--- /dev/null
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "main/context.h"
+#include "main/teximage.h"
+#include "main/fbobject.h"
+
+#include "compiler/nir/nir_builder.h"
+
+#include "intel_fbo.h"
+
+#include "blorp_priv.h"
+#include "brw_context.h"
+#include "brw_state.h"
+#include "brw_meta_util.h"
+
+#define FILE_DEBUG_FLAG DEBUG_BLORP
+
+/**
+ * Enum to specify the order of arguments in a sampler message
+ */
+enum sampler_message_arg
+{
+ SAMPLER_MESSAGE_ARG_U_FLOAT,
+ SAMPLER_MESSAGE_ARG_V_FLOAT,
+ SAMPLER_MESSAGE_ARG_U_INT,
+ SAMPLER_MESSAGE_ARG_V_INT,
+ SAMPLER_MESSAGE_ARG_R_INT,
+ SAMPLER_MESSAGE_ARG_SI_INT,
+ SAMPLER_MESSAGE_ARG_MCS_INT,
+ SAMPLER_MESSAGE_ARG_ZERO_INT,
+};
+
+struct brw_blorp_blit_vars {
+ /* Input values from brw_blorp_wm_inputs */
+ nir_variable *v_discard_rect;
+ nir_variable *v_rect_grid;
+ nir_variable *v_coord_transform;
+ nir_variable *v_src_z;
+
+ /* gl_FragCoord */
+ nir_variable *frag_coord;
+
+ /* gl_FragColor */
+ nir_variable *color_out;
+};
+
+static void
+brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
+ const struct brw_blorp_blit_prog_key *key)
+{
+ /* Blended and scaled blits never use pixel discard. */
+ assert(!key->use_kill || !(key->blend && key->blit_scaled));
+
+#define LOAD_INPUT(name, type)\
+ v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
+ type, #name); \
+ v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
+ v->v_##name->data.location = VARYING_SLOT_VAR0 + \
+ offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
+
+ LOAD_INPUT(discard_rect, glsl_vec4_type())
+ LOAD_INPUT(rect_grid, glsl_vec4_type())
+ LOAD_INPUT(coord_transform, glsl_vec4_type())
+ LOAD_INPUT(src_z, glsl_uint_type())
+
+#undef LOAD_INPUT
+
+ v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
+ glsl_vec4_type(), "gl_FragCoord");
+ v->frag_coord->data.location = VARYING_SLOT_POS;
+ v->frag_coord->data.origin_upper_left = true;
+
+ v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
+ glsl_vec4_type(), "gl_FragColor");
+ v->color_out->data.location = FRAG_RESULT_COLOR;
+}
+
+static nir_ssa_def *
+blorp_blit_get_frag_coords(nir_builder *b,
+ const struct brw_blorp_blit_prog_key *key,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
+
+ if (key->persample_msaa_dispatch) {
+ return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
+ nir_load_system_value(b, nir_intrinsic_load_sample_id, 0));
+ } else {
+ return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
+ }
+}
+
+/**
+ * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
+ * coordinates.
+ */
+static nir_ssa_def *
+blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
+
+ nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
+ nir_channel(b, coord_transform, 3));
+ nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
+ nir_channel(b, coord_transform, 2));
+
+ return nir_ffma(b, src_pos, mul, offset);
+}
+
+static inline void
+blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *c0, *c1, *c2, *c3;
+ nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
+ nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
+ nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
+ nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
+ nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
+
+ c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
+ c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
+ c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
+ c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
+
+ nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
+
+ nir_intrinsic_instr *discard =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
+ discard->src[0] = nir_src_for_ssa(oob);
+ nir_builder_instr_insert(b, &discard->instr);
+}
+
+static nir_tex_instr *
+blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
+ enum brw_reg_type dst_type)
+{
+ nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
+
+ tex->op = op;
+
+ switch (dst_type) {
+ case BRW_REGISTER_TYPE_F:
+ tex->dest_type = nir_type_float;
+ break;
+ case BRW_REGISTER_TYPE_D:
+ tex->dest_type = nir_type_int;
+ break;
+ case BRW_REGISTER_TYPE_UD:
+ tex->dest_type = nir_type_uint;
+ break;
+ default:
+ unreachable("Invalid texture return type");
+ }
+
+ tex->is_array = false;
+ tex->is_shadow = false;
+
+ /* Blorp only has one texture and it's bound at unit 0 */
+ tex->texture = NULL;
+ tex->sampler = NULL;
+ tex->texture_index = 0;
+ tex->sampler_index = 0;
+
+ /* To properly handle 3-D and 2-D array textures, we pull the Z component
+ * from an input. TODO: This is a bit magic; we should probably make this
+ * more explicit in the future.
+ */
+ assert(pos->num_components >= 2);
+ pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
+ nir_load_var(b, v->v_src_z));
+
+ tex->src[0].src_type = nir_tex_src_coord;
+ tex->src[0].src = nir_src_for_ssa(pos);
+ tex->coord_components = 3;
+
+ nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
+
+ return tex;
+}
+
+static nir_ssa_def *
+blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, enum brw_reg_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
+
+ assert(pos->num_components == 2);
+ tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
+ tex->src[1].src_type = nir_tex_src_lod;
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, enum brw_reg_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
+ tex->src[1].src_type = nir_tex_src_lod;
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, nir_ssa_def *mcs, enum brw_reg_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
+ mcs != NULL ? 3 : 2, dst_type);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+ tex->src[1].src_type = nir_tex_src_ms_index;
+ if (pos->num_components == 2) {
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+ } else {
+ assert(pos->num_components == 3);
+ tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
+ }
+
+ if (mcs) {
+ tex->src[2].src_type = nir_tex_src_ms_mcs;
+ tex->src[2].src = nir_src_for_ssa(mcs);
+ }
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
+ pos, 1, BRW_REGISTER_TYPE_D);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
+ uint32_t src_mask, int src_left_shift)
+{
+ nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
+
+ nir_ssa_def *shifted;
+ if (src_left_shift > 0) {
+ shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
+ } else if (src_left_shift < 0) {
+ shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
+ } else {
+ assert(src_left_shift == 0);
+ shifted = masked;
+ }
+
+ return nir_ior(b, dst, shifted);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
+{
+ assert(pos->num_components == 2);
+ nir_ssa_def *x_Y = nir_channel(b, pos, 0);
+ nir_ssa_def *y_Y = nir_channel(b, pos, 1);
+
+ /* Given X and Y coordinates that describe an address using Y tiling,
+ * translate to the X and Y coordinates that describe the same address
+ * using W tiling.
+ *
+ * If we break down the low order bits of X and Y, using a
+ * single letter to represent each low-order bit:
+ *
+ * X = A << 7 | 0bBCDEFGH
+ * Y = J << 5 | 0bKLMNP (1)
+ *
+ * Then we can apply the Y tiling formula to see the memory offset being
+ * addressed:
+ *
+ * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
+ *
+ * If we apply the W detiling formula to this memory location, that the
+ * corresponding X' and Y' coordinates are:
+ *
+ * X' = A << 6 | 0bBCDPFH (3)
+ * Y' = J << 6 | 0bKLMNEG
+ *
+ * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
+ * we need to make the following computation:
+ *
+ * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
+ * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
+ */
+ nir_ssa_def *x_W = nir_imm_int(b, 0);
+ x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
+ x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
+ x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
+
+ nir_ssa_def *y_W = nir_imm_int(b, 0);
+ y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
+ y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
+ y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
+
+ return nir_vec2(b, x_W, y_W);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
+{
+ assert(pos->num_components == 2);
+ nir_ssa_def *x_W = nir_channel(b, pos, 0);
+ nir_ssa_def *y_W = nir_channel(b, pos, 1);
+
+ /* Applying the same logic as above, but in reverse, we obtain the
+ * formulas:
+ *
+ * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
+ * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
+ */
+ nir_ssa_def *x_Y = nir_imm_int(b, 0);
+ x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
+ x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
+ x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
+ x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
+
+ nir_ssa_def *y_Y = nir_imm_int(b, 0);
+ y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
+ y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
+
+ return nir_vec2(b, x_Y, y_Y);
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
+ unsigned num_samples, enum isl_msaa_layout layout)
+{
+ assert(pos->num_components == 2 || pos->num_components == 3);
+
+ switch (layout) {
+ case ISL_MSAA_LAYOUT_NONE:
+ assert(pos->num_components == 2);
+ return pos;
+ case ISL_MSAA_LAYOUT_ARRAY:
+ /* No translation needed */
+ return pos;
+ case ISL_MSAA_LAYOUT_INTERLEAVED: {
+ nir_ssa_def *x_in = nir_channel(b, pos, 0);
+ nir_ssa_def *y_in = nir_channel(b, pos, 1);
+ nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
+ nir_channel(b, pos, 2);
+
+ nir_ssa_def *x_out = nir_imm_int(b, 0);
+ nir_ssa_def *y_out = nir_imm_int(b, 0);
+ switch (num_samples) {
+ case 2:
+ case 4:
+ /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = Y
+ *
+ * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ if (num_samples == 2) {
+ y_out = y_in;
+ } else {
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ }
+ break;
+
+ case 8:
+ /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+ * | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ break;
+
+ case 16:
+ /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+ * | (X & 0b1)
+ * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
+ * | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ break;
+
+ default:
+ unreachable("Invalid number of samples for IMS layout");
+ }
+
+ return nir_vec2(b, x_out, y_out);
+ }
+
+ default:
+ unreachable("Invalid MSAA layout");
+ }
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
+ unsigned num_samples, enum isl_msaa_layout layout)
+{
+ assert(pos->num_components == 2 || pos->num_components == 3);
+
+ switch (layout) {
+ case ISL_MSAA_LAYOUT_NONE:
+ /* No translation necessary, and S should already be zero. */
+ assert(pos->num_components == 2);
+ return pos;
+ case ISL_MSAA_LAYOUT_ARRAY:
+ /* No translation necessary. */
+ return pos;
+ case ISL_MSAA_LAYOUT_INTERLEAVED: {
+ assert(pos->num_components == 2);
+
+ nir_ssa_def *x_in = nir_channel(b, pos, 0);
+ nir_ssa_def *y_in = nir_channel(b, pos, 1);
+
+ nir_ssa_def *x_out = nir_imm_int(b, 0);
+ nir_ssa_def *y_out = nir_imm_int(b, 0);
+ nir_ssa_def *s_out = nir_imm_int(b, 0);
+ switch (num_samples) {
+ case 2:
+ case 4:
+ /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * S = (X & 0b10) >> 1
+ *
+ * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ if (num_samples == 2) {
+ y_out = y_in;
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ } else {
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ }
+ break;
+
+ case 8:
+ /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ break;
+
+ case 16:
+ /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
+ * S = (Y & 0b100) << 1 | (X & 0b100) |
+ * (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ break;
+
+ default:
+ unreachable("Invalid number of samples for IMS layout");
+ }
+
+ return nir_vec3(b, x_out, y_out, s_out);
+ }
+
+ default:
+ unreachable("Invalid MSAA layout");
+ }
+}
+
+/**
+ * Count the number of trailing 1 bits in the given value. For example:
+ *
+ * count_trailing_one_bits(0) == 0
+ * count_trailing_one_bits(7) == 3
+ * count_trailing_one_bits(11) == 2
+ */
+static inline int count_trailing_one_bits(unsigned value)
+{
+#ifdef HAVE___BUILTIN_CTZ
+ return __builtin_ctz(~value);
+#else
+ return _mesa_bitcount(value & ~(value + 1));
+#endif
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, unsigned tex_samples,
+ enum isl_aux_usage tex_aux_usage,
+ enum brw_reg_type dst_type)
+{
+ /* If non-null, this is the outer-most if statement */
+ nir_if *outer_if = NULL;
+
+ nir_variable *color =
+ nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
+
+ nir_ssa_def *mcs = NULL;
+ if (tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(b, v, pos);
+
+ /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
+ *
+ * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
+ *
+ * This ensures that when all samples have the same value, no numerical
+ * precision is lost, since each addition operation always adds two equal
+ * values, and summing two equal floating point values does not lose
+ * precision.
