx_rden.eq(1),
+ ).Elif(tx_cnt > 0,
+ NextState("RIGHT"),
+ )
+ )
+ )
+ )
\ No newline at end of file
--- /dev/null
+# This file is Copyright (c) 2020 bunnie <bunnie@kosagi.com>
+# License: BSD
+
+from litex.soc.interconnect.csr_eventmanager import *
+from litex.soc.interconnect import wishbone
+from litex.soc.integration.doc import AutoDoc, ModuleDoc
+from migen.genlib.cdc import MultiReg
+
+class SpiOpi(Module, AutoCSR, AutoDoc):
+ def __init__(self, pads, dq_delay_taps=31, sclk_name="SCLK_ODDR",
+ iddr_name="SPI_IDDR", miso_name="MISO_FDRE", sim=False, spiread=False, prefetch_lines=1):
+ self.intro = ModuleDoc("""
+ Intro
+ ********
+
+ SpiOpi implements a dual-mode SPI or OPI interface. OPI is an octal (8-bit) wide
+ variant of SPI, which is unique to Macronix parts. It is concurrently interoperable
+ with SPI. The chip supports "DTR mode" (double transfer rate, e.g. DDR) where data
+ is transferred on each edge of the clock, and there is a source-synchronous DQS
+ associated with the input data.
+
+ The chip by default boots into SPI-only mode (unless NV bits are burned otherwise)
+ so to enable OPI, a config register needs to be written with SPI mode. Note that once
+ the config register is written, the only way to return to SPI mode is to change
+ it with OPI writes, or to issue a hardware reset. This has major implications for
+ reconfiguring the FPGA: a simple JTAG command to reload from SPI will not yank PROG_B low,
+ and so the SPI ROM will be in DOPI, and SPI loading will fail. Thus, system architects
+ must take into consideration a hard reset for the ROM whenever a bitstream reload
+ is demanded of the FPGA.
+
+ The SpiOpi architecture is split into two levels: a command manager, and a
+ cycle manager. The command manager is responsible for taking the current wishbone
+ request and CSR state and unpacking these into cycle-by-cycle requests. The cycle
+ manager is responsible for coordinating the cycle-by-cycle requests.
+
+ In SPI mode, this means marshalling byte-wide requests into a series of 8 serial cyles.
+
+ In OPI [DOPI] mode, this means marshalling 16-bit wide requests into a pair of back-to-back DDR
+ cycles. Note that because the cycles are DDR, this means one 16-bit wide request must be
+ issued every cycle to keep up with the interface.
+
+ For the output of data to ROM, expects a clock called "spinor_delayed" which is a delayed
+ version of "sys". The delay is necessary to get the correct phase relationship between
+ the SIO and SCLK in DTR/DDR mode, and it also has to compensate for the special-case
+ difference in the CCLK pad vs other I/O.
+
+ For the input, DQS signal is independently delayed relative to the DQ signals using
+ an IDELAYE2 block. At a REFCLK frequency of 200 MHz, each delay tap adds 78ps, so up
+ to a 2.418ns delay is possible between DQS and DQ. The goal is to delay DQS relative
+ to DQ, because the SPI chip launches both with concurrent rising edges (to within 0.6ns),
+ but the IDDR register needs the rising edge of DQS to be centered inside the DQ eye.
+
+ In DOPI mode, there is a prefetch buffer. It will read `prefetch_lines` cache lines of
+ data into the prefetch buffer. A cache line is 256 bits (or 8x32-bit words). The maximum
+ value is 63 lines (one line is necessary for synchronization margin). The downside of
+ setting prefetch_lines high is that the prefetcher is running constantly and burning
+ power, while throwing away most data. In practice, the CPU will typically consume data
+ at only slightly faster than the rate of read-out from DOPI-mode ROM, and once data
+ is consumed the prefetch resumes. Thus, prefetch_lines is probably optimally around
+ 1-3 lines read-ahead of the CPU. Any higher than 3 lines probably just wastes power.
+ In short simulations, 1 line of prefetch seems to be enough to keep the prefetcher
+ ahead of the CPU even when it's simply running straight-line code.
+
+ Note the "sim" parameter exists because there seems to be a bug in xvlog that doesn't
+ correctly simulate the IDELAY machines. Setting "sim" to True removes the IDELAY machines
+ and passes the data through directly, but in real hardware the IDELAY machines are
+ necessary to meet timing between DQS and DQ.
+
+ dq_delay_taps probably doesn't need to be adjusted; it can be tweaked for timing
+ closure. The delays can also be adjusted at runtime.
