class L1Cache(Cache):
assoc = 2
- hit_latency = 2
+ tag_latency = 2
+ data_latency = 2
response_latency = 2
mshrs = 4
tgts_per_mshr = 20
class L2Cache(Cache):
assoc = 8
- hit_latency = 20
+ tag_latency = 20
+ data_latency = 20
response_latency = 20
mshrs = 20
tgts_per_mshr = 12
class IOCache(Cache):
assoc = 8
- hit_latency = 50
+ tag_latency = 50
+ data_latency = 50
response_latency = 50
mshrs = 20
size = '1kB'
class PageTableWalkerCache(Cache):
assoc = 2
- hit_latency = 2
+ tag_latency = 2
+ data_latency = 2
response_latency = 2
mshrs = 10
size = '1kB'
# Instruction Cache
class O3_ARM_v7a_ICache(Cache):
- hit_latency = 1
+ tag_latency = 1
+ data_latency = 1
response_latency = 1
mshrs = 2
tgts_per_mshr = 8
# Data Cache
class O3_ARM_v7a_DCache(Cache):
- hit_latency = 2
+ tag_latency = 2
+ data_latency = 2
response_latency = 2
mshrs = 6
tgts_per_mshr = 8
# TLB Cache
# Use a cache as a L2 TLB
class O3_ARM_v7aWalkCache(Cache):
- hit_latency = 4
+ tag_latency = 4
+ data_latency = 4
response_latency = 4
mshrs = 6
tgts_per_mshr = 8
# L2 Cache
class O3_ARM_v7aL2(Cache):
- hit_latency = 12
+ tag_latency = 12
+ data_latency = 12
response_latency = 12
mshrs = 16
tgts_per_mshr = 8
from common import CpuConfig
class L1I(L1_ICache):
- hit_latency = 1
+ tag_latency = 1
+ data_latency = 1
response_latency = 1
mshrs = 4
tgts_per_mshr = 8
class L1D(L1_DCache):
- hit_latency = 2
+ tag_latency = 2
+ data_latency = 2
response_latency = 1
mshrs = 16
tgts_per_mshr = 16
class WalkCache(PageTableWalkerCache):
- hit_latency = 4
+ tag_latency = 4
+ data_latency = 4
response_latency = 4
mshrs = 6
tgts_per_mshr = 8
class L2(L2Cache):
- hit_latency = 12
+ tag_latency = 12
+ data_latency = 12
response_latency = 5
mshrs = 32
tgts_per_mshr = 8
class L3(Cache):
size = '16MB'
assoc = 16
- hit_latency = 20
+ tag_latency = 20
+ data_latency = 20
response_latency = 20
mshrs = 20
tgts_per_mshr = 12
# Define a prototype L1 cache that we scale for all successive levels
proto_l1 = Cache(size = '32kB', assoc = 4,
- hit_latency = 1, response_latency = 1,
+ tag_latency = 1, data_latency = 1, response_latency = 1,
tgts_per_mshr = 8)
if options.blocking:
prev = cache_proto[0]
next = prev()
next.size = prev.size * scale
- next.hit_latency = prev.hit_latency * 10
+ next.tag_latency = prev.tag_latency * 10
+ next.data_latency = prev.data_latency * 10
next.response_latency = prev.response_latency * 10
next.assoc = prev.assoc * scale
next.mshrs = prev.mshrs * scale
# Define a prototype L1 cache that we scale for all successive levels
proto_l1 = Cache(size = '32kB', assoc = 4,
- hit_latency = 1, response_latency = 1,
+ tag_latency = 1, data_latency = 1, response_latency = 1,
tgts_per_mshr = 8, clusivity = 'mostly_incl',
writeback_clean = True)
prev = cache_proto[0]
next = prev()
next.size = prev.size * scale
- next.hit_latency = prev.hit_latency * 10
+ next.tag_latency = prev.tag_latency * 10
+ next.data_latency = prev.data_latency * 10
next.response_latency = prev.response_latency * 10
next.assoc = prev.assoc * scale
next.mshrs = prev.mshrs * scale
"""Simple L1 Cache with default values"""
assoc = 2
- hit_latency = 2
+ tag_latency = 2
+ data_latency = 2
response_latency = 2
mshrs = 4
tgts_per_mshr = 20
# Default parameters
size = '256kB'
assoc = 8
- hit_latency = 20
+ tag_latency = 20
+ data_latency = 20
response_latency = 20
mshrs = 20
tgts_per_mshr = 12
size = Param.MemorySize("Capacity")
assoc = Param.Unsigned("Associativity")
- hit_latency = Param.Cycles("Hit latency")
+ tag_latency = Param.Cycles("Tag lookup latency")
+ data_latency = Param.Cycles("Data access latency")
response_latency = Param.Cycles("Latency for the return path on a miss");
max_miss_count = Param.Counter(0,
mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
blkSize(blk_size),
- lookupLatency(p->hit_latency),
- forwardLatency(p->hit_latency),
- fillLatency(p->response_latency),
+ lookupLatency(p->tag_latency),
+ dataLatency(p->data_latency),
+ forwardLatency(p->tag_latency),
+ fillLatency(p->data_latency),
responseLatency(p->response_latency),
numTarget(p->tgts_per_mshr),
forwardSnoops(true),
*/
const Cycles lookupLatency;
+ /**
+ * The latency of data access of a cache. It occurs when there is
+ * an access to the cache.