+ *
+ * We perform this computation by treating the texture_data array as a
+ * stack and performing the following operations:
+ *
+ * - push sample 0 onto stack
+ * - push sample 1 onto stack
+ * - add top two stack entries
+ * - push sample 2 onto stack
+ * - push sample 3 onto stack
+ * - add top two stack entries
+ * - add top two stack entries
+ * - divide top stack entry by 4
+ *
+ * Note that after pushing sample i onto the stack, the number of add
+ * operations we do is equal to the number of trailing 1 bits in i. This
+ * works provided the total number of samples is a power of two, which it
+ * always is for i965.
+ *
+ * For integer formats, we replace the add operations with average
+ * operations and skip the final division.
+ */
+ nir_ssa_def *texture_data[5];
+ unsigned stack_depth = 0;
+ for (unsigned i = 0; i < tex_samples; ++i) {
+ assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
+
+ /* Push sample i onto the stack */
+ assert(stack_depth < ARRAY_SIZE(texture_data));
+
+ nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
+ nir_channel(b, pos, 1),
+ nir_imm_int(b, i));
+ texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
+
+ if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
+ /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
+ * suggests an optimization:
+ *
+ * "A simple optimization with probable large return in
+ * performance is to compare the MCS value to zero (indicating
+ * all samples are on sample slice 0), and sample only from
+ * sample slice 0 using ld2dss if MCS is zero."
+ *
+ * Note that in the case where the MCS value is zero, sampling from
+ * sample slice 0 using ld2dss and sampling from sample 0 using
+ * ld2dms are equivalent (since all samples are on sample slice 0).
+ * Since we have already sampled from sample 0, all we need to do is
+ * skip the remaining fetches and averaging if MCS is zero.
+ */
+ nir_ssa_def *mcs_zero =
+ nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
+ if (tex_samples == 16) {
+ mcs_zero = nir_iand(b, mcs_zero,
+ nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
+ }
+
+ nir_if *if_stmt = nir_if_create(b->shader);
+ if_stmt->condition = nir_src_for_ssa(mcs_zero);
+ nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
+
+ b->cursor = nir_after_cf_list(&if_stmt->then_list);
+ nir_store_var(b, color, texture_data[0], 0xf);
+
+ b->cursor = nir_after_cf_list(&if_stmt->else_list);
+ outer_if = if_stmt;
+ }
+
+ for (int j = 0; j < count_trailing_one_bits(i); j++) {
+ assert(stack_depth >= 2);
+ --stack_depth;
+
+ assert(dst_type == BRW_REGISTER_TYPE_F);
+ texture_data[stack_depth - 1] =
+ nir_fadd(b, texture_data[stack_depth - 1],
+ texture_data[stack_depth]);
+ }
+ }
+
+ /* We should have just 1 sample on the stack now. */
+ assert(stack_depth == 1);
+
+ texture_data[0] = nir_fmul(b, texture_data[0],
+ nir_imm_float(b, 1.0 / tex_samples));
+
+ nir_store_var(b, color, texture_data[0], 0xf);
+
+ if (outer_if)
+ b->cursor = nir_after_cf_node(&outer_if->cf_node);
+
+ return nir_load_var(b, color);
+}
+
+static inline nir_ssa_def *
+nir_imm_vec2(nir_builder *build, float x, float y)
+{
+ nir_const_value v;
+
+ memset(&v, 0, sizeof(v));
+ v.f32[0] = x;
+ v.f32[1] = y;
+
+ return nir_build_imm(build, 4, 32, v);
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
+ unsigned tex_samples,
+ const struct brw_blorp_blit_prog_key *key,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
+ nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
+ nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
+
+ /* Translate coordinates to lay out the samples in a rectangular grid
+ * roughly corresponding to sample locations.
+ */
+ pos_xy = nir_fmul(b, pos_xy, scale);
+ /* Adjust coordinates so that integers represent pixel centers rather
+ * than pixel edges.
+ */
+ pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
+ /* Clamp the X, Y texture coordinates to properly handle the sampling of
+ * texels on texture edges.
+ */
+ pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
+ nir_vec2(b, nir_channel(b, rect_grid, 0),
+ nir_channel(b, rect_grid, 1)));
+
+ /* Store the fractional parts to be used as bilinear interpolation
+ * coefficients.
+ */
+ nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
+ /* Round the float coordinates down to nearest integer */
+ pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
+
+ nir_ssa_def *tex_data[4];
+ for (unsigned i = 0; i < 4; ++i) {
+ float sample_off_x = (float)(i & 0x1) / key->x_scale;
+ float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
+ nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
+
+ nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
+ nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
+
+ /* The MCS value we fetch has to match up with the pixel that we're
+ * sampling from. Since we sample from different pixels in each
+ * iteration of this "for" loop, the call to mcs_fetch() should be
+ * here inside the loop after computing the pixel coordinates.
+ */
+ nir_ssa_def *mcs = NULL;
+ if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
+
+ /* Compute sample index and map the sample index to a sample number.
+ * Sample index layout shows the numbering of slots in a rectangular
+ * grid of samples with in a pixel. Sample number layout shows the
+ * rectangular grid of samples roughly corresponding to the real sample
+ * locations with in a pixel.
+ * In case of 4x MSAA, layout of sample indices matches the layout of
+ * sample numbers:
+ * ---------
+ * | 0 | 1 |
+ * ---------
+ * | 2 | 3 |
+ * ---------
+ *
+ * In case of 8x MSAA the two layouts don't match.
+ * sample index layout : --------- sample number layout : ---------
+ * | 0 | 1 | | 3 | 7 |
+ * --------- ---------
+ * | 2 | 3 | | 5 | 0 |
+ * --------- ---------
+ * | 4 | 5 | | 1 | 2 |
+ * --------- ---------
+ * | 6 | 7 | | 4 | 6 |
+ * --------- ---------
+ *
+ * Fortunately, this can be done fairly easily as:
+ * S' = (0x17306425 >> (S * 4)) & 0xf
+ *
+ * In the case of 16x MSAA the two layouts don't match.
+ * Sample index layout: Sample number layout:
+ * --------------------- ---------------------
+ * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
+ * --------------------- ---------------------
+ * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
+ * --------------------- ---------------------
+ * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
+ * --------------------- ---------------------
+ * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
+ * --------------------- ---------------------
+ *
+ * This is equivalent to
+ * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
+ */
+ nir_ssa_def *frac = nir_ffract(b, sample_coords);
+ nir_ssa_def *sample =
+ nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
+ key->x_scale * key->y_scale));
+ sample = nir_f2i(b, sample);
+
+ if (tex_samples == 8) {
+ sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
+ nir_ishl(b, sample, nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+ } else if (tex_samples == 16) {
+ nir_ssa_def *sample_low =
+ nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
+ nir_ishl(b, sample, nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+ nir_ssa_def *sample_high =
+ nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
+ nir_ishl(b, nir_iadd(b, sample,
+ nir_imm_int(b, -8)),
+ nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+
+ sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
+ sample_low, sample_high);
+ }
+ nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
+ nir_channel(b, sample_coords_int, 1),
+ sample);
+ tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
+ }
+
+ nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
+ nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
+ return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
+ nir_flrp(b, tex_data[2], tex_data[3], frac_x),
+ frac_y);
+}
+
+/**
+ * Generator for WM programs used in BLORP blits.
+ *
+ * The bulk of the work done by the WM program is to wrap and unwrap the
+ * coordinate transformations used by the hardware to store surfaces in
+ * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
+ * sample index for a multisampled surface) to a memory offset by the
+ * following formulas:
+ *
+ * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
+ * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
+ *
+ * For a single-sampled surface, or for a multisampled surface using
+ * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
+ * function:
+ *
+ * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ *
+ * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bit 1 of the X and Y coordinates:
+ *
+ * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
+ * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
+ * the Y coordinate:
+ *
+ * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For X tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
+ * bytes wide and 8 rows high:
+ *
+ * tile(x_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
+ * offset = (Y' & 0b111) << 9
+ * | (X & 0b111111111)
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(x_tiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * Y' = (tile_num / tile_pitch) << 3
+ * | (A & 0b111000000000) >> 9
+ * X' = (tile_num % tile_pitch) << 9
+ * | (A & 0b111111111)
+ *
+ * (In all tiling formulas, cpp is the number of bytes occupied by a single
+ * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
+ * to fill the width of the surface, and qpitch is the spacing (in rows)
+ * between array slices).
+ *
+ * For Y tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
+ * bytes wide and 32 rows high:
+ *
+ * tile(y_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
+ * offset = (X' & 0b1110000) << 5
+ * | (Y' & 0b11111) << 4
+ * | (X' & 0b1111)
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(y_tiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * Y' = (tile_num / tile_pitch) << 5
+ * | (A & 0b111110000) >> 4
+ * X' = (tile_num % tile_pitch) << 7
+ * | (A & 0b111000000000) >> 5
+ * | (A & 0b1111)
+ *
+ * For W tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
+ * bytes wide and 64 rows high (note that W tiling is only used for stencil
+ * buffers, which always have cpp = 1 and S=0):
+ *
+ * tile(w_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
+ * offset = (X' & 0b111000) << 6
+ * | (Y' & 0b111100) << 3
+ * | (X' & 0b100) << 2
+ * | (Y' & 0b10) << 2
+ * | (X' & 0b10) << 1
+ * | (Y' & 0b1) << 1
+ * | (X' & 0b1)
+ * X' = X * cpp = X
+ * Y' = Y + S * qpitch
+ * detile(w_tiled, A) = (X, Y, S)
+ * where X = X' / cpp = X'
+ * Y = Y' % qpitch = Y'
+ * S = Y / qpitch = 0
+ * Y' = (tile_num / tile_pitch) << 6
+ * | (A & 0b111100000) >> 3
+ * | (A & 0b1000) >> 2
+ * | (A & 0b10) >> 1
+ * X' = (tile_num % tile_pitch) << 6
+ * | (A & 0b111000000000) >> 6
+ * | (A & 0b10000) >> 2
+ * | (A & 0b100) >> 1
+ * | (A & 0b1)
+ *
+ * Finally, for a non-tiled surface, tile() simply combines together the X and
+ * Y coordinates in the natural way:
+ *
+ * tile(untiled, X, Y, S) = A
+ * where A = Y * pitch + X'
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(untiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * X' = A % pitch
+ * Y' = A / pitch
+ *
+ * (In these formulas, pitch is the number of bytes occupied by a single row
+ * of samples).