+ """)
+ if prefetch_lines > 63:
+ prefetch_lines = 63
+
+ self.spi_mode = Signal(reset=1) # when reset is asserted, force into spi mode
+ cs_n = Signal(reset=1) # make sure CS is sane on reset, too
+
+ self.config = CSRStorage(fields=[
+ CSRField("dummy", size=5, description="Number of dummy cycles", reset=10),
+ ])
+
+ delay_type = "VAR_LOAD"
+
+ # DQS input conditioning -----------------------------------------------------------------
+ dqs_iobuf = Signal()
+ self.clock_domains.cd_dqs = ClockDomain(reset_less=True)
+ self.comb += self.cd_dqs.clk.eq(dqs_iobuf)
+ self.specials += [
+ Instance("BUFR", i_I=pads.dqs, o_O=dqs_iobuf),
+ ]
+
+ # DQ connections -------------------------------------------------------------------------
+ # PHY API
+ self.do = Signal(16) # OPI data to SPI
+ self.di = Signal(16) # OPI data from SPI
+ self.tx = Signal() # when asserted OPI is transmitting data to SPI, otherwise, receiving
+
+ self.mosi = Signal() # SPI data to SPI
+ self.miso = Signal() # SPI data from SPI
+
+ # Delay programming API
+ self.delay_config = CSRStorage(fields=[
+ CSRField("d", size=5, description="Delay amount; each increment is 78ps", reset=31),
+ CSRField("load", size=1, description="Force delay taps to delay_d"),
+ ])
+ self.delay_status = CSRStatus(fields=[
+ CSRField("q", size=5, description="Readback of current delay amount, useful if inc/ce is used to set"),
+ ])
+ self.delay_update = Signal()
+ self.hw_delay_load = Signal()
+ self.sync += self.delay_update.eq(self.hw_delay_load | self.delay_config.fields.load)
+
+ # Break system API into rising/falling edge samples
+ do_rise = Signal(8) # data output presented on the rising edge
+ do_fall = Signal(8) # data output presented on the falling edge
+ self.comb += [do_rise.eq(self.do[8:]), do_fall.eq(self.do[:8])]
+
+ di_rise = Signal(8)
+ di_fall = Signal(8)
+ self.comb += self.di.eq(Cat(di_fall, di_rise))
+
+ # OPI DDR registers
+ dq = TSTriple(7) # dq[0] is special because it is also MOSI
+ dq_delayed = Signal(8)
+ self.specials += dq.get_tristate(pads.dq[1:])
+ for i in range(1, 8):
+ self.specials += Instance("ODDR",
+ p_DDR_CLK_EDGE="SAME_EDGE",
+ i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
+ i_D1=do_rise[i], i_D2=do_fall[i], o_Q=dq.o[i - 1],
+ )
+ if sim == False:
+ if i == 1: # only wire up o_CNTVALUEOUT for one instance
+ self.specials += Instance("IDELAYE2",
+ p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+ p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE",
+ p_REFCLK_FREQUENCY=200.0,
+ p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps,
+ p_IDELAY_TYPE=delay_type,
+
+ i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0,
+ i_CE=0,
+ i_LD=self.delay_update,
+ i_CNTVALUEIN=self.delay_config.fields.d,
+ o_CNTVALUEOUT=self.delay_status.fields.q,
+ i_IDATAIN=dq.i[i - 1], o_DATAOUT=dq_delayed[i],
+ ),
+ else: # don't wire up o_CNTVALUEOUT for others
+ self.specials += Instance("IDELAYE2",
+ p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+ p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE",
+ p_REFCLK_FREQUENCY=200.0,
+ p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps,
+ p_IDELAY_TYPE=delay_type,
+
+ i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0,
+ i_CE=0,
+ i_LD=self.delay_update,
+ i_CNTVALUEIN=self.delay_config.fields.d,
+ i_IDATAIN=dq.i[i - 1], o_DATAOUT=dq_delayed[i],
+ ),
+ else:
+ self.comb += dq_delayed[i].eq(dq.i[i - 1])
+ self.specials += Instance("IDDR", name="{}{}".format(iddr_name, str(i)),
+ p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
+ i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
+ i_D=dq_delayed[i], o_Q1=di_rise[i], o_Q2=di_fall[i],
+ )
+ # SPI SDR register
+ self.specials += [
+ Instance("FDRE", name="{}".format(miso_name), i_C=~ClockSignal("spinor"), i_CE=1, i_R=0, o_Q=self.miso,
+ i_D=dq_delayed[1],
+ )
+ ]
+
+ # bit 0 (MOSI) is special-cased to handle SPI mode
+ dq_mosi = TSTriple(1) # this has similar structure but an independent "oe" signal
+ self.specials += dq_mosi.get_tristate(pads.dq[0])
+ do_mux_rise = Signal() # mux signal for mosi/dq select of bit 0
+ do_mux_fall = Signal()
+ self.specials += [
+ Instance("ODDR",
+ p_DDR_CLK_EDGE="SAME_EDGE",
+ i_C=ClockSignal(), i_R=ResetSignal(), i_S=0, i_CE=1,
+ i_D1=do_mux_rise, i_D2=do_mux_fall, o_Q=dq_mosi.o,
+ ),
+ Instance("IDDR",
+ p_DDR_CLK_EDGE="SAME_EDGE_PIPELINED",
+ i_C=dqs_iobuf, i_R=ResetSignal(), i_S=0, i_CE=1,
+ o_Q1=di_rise[0], o_Q2=di_fall[0], i_D=dq_delayed[0],
+ ),
+ ]
+ if sim == False:
+ self.specials += [
+ Instance("IDELAYE2",
+ p_DELAY_SRC="IDATAIN", p_SIGNAL_PATTERN="DATA",
+ p_CINVCTRL_SEL="FALSE", p_HIGH_PERFORMANCE_MODE="FALSE", p_REFCLK_FREQUENCY=200.0,
+ p_PIPE_SEL="FALSE", p_IDELAY_VALUE=dq_delay_taps, p_IDELAY_TYPE=delay_type,
+
+ i_C=ClockSignal(), i_CINVCTRL=0, i_REGRST=0, i_LDPIPEEN=0, i_INC=0, i_CE=0,
+ i_LD=self.delay_update,
+ i_CNTVALUEIN=self.delay_config.fields.d,
+ i_IDATAIN=dq_mosi.i, o_DATAOUT=dq_delayed[0],
+ ),
+ ]
+ else:
+ self.comb += dq_delayed[0].eq(dq_mosi.i)
+
+ # wire up SCLK interface
+ clk_en = Signal()
+ self.specials += [
+ # de-activate the CCLK interface, parallel it with a GPIO
+ Instance("STARTUPE2",
+ i_CLK=0, i_GSR=0, i_GTS=0, i_KEYCLEARB=0, i_PACK=0, i_USRDONEO=1, i_USRDONETS=1,
+ i_USRCCLKO=0, i_USRCCLKTS=1, # force to tristate
+ ),
+ Instance("ODDR", name=sclk_name, # need to name this so we can constrain it properly
+ p_DDR_CLK_EDGE="SAME_EDGE",
+ i_C=ClockSignal("spinor"), i_R=ResetSignal("spinor"), i_S=0, i_CE=1,
+ i_D1=clk_en, i_D2=0, o_Q=pads.sclk,
+ )
+ ]
+
+ # wire up CS_N
+ spi_cs_n = Signal()
+ opi_cs_n = Signal()
+ self.comb += cs_n.eq((self.spi_mode & spi_cs_n) | (~self.spi_mode & opi_cs_n))
+ self.specials += [
+ Instance("ODDR",
+ p_DDR_CLK_EDGE="SAME_EDGE",
+ i_C=ClockSignal(), i_R=0, i_S=ResetSignal(), i_CE=1,
+ i_D1=cs_n, i_D2=cs_n, o_Q=pads.cs_n,
+ ),
+ ]
+
+ self.architecture = ModuleDoc("""
+ Architecture
+ **************
+
+ The machine is split into two separate pieces, one to handle SPI, and one to handle OPI.