+ */
+ const Cycles dataLatency;
+
/**
* This is the forward latency of the cache. It occurs when there
* is a cache miss and a request is forwarded downstream, in
# Get the block size from the parent (system)
block_size = Param.Int(Parent.cache_line_size, "block size in bytes")
- # Get the hit latency from the parent (cache)
- hit_latency = Param.Cycles(Parent.hit_latency,
- "The hit latency for this cache")
+ # Get the tag lookup latency from the parent (cache)
+ tag_latency = Param.Cycles(Parent.tag_latency,
+ "The tag lookup latency for this cache")
+
+ # Get the RAM access latency from the parent (cache)
+ data_latency = Param.Cycles(Parent.data_latency,
+ "The data access latency for this cache")
+
+ sequential_access = Param.Bool(Parent.sequential_access,
+ "Whether to access tags and data sequentially")
class BaseSetAssoc(BaseTags):
type = 'BaseSetAssoc'
abstract = True
cxx_header = "mem/cache/tags/base_set_assoc.hh"
assoc = Param.Int(Parent.assoc, "associativity")
- sequential_access = Param.Bool(Parent.sequential_access,
- "Whether to access tags and data sequentially")
class LRU(BaseSetAssoc):
type = 'LRU'
BaseTags::BaseTags(const Params *p)
: ClockedObject(p), blkSize(p->block_size), size(p->size),
- accessLatency(p->hit_latency), cache(nullptr), warmupBound(0),
+ lookupLatency(p->tag_latency),
+ accessLatency(p->sequential_access ?
+ p->tag_latency + p->data_latency :
+ std::max(p->tag_latency, p->data_latency)),
+ cache(nullptr), warmupBound(0),
warmedUp(false), numBlocks(0)
{
}
const unsigned blkSize;
/** The size of the cache. */
const unsigned size;
- /** The access latency of the cache. */
+ /** The tag lookup latency of the cache. */
+ const Cycles lookupLatency;
+ /**
+ * The total access latency of the cache. This latency
+ * is different depending on the cache access mode
+ * (parallel or sequential)
+ */
const Cycles accessLatency;
/** Pointer to the parent cache. */
BaseCache *cache;
Addr tag = extractTag(addr);
int set = extractSet(addr);
BlkType *blk = sets[set].findBlk(tag, is_secure);
- lat = accessLatency;;
// Access all tags in parallel, hence one in each way. The data side
// either accesses all blocks in parallel, or one block sequentially on
}
if (blk != nullptr) {
- if (blk->whenReady > curTick()
- && cache->ticksToCycles(blk->whenReady - curTick())
- > accessLatency) {
- lat = cache->ticksToCycles(blk->whenReady - curTick());
+ // If a cache hit
+ lat = accessLatency;
+ // Check if the block to be accessed is available. If not,
+ // apply the accessLatency on top of block->whenReady.
+ if (blk->whenReady > curTick() &&
+ cache->ticksToCycles(blk->whenReady - curTick()) >
+ accessLatency) {
+ lat = cache->ticksToCycles(blk->whenReady - curTick()) +
+ accessLatency;
}
blk->refCount += 1;
+ } else {
+ // If a cache miss
+ lat = lookupLatency;
}
return blk;
FALRUBlk* blk = hashLookup(blkAddr);
if (blk && blk->isValid()) {
+ // If a cache hit
+ lat = accessLatency;
+ // Check if the block to be accessed is available. If not,
+ // apply the accessLatency on top of block->whenReady.
+ if (blk->whenReady > curTick() &&
+ cache->ticksToCycles(blk->whenReady - curTick()) >
+ accessLatency) {
+ lat = cache->ticksToCycles(blk->whenReady - curTick()) +
+ accessLatency;
+ }
assert(blk->tag == blkAddr);
tmp_in_cache = blk->inCache;
for (unsigned i = 0; i < numCaches; i++) {
moveToHead(blk);
}
} else {
+ // If a cache miss
+ lat = lookupLatency;
blk = nullptr;
for (unsigned i = 0; i <= numCaches; ++i) {
misses[i]++;
*inCache = tmp_in_cache;
}
- lat = accessLatency;
//assert(check());
return blk;
}
#include <list>
#include <unordered_map>
+#include "mem/cache/base.hh"
#include "mem/cache/blk.hh"
#include "mem/cache/tags/base.hh"
#include "mem/packet.hh"