+ */
+static nir_shader *
+brw_blorp_build_nir_shader(struct brw_context *brw,
+ const struct brw_blorp_blit_prog_key *key)
+{
+ nir_ssa_def *src_pos, *dst_pos, *color;
+
+ /* Sanity checks */
+ if (key->dst_tiled_w && key->rt_samples > 1) {
+ /* If the destination image is W tiled and multisampled, then the thread
+ * must be dispatched once per sample, not once per pixel. This is
+ * necessary because after conversion between W and Y tiling, there's no
+ * guarantee that all samples corresponding to a single pixel will still
+ * be together.
+ */
+ assert(key->persample_msaa_dispatch);
+ }
+
+ if (key->blend) {
+ /* We are blending, which means we won't have an opportunity to
+ * translate the tiling and sample count for the texture surface. So
+ * the surface state for the texture must be configured with the correct
+ * tiling and sample count.
+ */
+ assert(!key->src_tiled_w);
+ assert(key->tex_samples == key->src_samples);
+ assert(key->tex_layout == key->src_layout);
+ assert(key->tex_samples > 0);
+ }
+
+ if (key->persample_msaa_dispatch) {
+ /* It only makes sense to do persample dispatch if the render target is
+ * configured as multisampled.
+ */
+ assert(key->rt_samples > 0);
+ }
+
+ /* Make sure layout is consistent with sample count */
+ assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->tex_samples <= 1));
+ assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->rt_samples <= 1));
+ assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->src_samples <= 1));
+ assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->dst_samples <= 1));
+
+ nir_builder b;
+ nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
+
+ struct brw_blorp_blit_vars v;
+ brw_blorp_blit_vars_init(&b, &v, key);
+
+ dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
+
+ /* Render target and texture hardware don't support W tiling until Gen8. */
+ const bool rt_tiled_w = false;
+ const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
+
+ /* The address that data will be written to is determined by the
+ * coordinates supplied to the WM thread and the tiling and sample count of
+ * the render target, according to the formula:
+ *
+ * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
+ *
+ * If the actual tiling and sample count of the destination surface are not
+ * the same as the configuration of the render target, then these
+ * coordinates are wrong and we have to adjust them to compensate for the
+ * difference.
+ */
+ if (rt_tiled_w != key->dst_tiled_w ||
+ key->rt_samples != key->dst_samples ||
+ key->rt_layout != key->dst_layout) {
+ dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
+ key->rt_layout);
+ /* Now (X, Y, S) = detile(rt_tiling, offset) */
+ if (rt_tiled_w != key->dst_tiled_w)
+ dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
+ /* Now (X, Y, S) = detile(rt_tiling, offset) */
+ dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
+ key->dst_layout);
+ }
+
+ /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
+ *
+ * That is: X, Y and S now contain the true coordinates and sample index of
+ * the data that the WM thread should output.
+ *
+ * If we need to kill pixels that are outside the destination rectangle,
+ * now is the time to do it.
+ */
+ if (key->use_kill) {
+ assert(!(key->blend && key->blit_scaled));
+ blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
+ }
+
+ src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
+ if (dst_pos->num_components == 3) {
+ /* The sample coordinate is an integer that we want left alone but
+ * blorp_blit_apply_transform() blindly applies the transform to all
+ * three coordinates. Grab the original sample index.
+ */
+ src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
+ nir_channel(&b, src_pos, 1),
+ nir_channel(&b, dst_pos, 2));
+ }
+
+ /* If the source image is not multisampled, then we want to fetch sample
+ * number 0, because that's the only sample there is.
+ */
+ if (key->src_samples == 1)
+ src_pos = nir_channels(&b, src_pos, 0x3);
+
+ /* X, Y, and S are now the coordinates of the pixel in the source image
+ * that we want to texture from. Exception: if we are blending, then S is
+ * irrelevant, because we are going to fetch all samples.
+ */
+ if (key->blend && !key->blit_scaled) {
+ /* Resolves (effecively) use texelFetch, so we need integers and we
+ * don't care about the sample index if we got one.
+ */
+ src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
+
+ if (brw->gen == 6) {
+ /* Because gen6 only supports 4x interleved MSAA, we can do all the
+ * blending we need with a single linear-interpolated texture lookup
+ * at the center of the sample. The texture coordinates to be odd
+ * integers so that they correspond to the center of a 2x2 block
+ * representing the four samples that maxe up a pixel. So we need
+ * to multiply our X and Y coordinates each by 2 and then add 1.
+ */
+ src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
+ src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
+ src_pos = nir_i2f(&b, src_pos);
+ color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ /* Gen7+ hardware doesn't automaticaly blend. */
+ color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
+ key->tex_aux_usage,
+ key->texture_data_type);
+ }
+ } else if (key->blend && key->blit_scaled) {
+ assert(!key->use_kill);
+ color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
+ } else {
+ if (key->bilinear_filter) {
+ color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ /* We're going to use texelFetch, so we need integers */
+ if (src_pos->num_components == 2) {
+ src_pos = nir_f2i(&b, src_pos);
+ } else {
+ assert(src_pos->num_components == 3);
+ src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
+ nir_channel(&b, nir_f2i(&b, src_pos), 1),
+ nir_channel(&b, src_pos, 2));
+ }
+
+ /* We aren't blending, which means we just want to fetch a single
+ * sample from the source surface. The address that we want to fetch
+ * from is related to the X, Y and S values according to the formula:
+ *
+ * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
+ *
+ * If the actual tiling and sample count of the source surface are
+ * not the same as the configuration of the texture, then we need to
+ * adjust the coordinates to compensate for the difference.
+ */
+ if (tex_tiled_w != key->src_tiled_w ||
+ key->tex_samples != key->src_samples ||
+ key->tex_layout != key->src_layout) {
+ src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
+ key->src_layout);
+ /* Now (X, Y, S) = detile(src_tiling, offset) */
+ if (tex_tiled_w != key->src_tiled_w)
+ src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
+ /* Now (X, Y, S) = detile(tex_tiling, offset) */
+ src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
+ key->tex_layout);
+ }
+
+ /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
+ *
+ * In other words: X, Y, and S now contain values which, when passed to
+ * the texturing unit, will cause data to be read from the correct
+ * memory location. So we can fetch the texel now.
+ */
+ if (key->src_samples == 1) {
+ color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ nir_ssa_def *mcs = NULL;
+ if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
+
+ color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
+ }
+ }
+ }
+
+ nir_store_var(&b, v.color_out, color, 0xf);
+
+ return b.shader;
+}
+
+static void
+brw_blorp_get_blit_kernel(struct brw_context *brw,
+ struct brw_blorp_params *params,
+ const struct brw_blorp_blit_prog_key *prog_key)
+{
+ if (brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
+ prog_key, sizeof(*prog_key),
+ ¶ms->wm_prog_kernel, ¶ms->wm_prog_data))
+ return;
+
+ const unsigned *program;
+ unsigned program_size;
+ struct brw_blorp_prog_data prog_data;
+
+ /* Try and compile with NIR first. If that fails, fall back to the old
+ * method of building shaders manually.
+ */
+ nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key);
+ struct brw_wm_prog_key wm_key;
+ brw_blorp_init_wm_prog_key(&wm_key);
+ wm_key.tex.compressed_multisample_layout_mask =
+ prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
+ wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
+ wm_key.multisample_fbo = prog_key->rt_samples > 1;
+
+ program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
+ &prog_data, &program_size);
+
+ brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
+ prog_key, sizeof(*prog_key),
+ program, program_size,
+ &prog_data, sizeof(prog_data),
+ ¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
+}
+
+static void
+brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
+ GLfloat src0, GLfloat src1,
+ GLfloat dst0, GLfloat dst1,
+ bool mirror)
+{
+ float scale = (src1 - src0) / (dst1 - dst0);
+ if (!mirror) {
+ /* When not mirroring a coordinate (say, X), we need:
+ * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
+ * Therefore:
+ * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
+ *
+ * blorp program uses "round toward zero" to convert the
+ * transformed floating point coordinates to integer coordinates,
+ * whereas the behaviour we actually want is "round to nearest",
+ * so 0.5 provides the necessary correction.
+ */
+ xform->multiplier = scale;
+ xform->offset = src0 + (-dst0 + 0.5f) * scale;
+ } else {
+ /* When mirroring X we need:
+ * src_x - src_x0 = dst_x1 - dst_x - 0.5
+ * Therefore:
+ * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
+ */
+ xform->multiplier = -scale;
+ xform->offset = src0 + (dst1 - 0.5f) * scale;
+ }
+}
+
+/**
+ * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
+ * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
+ *
+ * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
+ * 0 1 2 3 4 5
+ * 4 5 6 7 0 1
+ * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
+ *
+ * which is simply adding 4 then modding by 8 (or anding with 7).
+ *
+ * We then may need to apply workarounds for textureGather hardware bugs.
+ */
+static enum isl_channel_select
+swizzle_to_scs(GLenum swizzle)
+{
+ return (enum isl_channel_select)((swizzle + 4) & 7);
+}
+
+static void
+surf_convert_to_single_slice(struct brw_context *brw,
+ struct brw_blorp_surface_info *info)
+{
+ /* This only makes sense for a single level and array slice */
+ assert(info->view.levels == 1 && info->view.array_len == 1);
+
+ /* Just bail if we have nothing to do. */
+ if (info->surf.dim == ISL_SURF_DIM_2D &&
+ info->view.base_level == 0 && info->view.base_array_layer == 0 &&
+ info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
+ return;
+
+ uint32_t x_offset_sa, y_offset_sa;
+ isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
+ info->view.base_array_layer, 0,
+ &x_offset_sa, &y_offset_sa);
+
+ uint32_t byte_offset;
+ isl_tiling_get_intratile_offset_sa(&brw->isl_dev, info->surf.tiling,
+ info->view.format, info->surf.row_pitch,
+ x_offset_sa, y_offset_sa,
+ &byte_offset,
+ &info->tile_x_sa, &info->tile_y_sa);
+ info->offset += byte_offset;
+
+ /* TODO: Once this file gets converted to C, we shouls just use designated
+ * initializers.
+ */
+ struct isl_surf_init_info init_info = { 0, };
+
+ init_info.dim = ISL_SURF_DIM_2D;
+ init_info.format = ISL_FORMAT_R8_UINT;
+ init_info.width =
+ minify(info->surf.logical_level0_px.width, info->view.base_level);
+ init_info.height =
+ minify(info->surf.logical_level0_px.height, info->view.base_level);
+ init_info.depth = 1;
+ init_info.levels = 1;
+ init_info.array_len = 1;
+ init_info.samples = info->surf.samples;
+ init_info.min_pitch = info->surf.row_pitch;
+ init_info.usage = info->surf.usage;
+ init_info.tiling_flags = 1 << info->surf.tiling;
+
+ isl_surf_init_s(&brw->isl_dev, &info->surf, &init_info);
+ assert(info->surf.row_pitch == init_info.min_pitch);
+
+ /* The view is also different now. */
+ info->view.base_level = 0;
+ info->view.levels = 1;
+ info->view.base_array_layer = 0;
+ info->view.array_len = 1;
+}
+
+static void
+surf_fake_interleaved_msaa(struct brw_context *brw,
+ struct brw_blorp_surface_info *info)
+{
+ assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
+
+ /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+ surf_convert_to_single_slice(brw, info);
+
+ info->surf.logical_level0_px = info->surf.phys_level0_sa;
+ info->surf.samples = 1;
+ info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+}
+
+static void
+surf_retile_w_to_y(struct brw_context *brw,
+ struct brw_blorp_surface_info *info)
+{
+ assert(info->surf.tiling == ISL_TILING_W);
+
+ /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+ surf_convert_to_single_slice(brw, info);
+
+ /* On gen7+, we don't have interleaved multisampling for color render
+ * targets so we have to fake it.