+
+ SPI
+ =====
+ The SPI machine architecture is split into two levels: MAC and PHY.
+
+ The MAC layer is responsible for:
+ - receiving requests via CSR register to perform config/status/special command sequences,
+ and dispatching these to the SPI PHY
+ - translating wishbone bus requests into command sequences, and routing them to either OPI
+ or SPI PHY.
+ - managing the chip select to the chip, and ensuring that one dummy cycle is inserted after
+ chip select is asserted, or before it is de-asserted; and that the chip select "high" times
+ are adequate (1 cycle between reads, 4 cycles for all other operations)
+
+ On boot, the interface runs in SPI; once the wakeup sequence is executed, the chip permanently
+ switches to OPI mode unless the CR2 registers are written to fall back, or the
+ reset to the chip is asserted.
+
+ The PHY layers are responsible for the following tasks:
+ - Serializing and deserializing data, standardized on 8 bits for SPI and 16 bits for OPI
+ - counting dummy cycles
+ - managing the clock enable
+
+ PHY cycles are initiated with a "req" signal, which is only sampled for
+ one cycle and then ignored until the PHY issues an "ack" that the current cycle is complete.
+ Thus holding "req" high can allow the PHY to back-to-back issue cycles without pause.
+
+ OPI
+ =====
+ The OPI machine is split into three parts: a command controller, a Tx PHY, and an Rx PHY.
+
+ The Tx PHY is configured with a "dummy cycle" count register, as there is a variable length
+ delay for dummy cycles in OPI.
+
+ In OPI mode, read data is `mesochronous`, that is, they return at precisely the same frequency
+ as SCLK, but with an unknown phase relationship. The DQS strobe is provided as a "hint" to
+ the receiving side to help retime the data. The mesochronous nature of the read data is
+ why the Tx and Rx PHY must be split into two separate machines, as they are operating in
+ different clock domains.
+
+ DQS is implemented on the ROM as an extra data output that is guaranteed to change polarity with
+ each data byte; the skew mismatch of DQS to data is within +/-0.6ns or so. It turns out the mere
+ act of routing the DQS into a BUFR buffer before clocking the data into an IDDR primitive
+ is sufficient to delay the DQS signal and meet setup and hold time on the IDDR.
+
+ Once captured by the IDDR, the data is fed into a dual-clock FIFO to make the transition
+ from the DQS to sysclk domains cleanly.
+
+ Because of the latency involved in going from pin->IDDR->FIFO, excess read cycles are
+ required beyond the end of the requested cache line. However, there is virtually no
+ penalty in pre-filling the FIFO with data; if a new cache line has to be fetched,
+ the FIFO can simply be reset and all pointers zeroed. In fact, pre-filling the FIFO
+ can lead to great performance benefits if sequential cache lines are requested. In
+ simulation, a cache line can be filled in 10 bus cycles if it happens to be prefetched
+ (as opposed to 49 bus cycles for random reads). Either way, this compares favorably to
+ 288 cycles for random reads in 100MHz SPI mode (or 576 for the spimemio.v, which runs at
+ 50MHz).
+
+ The command controller is repsonsible for sequencing all commands other than fast reads. Most
+ commands have some special-case structure to them, and as more commands are implemented, the
+ state machine is expected to grow fairly large. Fast reads are directly handled in "tx_run"
+ mode, where the TxPhy and RxPhy run a tight loop to watch incoming read bus cycles, check
+ the current address, fill the prefetch fifo, and respond to bus cycles.
+
+ Writes to ROM might lock up the machine; a TODO is to test this and do something more sane,
+ like ignore writes by sending an ACK immediately while discarding the data.
+
+ Thus, an OPI read proceeds as follows:
+
+ - When BUS/STB are asserted:
+ TxPhy:
+
+ - capture bus_adr, and compare against the *next read* address pointer
+ - if they match, allow the PHYs to do the work
+
+ - if bus_adr and next read address don't match, save to next read address pointer, and
+ cycle wr/rd clk for 5 cycle while asserting reset to reset the FIFO
+ - initiate an 8DTRD with the read address pointer
+ - wait the specified dummy cycles
+
+ - greedily pre-fill the FIFO by continuing to clock DQS until either:
+ - the FIFO is full
+ - pre-fetch is aborted because bus_adr and next read address don't match and FIFO is reset
+
+ RxPHY:
+ - while CTI==2, assemble data into 32-bit words as soon as EMPTY is deasserted,
+ present a bus_ack, and increment the next read address pointer
+ - when CTI==7, ack the data, and wait until the next bus cycle with CTI==2 to resume
+ reading
+
+ - A FIFO_SYNC_MACRO is used to instantiate the FIFO. This is chosen because:
+ - we can specify RAMB18's, which seem to be under-utilized by the auto-inferred memories by migen
+ - the XPM_FIFO_ASYNC macro claims no instantiation support, and also looks like it has weird
+ requirements for resetting the pointers: you must check the reset outputs, and the time to
+ reset is reported to be as high as around 200ns (anecdotally -- could be just that the sim I
+ read on the web is using a really slow clock, but I'm guessing it's around 10 cycles).
+ - the FIFO_SYNC_MACRO has a well-specified fixed reset latency of 5 cycles.
+ - The main downside of FIFO_SYNC_MACRO over XPM_FIFO_ASYNC is that XPM_FIFO_ASYNC can automatically
+ allow for output data to be read at 32-bit widths, with writes at 16-bit widths. However, with a
+ bit of additional logic and pipelining, we can aggregate data into 32-bit words going into a
+ 32-bit FIFO_SYNC_MACRO, which is what we do in this implementation.