+ *
+ * TODO: Are we sure we don't also need to fake it on gen6?
+ */
+ if (brw->gen > 6 && info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+ info->surf.logical_level0_px = info->surf.phys_level0_sa;
+ info->surf.samples = 1;
+ info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+ }
+
+ if (brw->gen == 6) {
+ /* Gen6 stencil buffers have a very large alignment coming in from the
+ * miptree. It's out-of-bounds for what the surface state can handle.
+ * Since we have a single layer and level, it doesn't really matter as
+ * long as we don't pass a bogus value into isl_surf_fill_state().
+ */
+ info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
+ }
+
+ /* Now that we've converted everything to a simple 2-D surface with only
+ * one miplevel, we can go about retiling it.
+ */
+ const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
+ info->surf.tiling = ISL_TILING_Y0;
+ info->surf.logical_level0_px.width =
+ ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
+ info->surf.logical_level0_px.height =
+ ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
+ info->tile_x_sa *= 2;
+ info->tile_y_sa /= 2;
+}
+
+void
+brw_blorp_blit(struct brw_context *brw,
+ const struct brw_blorp_surf *src_surf,
+ unsigned src_level, unsigned src_layer,
+ enum isl_format src_format, int src_swizzle,
+ const struct brw_blorp_surf *dst_surf,
+ unsigned dst_level, unsigned dst_layer,
+ enum isl_format dst_format,
+ float src_x0, float src_y0,
+ float src_x1, float src_y1,
+ float dst_x0, float dst_y0,
+ float dst_x1, float dst_y1,
+ GLenum filter, bool mirror_x, bool mirror_y)
+{
+ struct brw_blorp_params params;
+ brw_blorp_params_init(¶ms);
+
+ brw_blorp_surface_info_init(brw, ¶ms.src, src_surf, src_level,
+ src_layer, src_format, false);
+ brw_blorp_surface_info_init(brw, ¶ms.dst, dst_surf, dst_level,
+ dst_layer, dst_format, true);
+
+ struct brw_blorp_blit_prog_key wm_prog_key;
+ memset(&wm_prog_key, 0, sizeof(wm_prog_key));
+
+ if (isl_format_has_sint_channel(params.src.view.format)) {
+ wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
+ } else if (isl_format_has_uint_channel(params.src.view.format)) {
+ wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
+ } else {
+ wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
+ }
+
+ /* Scaled blitting or not. */
+ wm_prog_key.blit_scaled =
+ ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
+ (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
+
+ /* Scaling factors used for bilinear filtering in multisample scaled
+ * blits.
+ */
+ if (params.src.surf.samples == 16)
+ wm_prog_key.x_scale = 4.0f;
+ else
+ wm_prog_key.x_scale = 2.0f;
+ wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
+
+ if (filter == GL_LINEAR &&
+ params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
+ wm_prog_key.bilinear_filter = true;
+
+ if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
+ (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
+ !isl_format_has_int_channel(params.src.surf.format) &&
+ params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
+ /* We are downsampling a non-integer color buffer, so blend.
+ *
+ * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
+ *
+ * "If the source formats are integer types or stencil values, a
+ * single sample's value is selected for each pixel."
+ *
+ * This implies we should not blend in that case.
+ */
+ wm_prog_key.blend = true;
+ }
+
+ /* src_samples and dst_samples are the true sample counts */
+ wm_prog_key.src_samples = params.src.surf.samples;
+ wm_prog_key.dst_samples = params.dst.surf.samples;
+
+ wm_prog_key.tex_aux_usage = params.src.aux_usage;
+
+ /* src_layout and dst_layout indicate the true MSAA layout used by src and
+ * dst.
+ */
+ wm_prog_key.src_layout = params.src.surf.msaa_layout;
+ wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
+
+ /* Round floating point values to nearest integer to avoid "off by one texel"
+ * kind of errors when blitting.
+ */
+ params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
+ params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
+ params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
+ params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
+
+ params.wm_inputs.rect_grid.x1 =
+ minify(params.src.surf.logical_level0_px.width, src_level) *
+ wm_prog_key.x_scale - 1.0f;
+ params.wm_inputs.rect_grid.y1 =
+ minify(params.src.surf.logical_level0_px.height, src_level) *
+ wm_prog_key.y_scale - 1.0f;
+
+ brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[0],
+ src_x0, src_x1, dst_x0, dst_x1, mirror_x);
+ brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[1],
+ src_y0, src_y1, dst_y0, dst_y1, mirror_y);
+
+ /* For some texture types, we need to pass the layer through the sampler. */
+ params.wm_inputs.src_z = params.src.z_offset;
+
+ if (brw->gen > 6 &&
+ params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+ assert(params.dst.surf.samples > 1);
+
+ /* We must expand the rectangle we send through the rendering pipeline,
+ * to account for the fact that we are mapping the destination region as
+ * single-sampled when it is in fact multisampled. We must also align
+ * it to a multiple of the multisampling pattern, because the
+ * differences between multisampled and single-sampled surface formats
+ * will mean that pixels are scrambled within the multisampling pattern.
+ * TODO: what if this makes the coordinates too large?
+ *
+ * Note: this only works if the destination surface uses the IMS layout.
+ * If it's UMS, then we have no choice but to set up the rendering
+ * pipeline as multisampled.
+ */
+ switch (params.dst.surf.samples) {
+ case 2:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+ params.y0 = ROUND_DOWN_TO(params.y0, 4);
+ params.x1 = ALIGN(params.x1 * 2, 4);
+ params.y1 = ALIGN(params.y1, 4);
+ break;
+ case 4:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+ params.x1 = ALIGN(params.x1 * 2, 4);
+ params.y1 = ALIGN(params.y1 * 2, 4);
+ break;
+ case 8:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+ params.x1 = ALIGN(params.x1 * 4, 8);
+ params.y1 = ALIGN(params.y1 * 2, 4);
+ break;
+ case 16:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
+ params.x1 = ALIGN(params.x1 * 4, 8);
+ params.y1 = ALIGN(params.y1 * 4, 8);
+ break;
+ default:
+ unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
+ }
+
+ surf_fake_interleaved_msaa(brw, ¶ms.dst);
+
+ wm_prog_key.use_kill = true;
+ }
+
+ if (params.dst.surf.tiling == ISL_TILING_W) {
+ /* We must modify the rectangle we send through the rendering pipeline
+ * (and the size and x/y offset of the destination surface), to account
+ * for the fact that we are mapping it as Y-tiled when it is in fact
+ * W-tiled.
+ *
+ * Both Y tiling and W tiling can be understood as organizations of
+ * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
+ * is different, but the layout of the 32-byte sub-tiles within the 4k
+ * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
+ * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
+ * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
+ *
+ * Therefore, to account for the layout differences within the 32-byte
+ * sub-tiles, we must expand the rectangle so the X coordinates of its
+ * edges are multiples of 8 (the W sub-tile width), and its Y
+ * coordinates of its edges are multiples of 4 (the W sub-tile height).
+ * Then we need to scale the X and Y coordinates of the rectangle to
+ * account for the differences in aspect ratio between the Y and W
+ * sub-tiles. We need to modify the layer width and height similarly.
+ *
+ * A correction needs to be applied when MSAA is in use: since
+ * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
+ * we need to align the Y coordinates to multiples of 8, so that when
+ * they are divided by two they are still multiples of 4.
+ *
+ * Note: Since the x/y offset of the surface will be applied using the
+ * SURFACE_STATE command packet, it will be invisible to the swizzling
+ * code in the shader; therefore it needs to be in a multiple of the
+ * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
+ * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
+ * buffer), and the miplevel alignment used for stencil buffers is 8
+ * pixels horizontally and either 4 or 8 pixels vertically (see
+ * intel_horizontal_texture_alignment_unit() and
+ * intel_vertical_texture_alignment_unit()).
+ *
+ * Note: Also, since the SURFACE_STATE command packet can only apply
+ * offsets that are multiples of 4 pixels horizontally and 2 pixels
+ * vertically, it is important that the offsets will be multiples of
+ * these sizes after they are converted into Y-tiled coordinates.
+ * Fortunately they will be, since we know from above that the offsets
+ * are a multiple of the 32-byte sub-tile size, and in Y-tiled
+ * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
+ *
+ * TODO: what if this makes the coordinates (or the texture size) too
+ * large?
+ */
+ const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
+ params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
+ params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
+ params.x1 = ALIGN(params.x1, x_align) * 2;
+ params.y1 = ALIGN(params.y1, y_align) / 2;
+
+ /* Retile the surface to Y-tiled */
+ surf_retile_w_to_y(brw, ¶ms.dst);
+
+ wm_prog_key.dst_tiled_w = true;
+ wm_prog_key.use_kill = true;
+
+ if (params.dst.surf.samples > 1) {
+ /* If the destination surface is a W-tiled multisampled stencil
+ * buffer that we're mapping as Y tiled, then we need to arrange for
+ * the WM program to run once per sample rather than once per pixel,
+ * because the memory layout of related samples doesn't match between
+ * W and Y tiling.
+ */
+ wm_prog_key.persample_msaa_dispatch = true;
+ }
+ }
+
+ if (brw->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
+ /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
+ * Broadwell adds support for sampling from stencil.
+ *
+ * See the comments above concerning x/y offset alignment for the
+ * destination surface.
+ *
+ * TODO: what if this makes the texture size too large?
+ */
+ surf_retile_w_to_y(brw, ¶ms.src);
+
+ wm_prog_key.src_tiled_w = true;
+ }
+
+ /* tex_samples and rt_samples are the sample counts that are set up in
+ * SURFACE_STATE.
+ */
+ wm_prog_key.tex_samples = params.src.surf.samples;
+ wm_prog_key.rt_samples = params.dst.surf.samples;
+
+ /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
+ * use to access the source and destination surfaces.
+ */
+ wm_prog_key.tex_layout = params.src.surf.msaa_layout;
+ wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
+
+ if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
+ /* We are blitting from a multisample buffer to a multisample buffer, so
+ * we must preserve samples within a pixel. This means we have to
+ * arrange for the WM program to run once per sample rather than once
+ * per pixel.
+ */
+ wm_prog_key.persample_msaa_dispatch = true;
+ }
+
+ brw_blorp_get_blit_kernel(brw, ¶ms, &wm_prog_key);
+
+ for (unsigned i = 0; i < 4; i++) {
+ params.src.view.channel_select[i] =
+ swizzle_to_scs(GET_SWZ(src_swizzle, i));
+ }
+
+ brw_blorp_exec(brw, ¶ms);
+}
+++ /dev/null
-/*
- * Copyright © 2012 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
-
-#include "main/context.h"
-#include "main/teximage.h"
-#include "main/fbobject.h"
-
-#include "compiler/nir/nir_builder.h"
-
-#include "intel_fbo.h"
-
-#include "blorp_priv.h"
-#include "brw_context.h"
-#include "brw_state.h"
-#include "brw_meta_util.h"
-
-#define FILE_DEBUG_FLAG DEBUG_BLORP
-
-/**
- * Enum to specify the order of arguments in a sampler message
- */
-enum sampler_message_arg
-{
- SAMPLER_MESSAGE_ARG_U_FLOAT,
- SAMPLER_MESSAGE_ARG_V_FLOAT,
- SAMPLER_MESSAGE_ARG_U_INT,
- SAMPLER_MESSAGE_ARG_V_INT,
- SAMPLER_MESSAGE_ARG_R_INT,
- SAMPLER_MESSAGE_ARG_SI_INT,
- SAMPLER_MESSAGE_ARG_MCS_INT,
- SAMPLER_MESSAGE_ARG_ZERO_INT,
-};
-
-struct brw_blorp_blit_vars {
- /* Input values from brw_blorp_wm_inputs */
- nir_variable *v_discard_rect;
- nir_variable *v_rect_grid;
- nir_variable *v_coord_transform;
- nir_variable *v_src_z;
-
- /* gl_FragCoord */
- nir_variable *frag_coord;
-
- /* gl_FragColor */
- nir_variable *color_out;
-};
-
-static void
-brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
- const struct brw_blorp_blit_prog_key *key)
-{
- /* Blended and scaled blits never use pixel discard. */
- assert(!key->use_kill || !(key->blend && key->blit_scaled));
-
-#define LOAD_INPUT(name, type)\
- v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
- type, #name); \
- v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
- v->v_##name->data.location = VARYING_SLOT_VAR0 + \
- offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
-
- LOAD_INPUT(discard_rect, glsl_vec4_type())
- LOAD_INPUT(rect_grid, glsl_vec4_type())
- LOAD_INPUT(coord_transform, glsl_vec4_type())
- LOAD_INPUT(src_z, glsl_uint_type())
-
-#undef LOAD_INPUT
-
- v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
- glsl_vec4_type(), "gl_FragCoord");
- v->frag_coord->data.location = VARYING_SLOT_POS;
- v->frag_coord->data.origin_upper_left = true;
-
- v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
- glsl_vec4_type(), "gl_FragColor");
- v->color_out->data.location = FRAG_RESULT_COLOR;
-}
-
-nir_ssa_def *
-blorp_blit_get_frag_coords(nir_builder *b,
- const struct brw_blorp_blit_prog_key *key,
- struct brw_blorp_blit_vars *v)
-{
- nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
-
- if (key->persample_msaa_dispatch) {
- return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
- nir_load_system_value(b, nir_intrinsic_load_sample_id, 0));
- } else {
- return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
- }
-}
-
-/**
- * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
- * coordinates.
- */
-nir_ssa_def *
-blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
- struct brw_blorp_blit_vars *v)
-{
- nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
-
- nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
- nir_channel(b, coord_transform, 3));
- nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
- nir_channel(b, coord_transform, 2));
-
- return nir_ffma(b, src_pos, mul, offset);
-}
-
-static inline void
-blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
- struct brw_blorp_blit_vars *v)
-{
- nir_ssa_def *c0, *c1, *c2, *c3;
- nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
- nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
- nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
- nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
- nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
-
- c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
- c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
- c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
- c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
-
- nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
-
- nir_intrinsic_instr *discard =
- nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
- discard->src[0] = nir_src_for_ssa(oob);
- nir_builder_instr_insert(b, &discard->instr);
-}
-
-static nir_tex_instr *
-blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
- nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
- enum brw_reg_type dst_type)
-{
- nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
-
- tex->op = op;
-
- switch (dst_type) {
- case BRW_REGISTER_TYPE_F:
- tex->dest_type = nir_type_float;
- break;
- case BRW_REGISTER_TYPE_D:
- tex->dest_type = nir_type_int;
- break;
- case BRW_REGISTER_TYPE_UD:
- tex->dest_type = nir_type_uint;
- break;
- default:
- unreachable("Invalid texture return type");
- }
-
- tex->is_array = false;
- tex->is_shadow = false;
-
- /* Blorp only has one texture and it's bound at unit 0 */
- tex->texture = NULL;
- tex->sampler = NULL;
- tex->texture_index = 0;
- tex->sampler_index = 0;
-
- /* To properly handle 3-D and 2-D array textures, we pull the Z component
- * from an input. TODO: This is a bit magic; we should probably make this
- * more explicit in the future.
- */
- assert(pos->num_components >= 2);
- pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
- nir_load_var(b, v->v_src_z));
-
- tex->src[0].src_type = nir_tex_src_coord;
- tex->src[0].src = nir_src_for_ssa(pos);
- tex->coord_components = 3;
-
- nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
-
- return tex;
-}
-
-static nir_ssa_def *
-blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
- nir_ssa_def *pos, enum brw_reg_type dst_type)
-{
- nir_tex_instr *tex =
- blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
-
- assert(pos->num_components == 2);
- tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
- tex->src[1].src_type = nir_tex_src_lod;
- tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
-
- nir_builder_instr_insert(b, &tex->instr);
-
- return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
- nir_ssa_def *pos, enum brw_reg_type dst_type)
-{
- nir_tex_instr *tex =
- blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
-
- tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
- tex->src[1].src_type = nir_tex_src_lod;
- tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
-
- nir_builder_instr_insert(b, &tex->instr);
-
- return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
- nir_ssa_def *pos, nir_ssa_def *mcs, enum brw_reg_type dst_type)
-{
- nir_tex_instr *tex =
- blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
- mcs != NULL ? 3 : 2, dst_type);
-
- tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
-
- tex->src[1].src_type = nir_tex_src_ms_index;
- if (pos->num_components == 2) {
- tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
- } else {
- assert(pos->num_components == 3);
- tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
- }
-
- if (mcs) {
- tex->src[2].src_type = nir_tex_src_ms_mcs;
- tex->src[2].src = nir_src_for_ssa(mcs);
- }
-
- nir_builder_instr_insert(b, &tex->instr);
-
- return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
-{
- nir_tex_instr *tex =
- blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
- pos, 1, BRW_REGISTER_TYPE_D);
-
- tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
-
- nir_builder_instr_insert(b, &tex->instr);
-
- return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
- uint32_t src_mask, int src_left_shift)
-{
- nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
-
- nir_ssa_def *shifted;
- if (src_left_shift > 0) {
- shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
- } else if (src_left_shift < 0) {
- shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
- } else {
- assert(src_left_shift == 0);
- shifted = masked;
- }
-
- return nir_ior(b, dst, shifted);
-}
-
-/**
- * Emit code to compensate for the difference between Y and W tiling.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
- *
- * (See brw_blorp_build_nir_shader).
- */
-static inline nir_ssa_def *
-blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
-{
- assert(pos->num_components == 2);
- nir_ssa_def *x_Y = nir_channel(b, pos, 0);
- nir_ssa_def *y_Y = nir_channel(b, pos, 1);
-
- /* Given X and Y coordinates that describe an address using Y tiling,
- * translate to the X and Y coordinates that describe the same address
- * using W tiling.
- *
- * If we break down the low order bits of X and Y, using a
- * single letter to represent each low-order bit:
- *
- * X = A << 7 | 0bBCDEFGH
- * Y = J << 5 | 0bKLMNP (1)
- *
- * Then we can apply the Y tiling formula to see the memory offset being
- * addressed:
- *
- * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
- *
- * If we apply the W detiling formula to this memory location, that the
- * corresponding X' and Y' coordinates are:
- *
- * X' = A << 6 | 0bBCDPFH (3)
- * Y' = J << 6 | 0bKLMNEG
- *
- * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
- * we need to make the following computation:
- *
- * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
- * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
- */
- nir_ssa_def *x_W = nir_imm_int(b, 0);
- x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
- x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
- x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
-
- nir_ssa_def *y_W = nir_imm_int(b, 0);
- y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
- y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
- y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
-
- return nir_vec2(b, x_W, y_W);
-}
-
-/**
- * Emit code to compensate for the difference between Y and W tiling.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
- *
- * (See brw_blorp_build_nir_shader).
- */
-static inline nir_ssa_def *
-blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
-{
- assert(pos->num_components == 2);
- nir_ssa_def *x_W = nir_channel(b, pos, 0);
- nir_ssa_def *y_W = nir_channel(b, pos, 1);
-
- /* Applying the same logic as above, but in reverse, we obtain the
- * formulas:
- *
- * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
- * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
- */
- nir_ssa_def *x_Y = nir_imm_int(b, 0);
- x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
- x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
- x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
- x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
-
- nir_ssa_def *y_Y = nir_imm_int(b, 0);
- y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
- y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
-
- return nir_vec2(b, x_Y, y_Y);
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-static inline nir_ssa_def *
-blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
- unsigned num_samples, enum isl_msaa_layout layout)
-{
- assert(pos->num_components == 2 || pos->num_components == 3);
-
- switch (layout) {
- case ISL_MSAA_LAYOUT_NONE:
- assert(pos->num_components == 2);
- return pos;
- case ISL_MSAA_LAYOUT_ARRAY:
- /* No translation needed */
- return pos;
- case ISL_MSAA_LAYOUT_INTERLEAVED: {
- nir_ssa_def *x_in = nir_channel(b, pos, 0);
- nir_ssa_def *y_in = nir_channel(b, pos, 1);
- nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
- nir_channel(b, pos, 2);
-
- nir_ssa_def *x_out = nir_imm_int(b, 0);
- nir_ssa_def *y_out = nir_imm_int(b, 0);
- switch (num_samples) {
- case 2:
- case 4:
- /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- * Y' = Y
- *
- * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
- x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- if (num_samples == 2) {
- y_out = y_in;
- } else {
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
- y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- }
- break;
-
- case 8:
- /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
- * | (X & 0b1)
- * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
- x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
- x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
- y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- break;
-
- case 16:
- /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
- * | (X & 0b1)
- * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
- * | (Y & 0b1)
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
- x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
- x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
- y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
- y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- break;
-
- default:
- unreachable("Invalid number of samples for IMS layout");
- }
-
- return nir_vec2(b, x_out, y_out);
- }
-
- default:
- unreachable("Invalid MSAA layout");
- }
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-static inline nir_ssa_def *
-blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
- unsigned num_samples, enum isl_msaa_layout layout)
-{
- assert(pos->num_components == 2 || pos->num_components == 3);
-
- switch (layout) {
- case ISL_MSAA_LAYOUT_NONE:
- /* No translation necessary, and S should already be zero. */
- assert(pos->num_components == 2);
- return pos;
- case ISL_MSAA_LAYOUT_ARRAY:
- /* No translation necessary. */
- return pos;
- case ISL_MSAA_LAYOUT_INTERLEAVED: {
- assert(pos->num_components == 2);
-
- nir_ssa_def *x_in = nir_channel(b, pos, 0);
- nir_ssa_def *y_in = nir_channel(b, pos, 1);
-
- nir_ssa_def *x_out = nir_imm_int(b, 0);
- nir_ssa_def *y_out = nir_imm_int(b, 0);
- nir_ssa_def *s_out = nir_imm_int(b, 0);
- switch (num_samples) {
- case 2:
- case 4:
- /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b11) >> 1 | (X & 0b1)
- * S = (X & 0b10) >> 1
- *
- * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b11) >> 1 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (Y & 0b10) | (X & 0b10) >> 1
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- if (num_samples == 2) {
- y_out = y_in;
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
- } else {
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
- s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
- }
- break;
-
- case 8:
- /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b111) >> 2 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
- s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
- break;
-
- case 16:
- /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b111) >> 2 | (X & 0b1)
- * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
- * S = (Y & 0b100) << 1 | (X & 0b100) |
- * (Y & 0b10) | (X & 0b10) >> 1
- */
- x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
- x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
- y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
- s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
- s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
- s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
- break;
-
- default:
- unreachable("Invalid number of samples for IMS layout");
- }
-
- return nir_vec3(b, x_out, y_out, s_out);
- }
-
- default:
- unreachable("Invalid MSAA layout");
- }
-}
-
-/**
- * Count the number of trailing 1 bits in the given value. For example:
- *
- * count_trailing_one_bits(0) == 0
- * count_trailing_one_bits(7) == 3
- * count_trailing_one_bits(11) == 2
- */
-static inline int count_trailing_one_bits(unsigned value)
-{
-#ifdef HAVE___BUILTIN_CTZ
- return __builtin_ctz(~value);
-#else
- return _mesa_bitcount(value & ~(value + 1));
-#endif
-}
-
-static nir_ssa_def *
-blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
- nir_ssa_def *pos, unsigned tex_samples,
- enum isl_aux_usage tex_aux_usage,
- enum brw_reg_type dst_type)
-{
- /* If non-null, this is the outer-most if statement */
- nir_if *outer_if = NULL;
-
- nir_variable *color =
- nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
-
- nir_ssa_def *mcs = NULL;
- if (tex_aux_usage == ISL_AUX_USAGE_MCS)
- mcs = blorp_nir_txf_ms_mcs(b, v, pos);
-
- /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
- *
- * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
- *
- * This ensures that when all samples have the same value, no numerical
- * precision is lost, since each addition operation always adds two equal
- * values, and summing two equal floating point values does not lose
- * precision.