+ """)
+ self.bus = wishbone.Interface()
+
+ self.command = CSRStorage(
+ description="Write individual bits to issue special commands to SPI; setting multiple bits at once leads to undefined behavior.",
+ fields=[
+ CSRField("wakeup", size=1, description="Sequence through init & wakeup routine"),
+ CSRField("sector_erase", size=1, description="Erase a sector"),
+ ])
+ self.sector = CSRStorage(description="Sector to erase",
+ fields=[
+ CSRField("sector", size=32, description="Sector to erase")
+ ])
+ self.status = CSRStatus(description="Interface status",
+ fields=[
+ CSRField("wip", size=1, description="Operation in progress (write or erease)")
+ ])
+ # TODO: implement ECC detailed register readback, CRC checking
+
+ # PHY machine mux --------------------------------------------------------------------------
+ # clk_en mux
+ spi_clk_en = Signal()
+ opi_clk_en = Signal()
+ self.sync += clk_en.eq(~self.spi_mode & opi_clk_en | self.spi_mode & spi_clk_en)
+ # tristate mux
+ self.sync += [
+ dq.oe.eq(~self.spi_mode & self.tx),
+ dq_mosi.oe.eq(self.spi_mode | self.tx),
+ ]
+ # data out mux (no data in mux, as we can just sample data in all the time without harm)
+ self.comb += do_mux_rise.eq(~self.spi_mode & do_rise[0] | self.spi_mode & self.mosi)
+ self.comb += do_mux_fall.eq(~self.spi_mode & do_fall[0] | self.spi_mode & self.mosi)
+
+ has_dummy = Signal() # indicates if the current "req" requires dummy cycles to be appended (used for both OPI/SPI)
+ rom_addr = Signal(32,
+ reset=0xFFFFFFFC) # location of the internal ROM address pointer; reset to invalid address to force an address request on first read
+
+ # MAC/PHY abstraction for OPI
+ txphy_do = Signal(16) # two sources of data out for OPI, one from the PHY, one from MAC
+ txcmd_do = Signal(16)
+ opi_di = Signal(16)
+
+ # internal machines
+ opi_addr = Signal(32)
+ opi_fifo_rd = Signal(32)
+ opi_fifo_wd = Signal(32)
+ opi_reset_rx_req = Signal()
+ opi_reset_rx_ack = Signal()
+ opi_rx_run = Signal()
+
+ rx_almostempty = Signal()
+ rx_almostfull = Signal()
+ rx_empty = Signal()
+ rx_full = Signal()
+ rx_rdcount = Signal(9)
+ rx_rderr = Signal()
+ rx_wrcount = Signal(9)
+ rx_wrerr = Signal()
+ rx_rden = Signal()
+ rx_wren = Signal(reset=1)
+ rx_fifo_rst = Signal()
+
+ wrendiv = Signal()
+ wrendiv2 = Signal()
+ self.specials += [
+ # this next pair of async-clear flip flops creates a write-enable gate that (a) ignores the first
+ # two DQS strobes (as they are pipe-filling) and (b) alternates with the correct phase so we are
+ # sampling 32-bit data into the FIFO.
+ Instance("FDCE", name="FDCE_WREN",
+ i_C=dqs_iobuf, i_D=~wrendiv, o_Q=wrendiv, i_CE=1, i_CLR=~rx_wren,
+ ),
+ Instance("FDCE", name="FDCE_WREN",
+ i_C=dqs_iobuf, i_D=~wrendiv2, o_Q=wrendiv2, i_CE=wrendiv & ~wrendiv2, i_CLR=~rx_wren,
+ ),
+ # Direct FIFO primitive is more resource-efficient and faster than migen primitive.
+ Instance("FIFO_DUALCLOCK_MACRO",
+ p_DEVICE="7SERIES", p_FIFO_SIZE="18Kb", p_DATA_WIDTH=32, p_FIRST_WORD_FALL_THROUGH="TRUE",
+ p_ALMOST_EMPTY_OFFSET=6, p_ALMOST_FULL_OFFSET=(512 - (8 * prefetch_lines)),
+
+ o_ALMOSTEMPTY=rx_almostempty, o_ALMOSTFULL=rx_almostfull,
+ o_DO=opi_fifo_rd, o_EMPTY=rx_empty, o_FULL=rx_full,
+ o_RDCOUNT=rx_rdcount, o_RDERR=rx_rderr, o_WRCOUNT=rx_wrcount, o_WRERR=rx_wrerr,
+ i_DI=opi_fifo_wd, i_RDCLK=ClockSignal(), i_RDEN=rx_rden,
+ i_WRCLK=dqs_iobuf, i_WREN=wrendiv & wrendiv2, i_RST=rx_fifo_rst,
+ )
+ ]
+ self.sync.dqs += opi_di.eq(self.di)
+ self.comb += opi_fifo_wd.eq(Cat(opi_di, self.di))
+
+ # --------- OPI Rx Phy machine ------------------------------
+ self.submodules.rxphy = rxphy = FSM(reset_state="IDLE")
+ cti_pipe = Signal(3)
+ rxphy_cnt = Signal(3)
+ rxphy.act("IDLE",
+ If(self.spi_mode,
+ NextState("IDLE"),
+ ).Else(
+ NextValue(self.bus.ack, 0),
+ If(opi_reset_rx_req,
+ NextState("WAIT_RESET"),
+ NextValue(rxphy_cnt, 6),
+ NextValue(rx_wren, 0),
+ NextValue(rx_fifo_rst, 1),
+ ).Elif(opi_rx_run,
+ NextValue(rx_wren, 1),
+ If((self.bus.cyc & self.bus.stb & ~self.bus.we) & ((self.bus.cti == 2) |
+ ((
+ self.bus.cti == 7) & ~self.bus.ack)),
+ # handle case of non-pipelined read, ack is late
+ If(~rx_empty,
+ NextValue(self.bus.dat_r, opi_fifo_rd),
+ rx_rden.eq(1),
+ NextValue(opi_addr, opi_addr + 4),
+ NextValue(self.bus.ack, 1),
+ )
+ )
+ )
+ )
+ )
+ rxphy.act("WAIT_RESET",
+ NextValue(opi_addr, Cat(Signal(2), self.bus.adr)),
+ NextValue(rxphy_cnt, rxphy_cnt - 1),
+ If(rxphy_cnt == 0,
+ NextValue(rx_fifo_rst, 0),
+ opi_reset_rx_ack.eq(1),
+ NextState("IDLE"),