- *
- * We perform this computation by treating the texture_data array as a
- * stack and performing the following operations:
- *
- * - push sample 0 onto stack
- * - push sample 1 onto stack
- * - add top two stack entries
- * - push sample 2 onto stack
- * - push sample 3 onto stack
- * - add top two stack entries
- * - add top two stack entries
- * - divide top stack entry by 4
- *
- * Note that after pushing sample i onto the stack, the number of add
- * operations we do is equal to the number of trailing 1 bits in i. This
- * works provided the total number of samples is a power of two, which it
- * always is for i965.
- *
- * For integer formats, we replace the add operations with average
- * operations and skip the final division.
- */
- nir_ssa_def *texture_data[5];
- unsigned stack_depth = 0;
- for (unsigned i = 0; i < tex_samples; ++i) {
- assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
-
- /* Push sample i onto the stack */
- assert(stack_depth < ARRAY_SIZE(texture_data));
-
- nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
- nir_channel(b, pos, 1),
- nir_imm_int(b, i));
- texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
-
- if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
- /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
- * suggests an optimization:
- *
- * "A simple optimization with probable large return in
- * performance is to compare the MCS value to zero (indicating
- * all samples are on sample slice 0), and sample only from
- * sample slice 0 using ld2dss if MCS is zero."
- *
- * Note that in the case where the MCS value is zero, sampling from
- * sample slice 0 using ld2dss and sampling from sample 0 using
- * ld2dms are equivalent (since all samples are on sample slice 0).
- * Since we have already sampled from sample 0, all we need to do is
- * skip the remaining fetches and averaging if MCS is zero.
- */
- nir_ssa_def *mcs_zero =
- nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
- if (tex_samples == 16) {
- mcs_zero = nir_iand(b, mcs_zero,
- nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
- }
-
- nir_if *if_stmt = nir_if_create(b->shader);
- if_stmt->condition = nir_src_for_ssa(mcs_zero);
- nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
-
- b->cursor = nir_after_cf_list(&if_stmt->then_list);
- nir_store_var(b, color, texture_data[0], 0xf);
-
- b->cursor = nir_after_cf_list(&if_stmt->else_list);
- outer_if = if_stmt;
- }
-
- for (int j = 0; j < count_trailing_one_bits(i); j++) {
- assert(stack_depth >= 2);
- --stack_depth;
-
- assert(dst_type == BRW_REGISTER_TYPE_F);
- texture_data[stack_depth - 1] =
- nir_fadd(b, texture_data[stack_depth - 1],
- texture_data[stack_depth]);
- }
- }
-
- /* We should have just 1 sample on the stack now. */
- assert(stack_depth == 1);
-
- texture_data[0] = nir_fmul(b, texture_data[0],
- nir_imm_float(b, 1.0 / tex_samples));
-
- nir_store_var(b, color, texture_data[0], 0xf);
-
- if (outer_if)
- b->cursor = nir_after_cf_node(&outer_if->cf_node);
-
- return nir_load_var(b, color);
-}
-
-static inline nir_ssa_def *
-nir_imm_vec2(nir_builder *build, float x, float y)
-{
- nir_const_value v;
-
- memset(&v, 0, sizeof(v));
- v.f32[0] = x;
- v.f32[1] = y;
-
- return nir_build_imm(build, 4, 32, v);
-}
-
-static nir_ssa_def *
-blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
- unsigned tex_samples,
- const brw_blorp_blit_prog_key *key,
- struct brw_blorp_blit_vars *v)
-{
- nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
- nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
- nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
-
- /* Translate coordinates to lay out the samples in a rectangular grid
- * roughly corresponding to sample locations.
- */
- pos_xy = nir_fmul(b, pos_xy, scale);
- /* Adjust coordinates so that integers represent pixel centers rather
- * than pixel edges.
- */
- pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
- /* Clamp the X, Y texture coordinates to properly handle the sampling of
- * texels on texture edges.
- */
- pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
- nir_vec2(b, nir_channel(b, rect_grid, 0),
- nir_channel(b, rect_grid, 1)));
-
- /* Store the fractional parts to be used as bilinear interpolation
- * coefficients.
- */
- nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
- /* Round the float coordinates down to nearest integer */
- pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
-
- nir_ssa_def *tex_data[4];
- for (unsigned i = 0; i < 4; ++i) {
- float sample_off_x = (float)(i & 0x1) / key->x_scale;
- float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
- nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
-
- nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
- nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
-
- /* The MCS value we fetch has to match up with the pixel that we're
- * sampling from. Since we sample from different pixels in each
- * iteration of this "for" loop, the call to mcs_fetch() should be
- * here inside the loop after computing the pixel coordinates.
- */
- nir_ssa_def *mcs = NULL;
- if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
- mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
-
- /* Compute sample index and map the sample index to a sample number.
- * Sample index layout shows the numbering of slots in a rectangular
- * grid of samples with in a pixel. Sample number layout shows the
- * rectangular grid of samples roughly corresponding to the real sample
- * locations with in a pixel.
- * In case of 4x MSAA, layout of sample indices matches the layout of
- * sample numbers:
- * ---------
- * | 0 | 1 |
- * ---------
- * | 2 | 3 |
- * ---------
- *
- * In case of 8x MSAA the two layouts don't match.
- * sample index layout : --------- sample number layout : ---------
- * | 0 | 1 | | 3 | 7 |
- * --------- ---------
- * | 2 | 3 | | 5 | 0 |
- * --------- ---------
- * | 4 | 5 | | 1 | 2 |
- * --------- ---------
- * | 6 | 7 | | 4 | 6 |
- * --------- ---------
- *
- * Fortunately, this can be done fairly easily as:
- * S' = (0x17306425 >> (S * 4)) & 0xf
- *
- * In the case of 16x MSAA the two layouts don't match.
- * Sample index layout: Sample number layout:
- * --------------------- ---------------------
- * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
- * --------------------- ---------------------
- * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
- * --------------------- ---------------------
- * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
- * --------------------- ---------------------
- * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
- * --------------------- ---------------------
- *
- * This is equivalent to
- * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
- */
- nir_ssa_def *frac = nir_ffract(b, sample_coords);
- nir_ssa_def *sample =
- nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
- key->x_scale * key->y_scale));
- sample = nir_f2i(b, sample);
-
- if (tex_samples == 8) {
- sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
- nir_ishl(b, sample, nir_imm_int(b, 2))),
- nir_imm_int(b, 0xf));
- } else if (tex_samples == 16) {
- nir_ssa_def *sample_low =
- nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
- nir_ishl(b, sample, nir_imm_int(b, 2))),
- nir_imm_int(b, 0xf));
- nir_ssa_def *sample_high =
- nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
- nir_ishl(b, nir_iadd(b, sample,
- nir_imm_int(b, -8)),
- nir_imm_int(b, 2))),
- nir_imm_int(b, 0xf));
-
- sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
- sample_low, sample_high);
- }
- nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
- nir_channel(b, sample_coords_int, 1),
- sample);
- tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
- }
-
- nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
- nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
- return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
- nir_flrp(b, tex_data[2], tex_data[3], frac_x),
- frac_y);
-}
-
-/**
- * Generator for WM programs used in BLORP blits.
- *
- * The bulk of the work done by the WM program is to wrap and unwrap the
- * coordinate transformations used by the hardware to store surfaces in
- * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
- * sample index for a multisampled surface) to a memory offset by the
- * following formulas:
- *
- * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
- * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
- *
- * For a single-sampled surface, or for a multisampled surface using
- * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
- * function:
- *
- * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
- * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
- * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
- * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
- *
- * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
- * embeds the sample number into bit 1 of the X and Y coordinates:
- *
- * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
- * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b11) >> 1 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (Y & 0b10) | (X & 0b10) >> 1
- *
- * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
- * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
- * the Y coordinate:
- *
- * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
- * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
- * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
- * where X' = (X & ~0b111) >> 2 | (X & 0b1)
- * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
- *
- * For X tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
- * bytes wide and 8 rows high:
- *
- * tile(x_tiled, X, Y, S) = A
- * where A = tile_num << 12 | offset
- * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
- * offset = (Y' & 0b111) << 9
- * | (X & 0b111111111)
- * X' = X * cpp
- * Y' = Y + S * qpitch
- * detile(x_tiled, A) = (X, Y, S)
- * where X = X' / cpp
- * Y = Y' % qpitch
- * S = Y' / qpitch
- * Y' = (tile_num / tile_pitch) << 3
- * | (A & 0b111000000000) >> 9
- * X' = (tile_num % tile_pitch) << 9
- * | (A & 0b111111111)
- *
- * (In all tiling formulas, cpp is the number of bytes occupied by a single
- * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
- * to fill the width of the surface, and qpitch is the spacing (in rows)
- * between array slices).
- *
- * For Y tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
- * bytes wide and 32 rows high:
- *
- * tile(y_tiled, X, Y, S) = A
- * where A = tile_num << 12 | offset
- * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
- * offset = (X' & 0b1110000) << 5
- * | (Y' & 0b11111) << 4
- * | (X' & 0b1111)
- * X' = X * cpp
- * Y' = Y + S * qpitch
- * detile(y_tiled, A) = (X, Y, S)
- * where X = X' / cpp
- * Y = Y' % qpitch
- * S = Y' / qpitch
- * Y' = (tile_num / tile_pitch) << 5
- * | (A & 0b111110000) >> 4
- * X' = (tile_num % tile_pitch) << 7
- * | (A & 0b111000000000) >> 5
- * | (A & 0b1111)
- *
- * For W tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
- * bytes wide and 64 rows high (note that W tiling is only used for stencil
- * buffers, which always have cpp = 1 and S=0):
- *
- * tile(w_tiled, X, Y, S) = A
- * where A = tile_num << 12 | offset
- * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
- * offset = (X' & 0b111000) << 6
- * | (Y' & 0b111100) << 3
- * | (X' & 0b100) << 2
- * | (Y' & 0b10) << 2
- * | (X' & 0b10) << 1
- * | (Y' & 0b1) << 1
- * | (X' & 0b1)
- * X' = X * cpp = X
- * Y' = Y + S * qpitch
- * detile(w_tiled, A) = (X, Y, S)
- * where X = X' / cpp = X'
- * Y = Y' % qpitch = Y'
- * S = Y / qpitch = 0
- * Y' = (tile_num / tile_pitch) << 6
- * | (A & 0b111100000) >> 3
- * | (A & 0b1000) >> 2
- * | (A & 0b10) >> 1
- * X' = (tile_num % tile_pitch) << 6
- * | (A & 0b111000000000) >> 6
- * | (A & 0b10000) >> 2
- * | (A & 0b100) >> 1
- * | (A & 0b1)
- *
- * Finally, for a non-tiled surface, tile() simply combines together the X and
- * Y coordinates in the natural way:
- *
- * tile(untiled, X, Y, S) = A
- * where A = Y * pitch + X'
- * X' = X * cpp
- * Y' = Y + S * qpitch
- * detile(untiled, A) = (X, Y, S)
- * where X = X' / cpp
- * Y = Y' % qpitch
- * S = Y' / qpitch
- * X' = A % pitch
- * Y' = A / pitch
- *
- * (In these formulas, pitch is the number of bytes occupied by a single row
- * of samples).
- */
-static nir_shader *
-brw_blorp_build_nir_shader(struct brw_context *brw,
- const brw_blorp_blit_prog_key *key)
-{
- nir_ssa_def *src_pos, *dst_pos, *color;
-
- /* Sanity checks */
- if (key->dst_tiled_w && key->rt_samples > 1) {
- /* If the destination image is W tiled and multisampled, then the thread
- * must be dispatched once per sample, not once per pixel. This is
- * necessary because after conversion between W and Y tiling, there's no
- * guarantee that all samples corresponding to a single pixel will still
- * be together.
- */
- assert(key->persample_msaa_dispatch);
- }
-
- if (key->blend) {
- /* We are blending, which means we won't have an opportunity to
- * translate the tiling and sample count for the texture surface. So
- * the surface state for the texture must be configured with the correct
- * tiling and sample count.
- */
- assert(!key->src_tiled_w);
- assert(key->tex_samples == key->src_samples);
- assert(key->tex_layout == key->src_layout);
- assert(key->tex_samples > 0);
- }
-
- if (key->persample_msaa_dispatch) {
- /* It only makes sense to do persample dispatch if the render target is
- * configured as multisampled.
- */
- assert(key->rt_samples > 0);
- }
-
- /* Make sure layout is consistent with sample count */
- assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
- (key->tex_samples <= 1));
- assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
- (key->rt_samples <= 1));
- assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
- (key->src_samples <= 1));
- assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
- (key->dst_samples <= 1));
-
- nir_builder b;
- nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
-
- struct brw_blorp_blit_vars v;
- brw_blorp_blit_vars_init(&b, &v, key);
-
- dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
-
- /* Render target and texture hardware don't support W tiling until Gen8. */
- const bool rt_tiled_w = false;
- const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
-
- /* The address that data will be written to is determined by the
- * coordinates supplied to the WM thread and the tiling and sample count of
- * the render target, according to the formula:
- *
- * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
- *
- * If the actual tiling and sample count of the destination surface are not
- * the same as the configuration of the render target, then these
- * coordinates are wrong and we have to adjust them to compensate for the
- * difference.
- */
- if (rt_tiled_w != key->dst_tiled_w ||
- key->rt_samples != key->dst_samples ||
- key->rt_layout != key->dst_layout) {
- dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
- key->rt_layout);
- /* Now (X, Y, S) = detile(rt_tiling, offset) */
- if (rt_tiled_w != key->dst_tiled_w)
- dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
- /* Now (X, Y, S) = detile(rt_tiling, offset) */
- dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
- key->dst_layout);
- }
-
- /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
- *
- * That is: X, Y and S now contain the true coordinates and sample index of
- * the data that the WM thread should output.
- *
- * If we need to kill pixels that are outside the destination rectangle,
- * now is the time to do it.
- */
- if (key->use_kill) {
- assert(!(key->blend && key->blit_scaled));
- blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
- }
-
- src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
- if (dst_pos->num_components == 3) {
- /* The sample coordinate is an integer that we want left alone but
- * blorp_blit_apply_transform() blindly applies the transform to all
- * three coordinates. Grab the original sample index.
- */
- src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
- nir_channel(&b, src_pos, 1),
- nir_channel(&b, dst_pos, 2));
- }
-
- /* If the source image is not multisampled, then we want to fetch sample
- * number 0, because that's the only sample there is.
- */
- if (key->src_samples == 1)
- src_pos = nir_channels(&b, src_pos, 0x3);
-
- /* X, Y, and S are now the coordinates of the pixel in the source image
- * that we want to texture from. Exception: if we are blending, then S is
- * irrelevant, because we are going to fetch all samples.
- */
- if (key->blend && !key->blit_scaled) {
- /* Resolves (effecively) use texelFetch, so we need integers and we
- * don't care about the sample index if we got one.
- */
- src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
-
- if (brw->gen == 6) {
- /* Because gen6 only supports 4x interleved MSAA, we can do all the
- * blending we need with a single linear-interpolated texture lookup
- * at the center of the sample. The texture coordinates to be odd
- * integers so that they correspond to the center of a 2x2 block
- * representing the four samples that maxe up a pixel. So we need
- * to multiply our X and Y coordinates each by 2 and then add 1.
- */
- src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
- src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
- src_pos = nir_i2f(&b, src_pos);
- color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
- } else {
- /* Gen7+ hardware doesn't automaticaly blend. */
- color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
- key->tex_aux_usage,
- key->texture_data_type);
- }
- } else if (key->blend && key->blit_scaled) {
- assert(!key->use_kill);
- color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
- } else {
- if (key->bilinear_filter) {
- color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
- } else {
- /* We're going to use texelFetch, so we need integers */
- if (src_pos->num_components == 2) {
- src_pos = nir_f2i(&b, src_pos);
- } else {
- assert(src_pos->num_components == 3);
- src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
- nir_channel(&b, nir_f2i(&b, src_pos), 1),
- nir_channel(&b, src_pos, 2));
- }
-
- /* We aren't blending, which means we just want to fetch a single
- * sample from the source surface. The address that we want to fetch
- * from is related to the X, Y and S values according to the formula:
- *
- * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
- *
- * If the actual tiling and sample count of the source surface are
- * not the same as the configuration of the texture, then we need to
- * adjust the coordinates to compensate for the difference.
- */
- if (tex_tiled_w != key->src_tiled_w ||
- key->tex_samples != key->src_samples ||
- key->tex_layout != key->src_layout) {
- src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
- key->src_layout);
- /* Now (X, Y, S) = detile(src_tiling, offset) */
- if (tex_tiled_w != key->src_tiled_w)
- src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
- /* Now (X, Y, S) = detile(tex_tiling, offset) */
- src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
- key->tex_layout);
- }
-
- /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
- *
- * In other words: X, Y, and S now contain values which, when passed to
- * the texturing unit, will cause data to be read from the correct
- * memory location. So we can fetch the texel now.
- */
- if (key->src_samples == 1) {
- color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
- } else {
- nir_ssa_def *mcs = NULL;
- if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
- mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
-
- color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
- }
- }
- }
-
- nir_store_var(&b, v.color_out, color, 0xf);
-
- return b.shader;
-}
-
-static void
-brw_blorp_get_blit_kernel(struct brw_context *brw,
- struct brw_blorp_params *params,
- const struct brw_blorp_blit_prog_key *prog_key)
-{
- if (brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
- prog_key, sizeof(*prog_key),
- ¶ms->wm_prog_kernel, ¶ms->wm_prog_data))
- return;
-
- const unsigned *program;
- unsigned program_size;
- struct brw_blorp_prog_data prog_data;
-
- /* Try and compile with NIR first. If that fails, fall back to the old
- * method of building shaders manually.
- */
- nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key);
- struct brw_wm_prog_key wm_key;
- brw_blorp_init_wm_prog_key(&wm_key);
- wm_key.tex.compressed_multisample_layout_mask =
- prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
- wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
- wm_key.multisample_fbo = prog_key->rt_samples > 1;
-
- program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
- &prog_data, &program_size);
-
- brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
- prog_key, sizeof(*prog_key),
- program, program_size,
- &prog_data, sizeof(prog_data),
- ¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
-}
-
-static void
-brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
- GLfloat src0, GLfloat src1,
- GLfloat dst0, GLfloat dst1,
- bool mirror)
-{
- float scale = (src1 - src0) / (dst1 - dst0);
- if (!mirror) {
- /* When not mirroring a coordinate (say, X), we need:
- * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
- * Therefore:
- * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
- *
- * blorp program uses "round toward zero" to convert the
- * transformed floating point coordinates to integer coordinates,
- * whereas the behaviour we actually want is "round to nearest",
- * so 0.5 provides the necessary correction.
- */
- xform->multiplier = scale;
- xform->offset = src0 + (-dst0 + 0.5f) * scale;
- } else {
- /* When mirroring X we need:
- * src_x - src_x0 = dst_x1 - dst_x - 0.5
- * Therefore:
- * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
- */
- xform->multiplier = -scale;
- xform->offset = src0 + (dst1 - 0.5f) * scale;
- }
-}
-
-/**
- * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
- * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
- *
- * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
- * 0 1 2 3 4 5
- * 4 5 6 7 0 1
- * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
- *
- * which is simply adding 4 then modding by 8 (or anding with 7).
- *
- * We then may need to apply workarounds for textureGather hardware bugs.