+ )
+ )
+
+ # TxPHY machine: OPI -------------------------------------------------------------------------
+ txphy_cnt = Signal(4)
+ tx_run = Signal()
+ txphy_cs_n = Signal(reset=1)
+ txcmd_cs_n = Signal(reset=1)
+ txphy_clken = Signal()
+ txcmd_clken = Signal()
+ txphy_oe = Signal()
+ txcmd_oe = Signal()
+ self.sync += opi_cs_n.eq((tx_run & txphy_cs_n) | (~tx_run & txcmd_cs_n))
+ self.comb += If(tx_run, self.do.eq(txphy_do)).Else(self.do.eq(txcmd_do))
+ self.comb += opi_clk_en.eq((tx_run & txphy_clken) | (~tx_run & txcmd_clken))
+ self.comb += self.tx.eq((tx_run & txphy_oe) | (~tx_run & txcmd_oe))
+ tx_almostfull = Signal()
+ self.sync += tx_almostfull.eq(rx_almostfull) # sync the rx_almostfull signal into the local clock domain
+ txphy_bus = Signal()
+ self.sync += txphy_bus.eq(self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))
+ tx_resetcycle = Signal()
+
+ self.submodules.txphy = txphy = FSM(reset_state="RESET")
+ txphy.act("RESET",
+ NextValue(opi_rx_run, 0),
+ NextValue(txphy_oe, 0),
+ NextValue(txphy_cs_n, 1),
+ NextValue(txphy_clken, 0),
+ # guarantee that the first state we go to out of reset is a four-cycle burst
+ NextValue(txphy_cnt, 4),
+ If(tx_run & ~self.spi_mode, NextState("TX_SETUP"))
+ )
+ txphy.act("TX_SETUP",
+ NextValue(opi_rx_run, 0),
+ NextValue(txphy_cnt, txphy_cnt - 1),
+ If(txphy_cnt > 0,
+ NextValue(txphy_cs_n, 1)
+ ).Else(
+ NextValue(txphy_cs_n, 0),
+ NextValue(txphy_oe, 1),
+ NextState("TX_CMD_CS_DELAY"),
+ )
+ )
+ txphy.act("TX_CMD_CS_DELAY", # meet setup timing for CS-to-clock
+ NextState("TX_CMD"),
+ )
+ txphy.act("TX_CMD",
+ NextValue(txphy_do, 0xEE11),
+ NextValue(txphy_clken, 1),
+ NextState("TX_ADRHI"),
+ )
+ txphy.act("TX_ADRHI",
+ NextValue(txphy_do, opi_addr[16:] & 0x07FF), # mask off unused bits
+ NextState("TX_ADRLO"),
+ )
+ txphy.act("TX_ADRLO",
+ NextValue(txphy_do, opi_addr[:16]),
+ NextValue(txphy_cnt, self.config.fields.dummy - 1),
+ NextState("TX_DUMMY"),
+ )
+ txphy.act("TX_DUMMY",
+ NextValue(txphy_oe, 0),
+ NextValue(txphy_do, 0),
+ NextValue(txphy_cnt, txphy_cnt - 1),
+ If(txphy_cnt == 0,
+ NextValue(opi_rx_run, 1),
+ If(tx_resetcycle,
+ NextValue(txphy_clken, 1),
+ NextValue(opi_reset_rx_req, 1),
+ NextState("TX_RESET_RX"),
+ ).Else(
+ NextState("TX_FILL"),
+ )
+ )
+ )
+ txphy.act("TX_FILL",
+ If(tx_run,
+ If(((~txphy_bus & (self.bus.cyc & self.bus.stb & ~self.bus.we & (self.bus.cti == 2))) &
+ (opi_addr[2:] != self.bus.adr)) | tx_resetcycle,
+ # it's a new bus cycle, and the requested address is not equal to the current read buffer address
+ NextValue(txphy_clken, 1),
+ NextValue(opi_reset_rx_req, 1),
+ NextState("TX_RESET_RX"),
+ ).Else(
+ If(tx_almostfull & ~self.bus.ack,
+ NextValue(txphy_clken, 0)
+ ).Else(
+ NextValue(txphy_clken, 1)
+ )
+ ),
+ If(~(self.bus.cyc & self.bus.stb),
+ NextValue(opi_rx_run, 0),
+ ).Else(
+ NextValue(opi_rx_run, 1),
+ )
+ ).Else(
+ NextValue(txphy_clken, 0),
+ NextState("RESET")
+ )
+ )
+ txphy.act("TX_RESET_RX", # keep clocking the RX until it acknowledges a reset
+ NextValue(opi_rx_run, 0),
+ NextValue(opi_reset_rx_req, 0),
+ If(opi_reset_rx_ack,
+ NextValue(txphy_clken, 0),
+ NextValue(txphy_cnt, 0), # 1 cycle CS on back-to-back reads
+ NextValue(txphy_cs_n, 1),
+ NextState("TX_SETUP"),
+ ).Else(
+ NextValue(txphy_clken, 1),
+ )
+ )
+
+ # --------- OPI CMD machine ------------------------------
+ self.submodules.opicmd = opicmd = FSM(reset_state="RESET")
+ opicmd.act("RESET",
+ NextValue(txcmd_do, 0),
+ NextValue(txcmd_oe, 0),
+ NextValue(tx_run, 0),
+ NextValue(txcmd_cs_n, 1),
+ If(~self.spi_mode,
+ NextState("IDLE"),
+ ).Else(NextState("RESET_CYCLE")),
+ )
+ opicmd.act("RESET_CYCLE",
+ NextValue(txcmd_cs_n, 0),
+ If(opi_reset_rx_ack,
+ NextValue(tx_run, 1),
+ NextState("IDLE"),
+ ).Else(
+ NextValue(tx_run, 1),
+ tx_resetcycle.eq(1),
+ )
+ )
+ opicmd.act("IDLE",
+ NextValue(txcmd_cs_n, 1),
+ If(~self.spi_mode, # this machine stays in idle once spi_mode is dropped
+ ## The full form of this machine is as follows:
+ # - First check if there is a CSR special command pending
+ # - if so, wait until the current bus cycle is done, then de-assert tx_run
+ # - then run the command
+ # - Else wait until a bus cycle, and once it happens, put the system into run mode
+ If(self.bus.cyc & self.bus.stb,
+ If(~self.bus.we & (self.bus.cti == 2),
+ NextState("TX_RUN")
+ ).Else(
+ # handle other cases here, e.g. what do we do if we get a write? probably
+ # should just ACK it without doing anything so the CPU doesn't freeze...
+ )
+ ).Elif(self.command.re,
+ NextState("DISPATCH_CMD"),
+ )
+ )
+ )
+ opicmd.act("TX_RUN",
+ NextValue(tx_run, 1),
+ If(self.command.re, # respond to commands
+ NextState("WAIT_DISPATCH")
+ )
+ )
+ opicmd.act("WAIT_DISPATCH", # wait until the current cycle is done, then stop TX and dispatch command
+ If(~(self.bus.cyc & self.bus.stb),
+ NextValue(tx_run, 0),
+ NextState("DISPATCH_CMD")
+ )
+ )
+ opicmd.act("DISPATCH_CMD",
+ If(self.command.fields.sector_erase,
+ NextState("DO_SECTOR_ERASE"),
+ ).Else(
+ NextState("IDLE"),
+ )
+ )
+ opicmd.act("DO_SECTOR_ERASE",
+ # placeholder
+ )
+
+ # MAC/PHY abstraction for the SPI machine
+ spi_req = Signal()
+ spi_ack = Signal()
+ spi_do = Signal(8) # this is the API to the machine
+ spi_di = Signal(8)
+
+ # PHY machine: SPI -------------------------------------------------------------------------
+
+ # internal signals are:
+ # selection - self.spi_mode
+ # OPI - self.do(16), self.di(16), self.tx
+ # SPI - self.mosi, self.miso
+ # cs_n - both
+ # ecs_n - OPI
+ # clk_en - both
+
+ spicount = Signal(5)
+ spi_so = Signal(8) # this internal to the machine
+ spi_si = Signal(8)
+ spi_dummy = Signal()
+ spi_di_load = Signal() # spi_do load is pipelined back one cycle using this mechanism
+ spi_di_load2 = Signal()
+ spi_ack_pipe = Signal()
+ self.sync += [
+ # pipelining is required the MISO path is very slow (IOB->fabric FD), and a falling-edge retiming reg is used to meet timing
+ spi_di_load2.eq(spi_di_load),
+ If(spi_di_load2, spi_di.eq(Cat(self.miso, spi_si[:-1]))).Else(spi_di.eq(spi_di)),
+ spi_ack.eq(spi_ack_pipe),
+ ]
+ self.comb += self.mosi.eq(spi_so[7])
+ self.sync += spi_si.eq(Cat(self.miso, spi_si[:-1]))
+ self.submodules.spiphy = spiphy = FSM(reset_state="RESET")
+ spiphy.act("RESET",
+ If(spi_req,
+ NextState("REQ"),
+ NextValue(spicount, 7),
+ NextValue(spi_clk_en, 1),
+ NextValue(spi_so, spi_do),
+ NextValue(spi_dummy, has_dummy),
+ ).Else(
+ NextValue(spi_clk_en, 0),
+ NextValue(spi_ack_pipe, 0),
+ NextValue(spicount, 0),
+ NextValue(spi_dummy, 0),
+ )
+ )
+ spiphy.act("REQ",
+ If(spicount > 0,
+ NextValue(spicount, spicount - 1),
+ NextValue(spi_clk_en, 1),
+ NextValue(spi_so, Cat(0, spi_so[:-1])),
+ NextValue(spi_ack_pipe, 0),
+ ).Elif((spicount == 0) & spi_req & ~spi_dummy, # back-to-back transaction
+ NextValue(spi_clk_en, 1),
+ NextValue(spicount, 7),
+ NextValue(spi_clk_en, 1),
+ NextValue(spi_so, spi_do), # reload the so register
+ spi_di_load.eq(1), # "naked" .eq() create single-cycle pulses that default back to 0
+ NextValue(spi_ack_pipe, 1),
+ NextValue(spi_dummy, has_dummy),
+ ).Elif((spicount == 0) & ~spi_req & ~spi_dummy, # go back to idle
+ spi_di_load.eq(1),
+ NextValue(spi_ack_pipe, 1),
+ NextValue(spi_clk_en, 0),
+ NextState("RESET"),
+ ).Elif((spicount == 0) & spi_dummy,
+ spi_di_load.eq(1),
+ NextValue(spicount, self.config.fields.dummy),
+ NextValue(spi_clk_en, 1),
+ NextValue(spi_ack_pipe, 0),
+ NextValue(spi_so, 0), # do a dummy with '0' as the output
+ NextState("DUMMY"),
+ ) # this actually should be a fully defined situation, no "Else" applicable
+ )
+ spiphy.act("DUMMY",
+ If(spicount > 1, # instead of doing dummy-1, we stop at count == 1
+ NextValue(spicount, spicount - 1),
+ NextValue(spi_clk_en, 1),
+ ).Elif(spicount <= 1 & spi_req,
+ NextValue(spi_clk_en, 1),
+ NextValue(spicount, 7),
+ NextValue(spi_so, spi_do), # reload the so register
+ NextValue(spi_ack_pipe, 1), # finally ack the cycle
+ NextValue(spi_dummy, has_dummy),
+ ).Else(
+ NextValue(spi_clk_en, 0),
+ NextValue(spi_ack_pipe, 1), # finally ack the cycle
+ NextState("RESET")
+ )
+ )
+
+ # SPI MAC machine -------------------------------------------------------------------------------
+ # default active on boot
+ addr_updated = Signal()
+ d_to_wb = Signal(32) # data going back to wishbone
+ mac_count = Signal(5)
+ new_cycle = Signal(1)
+ self.submodules.mac = mac = FSM(reset_state="RESET")
+ mac.act("RESET",
+ NextValue(self.spi_mode, 1),
+ NextValue(addr_updated, 0),
+ NextValue(d_to_wb, 0),
+ NextValue(spi_cs_n, 1),
+ NextValue(has_dummy, 0),
+ NextValue(spi_do, 0),
+ NextValue(spi_req, 0),
+ NextValue(mac_count, 0),
+ NextState("WAKEUP_PRE"),
+ NextValue(new_cycle, 1),
+ If(self.spi_mode, NextValue(self.bus.ack, 0)),
+ )
+ if spiread:
+ mac.act("IDLE",
+ If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
+ NextValue(self.bus.ack, 0),
+ If((self.bus.cyc == 1) & (self.bus.stb == 1) & (self.bus.we == 0) & (self.bus.cti != 7),
+ # read cycle requested, not end-of-burst
+ If((rom_addr[2:] != self.bus.adr) & new_cycle,
+ NextValue(rom_addr, Cat(Signal(2, reset=0), self.bus.adr)),
+ NextValue(addr_updated, 1),
+ NextValue(spi_cs_n, 1), # raise CS in anticipation of a new address cycle
+ NextState("SPI_READ_32_CS"),
+ ).Elif((rom_addr[2:] == self.bus.adr) | (~new_cycle & self.bus.cti == 2),
+ NextValue(mac_count, 3), # get another beat of 4 bytes at the next address
+ NextState("SPI_READ_32")
+ ).Else(
+ NextValue(addr_updated, 0),
+ NextValue(spi_cs_n, 0),
+ NextState("SPI_READ_32"),
+ NextValue(mac_count, 3), # prep the MAC state counter to count out 4 bytes
+ ),
+ ).Elif(self.command.fields.wakeup,
+ NextValue(spi_cs_n, 1),
+ NextValue(self.command.storage, 0), # clear all pending commands
+ NextState("WAKEUP_PRE"),
+ )
+ )
+ )
+ else:
+ mac.act("IDLE",
+ If(self.spi_mode, # this machine stays in idle once spi_mode is dropped
+ If(self.command.fields.wakeup,
+ NextValue(spi_cs_n, 1),
+ NextValue(self.command.storage, 0), # clear all pending commands
+ NextState("WAKEUP_PRE"),
+ )
+ )
+ )
+
+ # --------- wakup chip ------------------------------
+ mac.act("WAKEUP_PRE",
+ NextValue(spi_cs_n, 1), # why isn't this sticking? i shouldn't have to put this here
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_PRE_CS_WAIT")
+ )
+ mac.act("WAKEUP_PRE_CS_WAIT",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextState("WAKEUP_WUP"),
+ NextValue(spi_cs_n, 0),
+ )
+ )
+ mac.act("WAKEUP_WUP",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextValue(spi_do, 0xab), # wakeup from deep sleep
+ NextValue(spi_req, 1),
+ NextState("WAKEUP_WUP_WAIT"),
+ )
+ )
+ mac.act("WAKEUP_WUP_WAIT",
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ NextValue(spi_cs_n, 1), # raise CS
+ NextValue(mac_count, 4), # for >4 cycles per specsheet
+ NextState("WAKEUP_CR2_WREN_1")
+ )
+ )
+
+ # --------- WREN+CR2 - dummy cycles ------------------------------
+ mac.act("WAKEUP_CR2_WREN_1",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextValue(spi_do, 0x06), # WREN to unlock CR2 writing
+ NextValue(spi_req, 1),
+ NextState("WAKEUP_CR2_WREN_1_WAIT"),
+ )
+ )
+ mac.act("WAKEUP_CR2_WREN_1_WAIT",
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ NextValue(spi_cs_n, 1),
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_CR2_DUMMY_CMD"),
+ )
+ )
+ mac.act("WAKEUP_CR2_DUMMY_CMD",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextValue(spi_do, 0x72), # CR2 command
+ NextValue(spi_req, 1),
+ NextValue(mac_count, 2),
+ NextState("WAKEUP_CR2_DUMMY_ADRHI"),
+ )
+ )
+ mac.act("WAKEUP_CR2_DUMMY_ADRHI",
+ NextValue(spi_do, 0x00), # we want to send 00_00_03_00
+ If(spi_ack,
+ NextValue(mac_count, mac_count - 1),
+ ),
+ If(mac_count == 0,
+ NextState("WAKEUP_CR2_DUMMY_ADRMID")
+ )
+ )
+ mac.act("WAKEUP_CR2_DUMMY_ADRMID",
+ NextValue(spi_do, 0x03),
+ If(spi_ack, NextState("WAKEUP_CR2_DUMMY_ADRLO")),
+ )
+ mac.act("WAKEUP_CR2_DUMMY_ADRLO",
+ NextValue(spi_do, 0x00),
+ If(spi_ack, NextState("WAKEUP_CR2_DUMMY_DATA")),
+ )
+ mac.act("WAKEUP_CR2_DUMMY_DATA",
+ NextValue(spi_do, 0x05), # 10 dummy cycles as required for 84MHz-104MHz operation
+ If(spi_ack, NextState("WAKEUP_CR2_DUMMY_WAIT")),
+ )
+ mac.act("WAKEUP_CR2_DUMMY_WAIT",
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ NextValue(spi_cs_n, 1),
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_CR2_WREN_2")
+ )
+ )
+
+ # --------- WREN+CR2 to DOPI mode ------------------------------
+ mac.act("WAKEUP_CR2_WREN_2",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextValue(spi_do, 0x06), # WREN to unlock CR2 writing
+ NextValue(spi_req, 1),
+ NextState("WAKEUP_CR2_WREN_2_WAIT"),
+ )
+ )
+ mac.act("WAKEUP_CR2_WREN_2_WAIT",
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ NextValue(spi_cs_n, 1),
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_CR2_DOPI_CMD"),
+ )
+ )
+ mac.act("WAKEUP_CR2_DOPI_CMD",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextValue(spi_do, 0x72), # CR2 command
+ NextValue(spi_req, 1),
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_CR2_DOPI_ADR"),
+ )
+ )
+ mac.act("WAKEUP_CR2_DOPI_ADR", # send 0x00_00_00_00 as address
+ NextValue(spi_do, 0x00), # no need to raise CS or lower spi_req, this is back-to-back
+ If(spi_ack,
+ NextValue(mac_count, mac_count - 1),
+ ),
+ If(mac_count == 0,
+ NextState("WAKEUP_CR2_DOPI_DATA"),
+ )
+ ),
+ mac.act("WAKEUP_CR2_DOPI_DATA",
+ NextValue(spi_do, 2), # enable DOPI mode
+ If(spi_ack, NextState("WAKEUP_CR2_DOPI_WAIT")),
+ )
+ mac.act("WAKEUP_CR2_DOPI_WAIT", # trailing CS wait
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ NextValue(spi_cs_n, 1),
+ NextValue(mac_count, 4),
+ NextState("WAKEUP_CS_EXIT")
+ )
+ )
+ mac.act("WAKEUP_CS_EXIT",
+ NextValue(self.spi_mode, 0), # now enter DOPI mode
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextState("IDLE"),
+ )
+ )
+
+ if spiread:
+ # --------- SPI read machine ------------------------------
+ mac.act("SPI_READ_32",
+ If(addr_updated,
+ NextState("SPI_READ_32_CS"),
+ NextValue(has_dummy, 0),
+ NextValue(mac_count, 3),
+ NextValue(spi_cs_n, 1),
+ NextValue(spi_req, 0),
+ ).Else(
+ If(mac_count > 0,
+ NextValue(has_dummy, 0),
+ NextValue(spi_req, 1),
+ NextState("SPI_READ_32_D")
+ ).Else(
+ NextValue(spi_req, 0),
+ If(spi_ack,
+ If(self.spi_mode,
+ # protect these in a spi_mode mux to prevent excess inference of logic to handle otherwise implicit dual-master situation
+ NextValue(self.bus.dat_r, Cat(d_to_wb[8:], spi_di)),
+ NextValue(self.bus.ack, 1),
+ ),
+ NextValue(rom_addr, rom_addr + 1),
+ NextState("IDLE")
+ )
+ )
+ )
+ )
+ mac.act("SPI_READ_32_D",
+ If(spi_ack,
+ # shift in one byte at a time to d_to_wb(32)
+ NextValue(d_to_wb, Cat(d_to_wb[8:], spi_di, )),
+ NextValue(mac_count, mac_count - 1),
+ NextState("SPI_READ_32"),
+ NextValue(rom_addr, rom_addr + 1),
+ )
+ )
+ mac.act("SPI_READ_32_CS",
+ NextValue(mac_count, mac_count - 1),
+ If(mac_count == 0,
+ NextValue(spi_cs_n, 0),
+ NextState("SPI_READ_32_A0"),
+ )
+ )
+ mac.act("SPI_READ_32_A0",
+ NextValue(spi_do, 0x0c), # 32-bit address write for "fast read" command
+ NextValue(spi_req, 1),
+ NextState("SPI_READ_32_A1"),
+ )
+ mac.act("SPI_READ_32_A1",
+ NextValue(spi_do, rom_addr[24:] & 0x7),
+ # queue up MSB to send, leave req high; mask off unused high bits
+ If(spi_ack,
+ NextState("SPI_READ_32_A2"),
+ )
+ )
+ mac.act("SPI_READ_32_A2",
+ NextValue(spi_do, rom_addr[16:24]),
+ If(spi_ack,
+ NextState("SPI_READ_32_A3"),
+ )
+ )
+ mac.act("SPI_READ_32_A3",
+ NextValue(spi_do, rom_addr[8:16]),
+ If(spi_ack,
+ NextState("SPI_READ_32_A4"),
+ )
+ )
+ mac.act("SPI_READ_32_A4",
+ NextValue(spi_do, rom_addr[:8]),
+ If(spi_ack,
+ NextState("SPI_READ_32_A5"),
+ )
+ )
+ mac.act("SPI_READ_32_A5",
+ NextValue(spi_do, 0),
+ If(spi_ack,
+ NextState("SPI_READ_32_DUMMY")
+ )
+ )
+ mac.act("SPI_READ_32_DUMMY",
+ NextValue(spi_req, 0),
+ NextValue(addr_updated, 0),
+ If(spi_ack,
+ NextState("SPI_READ_32"),
+ NextValue(mac_count, 3), # prep the MAC state counter to count out 4 bytes
+ ).Else(
+ NextState("SPI_READ_32_DUMMY")
+ )
+ )
+
+ # Handle ECS_n -----------------------------------------------------------------------------
+ # treat ECS_N as an async signal -- just a "rough guide" of problems
+ ecs_n = Signal()
+ self.specials += MultiReg(pads.ecs_n, ecs_n)
+
+ self.submodules.ev = EventManager()
+ self.ev.ecc_error = EventSourceProcess() # Falling edge triggered
+ self.ev.finalize()
+ self.comb += self.ev.ecc_error.trigger.eq(ecs_n)
+ ecc_reported = Signal()
+ ecs_n_delay = Signal()
+ ecs_pulse = Signal()
+
+ self.ecc_address = CSRStatus(fields=[
+ CSRField("ecc_address", size=32, description="Address of the most recent ECC event")
+ ])
+ self.ecc_status = CSRStatus(fields=[
+ CSRField("ecc_error", size=1,
+ description="Live status of the ECS_N bit (ECC error on current packet when low)"),
+ CSRField("ecc_overflow", size=1,
+ description="More than one ECS_N event has happened since th last time ecc_address was checked")
+ ])
+
+ self.comb += self.ecc_status.fields.ecc_error.eq(ecs_n)
+ self.comb += [
+ ecs_pulse.eq(ecs_n_delay & ~ecs_n), # falling edge -> positive pulse
+ If(ecs_pulse,
+ self.ecc_address.fields.ecc_address.eq(rom_addr),
+ If(ecc_reported,
+ self.ecc_status.fields.ecc_overflow.eq(1)
+ ).Else(
+ self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
+ )
+ ).Else(
+ self.ecc_address.fields.ecc_address.eq(self.ecc_address.fields.ecc_address),
+ If(self.ecc_status.we,
+ self.ecc_status.fields.ecc_overflow.eq(0),
+ ).Else(
+ self.ecc_status.fields.ecc_overflow.eq(self.ecc_status.fields.ecc_overflow),
+ )
+ )
+ ]
+ self.sync += [
+ ecs_n_delay.eq(ecs_n),
+ If(ecs_pulse,
+ ecc_reported.eq(1)
+ ).Elif(self.ecc_address.we,
+ ecc_reported.eq(0)
+ )
+ ]