- */
-static enum isl_channel_select
-swizzle_to_scs(GLenum swizzle)
-{
- return (enum isl_channel_select)((swizzle + 4) & 7);
-}
-
-static void
-surf_convert_to_single_slice(struct brw_context *brw,
- struct brw_blorp_surface_info *info)
-{
- /* This only makes sense for a single level and array slice */
- assert(info->view.levels == 1 && info->view.array_len == 1);
-
- /* Just bail if we have nothing to do. */
- if (info->surf.dim == ISL_SURF_DIM_2D &&
- info->view.base_level == 0 && info->view.base_array_layer == 0 &&
- info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
- return;
-
- uint32_t x_offset_sa, y_offset_sa;
- isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
- info->view.base_array_layer, 0,
- &x_offset_sa, &y_offset_sa);
-
- uint32_t byte_offset;
- isl_tiling_get_intratile_offset_sa(&brw->isl_dev, info->surf.tiling,
- info->view.format, info->surf.row_pitch,
- x_offset_sa, y_offset_sa,
- &byte_offset,
- &info->tile_x_sa, &info->tile_y_sa);
- info->offset += byte_offset;
-
- /* TODO: Once this file gets converted to C, we shouls just use designated
- * initializers.
- */
- struct isl_surf_init_info init_info = isl_surf_init_info();
-
- init_info.dim = ISL_SURF_DIM_2D;
- init_info.format = ISL_FORMAT_R8_UINT;
- init_info.width =
- minify(info->surf.logical_level0_px.width, info->view.base_level);
- init_info.height =
- minify(info->surf.logical_level0_px.height, info->view.base_level);
- init_info.depth = 1;
- init_info.levels = 1;
- init_info.array_len = 1;
- init_info.samples = info->surf.samples;
- init_info.min_pitch = info->surf.row_pitch;
- init_info.usage = info->surf.usage;
- init_info.tiling_flags = 1 << info->surf.tiling;
-
- isl_surf_init_s(&brw->isl_dev, &info->surf, &init_info);
- assert(info->surf.row_pitch == init_info.min_pitch);
-
- /* The view is also different now. */
- info->view.base_level = 0;
- info->view.levels = 1;
- info->view.base_array_layer = 0;
- info->view.array_len = 1;
-}
-
-static void
-surf_fake_interleaved_msaa(struct brw_context *brw,
- struct brw_blorp_surface_info *info)
-{
- assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
-
- /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
- surf_convert_to_single_slice(brw, info);
-
- info->surf.logical_level0_px = info->surf.phys_level0_sa;
- info->surf.samples = 1;
- info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
-}
-
-static void
-surf_retile_w_to_y(struct brw_context *brw,
- struct brw_blorp_surface_info *info)
-{
- assert(info->surf.tiling == ISL_TILING_W);
-
- /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
- surf_convert_to_single_slice(brw, info);
-
- /* On gen7+, we don't have interleaved multisampling for color render
- * targets so we have to fake it.
- *
- * TODO: Are we sure we don't also need to fake it on gen6?
- */
- if (brw->gen > 6 && info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
- info->surf.logical_level0_px = info->surf.phys_level0_sa;
- info->surf.samples = 1;
- info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
- }
-
- if (brw->gen == 6) {
- /* Gen6 stencil buffers have a very large alignment coming in from the
- * miptree. It's out-of-bounds for what the surface state can handle.
- * Since we have a single layer and level, it doesn't really matter as
- * long as we don't pass a bogus value into isl_surf_fill_state().
- */
- info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
- }
-
- /* Now that we've converted everything to a simple 2-D surface with only
- * one miplevel, we can go about retiling it.
- */
- const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
- info->surf.tiling = ISL_TILING_Y0;
- info->surf.logical_level0_px.width =
- ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
- info->surf.logical_level0_px.height =
- ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
- info->tile_x_sa *= 2;
- info->tile_y_sa /= 2;
-}
-
-void
-brw_blorp_blit(struct brw_context *brw,
- const struct brw_blorp_surf *src_surf,
- unsigned src_level, unsigned src_layer,
- enum isl_format src_format, int src_swizzle,
- const struct brw_blorp_surf *dst_surf,
- unsigned dst_level, unsigned dst_layer,
- enum isl_format dst_format,
- float src_x0, float src_y0,
- float src_x1, float src_y1,
- float dst_x0, float dst_y0,
- float dst_x1, float dst_y1,
- GLenum filter, bool mirror_x, bool mirror_y)
-{
- struct brw_blorp_params params;
- brw_blorp_params_init(¶ms);
-
- brw_blorp_surface_info_init(brw, ¶ms.src, src_surf, src_level,
- src_layer, src_format, false);
- brw_blorp_surface_info_init(brw, ¶ms.dst, dst_surf, dst_level,
- dst_layer, dst_format, true);
-
- struct brw_blorp_blit_prog_key wm_prog_key;
- memset(&wm_prog_key, 0, sizeof(wm_prog_key));
-
- if (isl_format_has_sint_channel(params.src.view.format)) {
- wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
- } else if (isl_format_has_uint_channel(params.src.view.format)) {
- wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
- } else {
- wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
- }
-
- /* Scaled blitting or not. */
- wm_prog_key.blit_scaled =
- ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
- (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
-
- /* Scaling factors used for bilinear filtering in multisample scaled
- * blits.
- */
- if (params.src.surf.samples == 16)
- wm_prog_key.x_scale = 4.0f;
- else
- wm_prog_key.x_scale = 2.0f;
- wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
-
- if (filter == GL_LINEAR &&
- params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
- wm_prog_key.bilinear_filter = true;
-
- if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
- (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
- !isl_format_has_int_channel(params.src.surf.format) &&
- params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
- /* We are downsampling a non-integer color buffer, so blend.
- *
- * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
- *
- * "If the source formats are integer types or stencil values, a
- * single sample's value is selected for each pixel."
- *
- * This implies we should not blend in that case.
- */
- wm_prog_key.blend = true;
- }
-
- /* src_samples and dst_samples are the true sample counts */
- wm_prog_key.src_samples = params.src.surf.samples;
- wm_prog_key.dst_samples = params.dst.surf.samples;
-
- wm_prog_key.tex_aux_usage = params.src.aux_usage;
-
- /* src_layout and dst_layout indicate the true MSAA layout used by src and
- * dst.
- */
- wm_prog_key.src_layout = params.src.surf.msaa_layout;
- wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
-
- /* Round floating point values to nearest integer to avoid "off by one texel"
- * kind of errors when blitting.
- */
- params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
- params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
- params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
- params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
-
- params.wm_inputs.rect_grid.x1 =
- minify(params.src.surf.logical_level0_px.width, src_level) *
- wm_prog_key.x_scale - 1.0f;
- params.wm_inputs.rect_grid.y1 =
- minify(params.src.surf.logical_level0_px.height, src_level) *
- wm_prog_key.y_scale - 1.0f;
-
- brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[0],
- src_x0, src_x1, dst_x0, dst_x1, mirror_x);
- brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[1],
- src_y0, src_y1, dst_y0, dst_y1, mirror_y);
-
- /* For some texture types, we need to pass the layer through the sampler. */
- params.wm_inputs.src_z = params.src.z_offset;
-
- if (brw->gen > 6 &&
- params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
- assert(params.dst.surf.samples > 1);
-
- /* We must expand the rectangle we send through the rendering pipeline,
- * to account for the fact that we are mapping the destination region as
- * single-sampled when it is in fact multisampled. We must also align
- * it to a multiple of the multisampling pattern, because the
- * differences between multisampled and single-sampled surface formats
- * will mean that pixels are scrambled within the multisampling pattern.
- * TODO: what if this makes the coordinates too large?
- *
- * Note: this only works if the destination surface uses the IMS layout.
- * If it's UMS, then we have no choice but to set up the rendering
- * pipeline as multisampled.
- */
- switch (params.dst.surf.samples) {
- case 2:
- params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
- params.y0 = ROUND_DOWN_TO(params.y0, 4);
- params.x1 = ALIGN(params.x1 * 2, 4);
- params.y1 = ALIGN(params.y1, 4);
- break;
- case 4:
- params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
- params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
- params.x1 = ALIGN(params.x1 * 2, 4);
- params.y1 = ALIGN(params.y1 * 2, 4);
- break;
- case 8:
- params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
- params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
- params.x1 = ALIGN(params.x1 * 4, 8);
- params.y1 = ALIGN(params.y1 * 2, 4);
- break;
- case 16:
- params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
- params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
- params.x1 = ALIGN(params.x1 * 4, 8);
- params.y1 = ALIGN(params.y1 * 4, 8);
- break;
- default:
- unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
- }
-
- surf_fake_interleaved_msaa(brw, ¶ms.dst);
-
- wm_prog_key.use_kill = true;
- }
-
- if (params.dst.surf.tiling == ISL_TILING_W) {
- /* We must modify the rectangle we send through the rendering pipeline
- * (and the size and x/y offset of the destination surface), to account
- * for the fact that we are mapping it as Y-tiled when it is in fact
- * W-tiled.
- *
- * Both Y tiling and W tiling can be understood as organizations of
- * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
- * is different, but the layout of the 32-byte sub-tiles within the 4k
- * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
- * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
- * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
- *
- * Therefore, to account for the layout differences within the 32-byte
- * sub-tiles, we must expand the rectangle so the X coordinates of its
- * edges are multiples of 8 (the W sub-tile width), and its Y
- * coordinates of its edges are multiples of 4 (the W sub-tile height).
- * Then we need to scale the X and Y coordinates of the rectangle to
- * account for the differences in aspect ratio between the Y and W
- * sub-tiles. We need to modify the layer width and height similarly.
- *
- * A correction needs to be applied when MSAA is in use: since
- * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
- * we need to align the Y coordinates to multiples of 8, so that when
- * they are divided by two they are still multiples of 4.
- *
- * Note: Since the x/y offset of the surface will be applied using the
- * SURFACE_STATE command packet, it will be invisible to the swizzling
- * code in the shader; therefore it needs to be in a multiple of the
- * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
- * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
- * buffer), and the miplevel alignment used for stencil buffers is 8
- * pixels horizontally and either 4 or 8 pixels vertically (see
- * intel_horizontal_texture_alignment_unit() and
- * intel_vertical_texture_alignment_unit()).
- *
- * Note: Also, since the SURFACE_STATE command packet can only apply
- * offsets that are multiples of 4 pixels horizontally and 2 pixels
- * vertically, it is important that the offsets will be multiples of
- * these sizes after they are converted into Y-tiled coordinates.
- * Fortunately they will be, since we know from above that the offsets
- * are a multiple of the 32-byte sub-tile size, and in Y-tiled
- * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
- *
- * TODO: what if this makes the coordinates (or the texture size) too
- * large?
- */
- const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
- params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
- params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
- params.x1 = ALIGN(params.x1, x_align) * 2;
- params.y1 = ALIGN(params.y1, y_align) / 2;
-
- /* Retile the surface to Y-tiled */
- surf_retile_w_to_y(brw, ¶ms.dst);
-
- wm_prog_key.dst_tiled_w = true;
- wm_prog_key.use_kill = true;
-
- if (params.dst.surf.samples > 1) {
- /* If the destination surface is a W-tiled multisampled stencil
- * buffer that we're mapping as Y tiled, then we need to arrange for
- * the WM program to run once per sample rather than once per pixel,
- * because the memory layout of related samples doesn't match between
- * W and Y tiling.
- */
- wm_prog_key.persample_msaa_dispatch = true;
- }
- }
-
- if (brw->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
- /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
- * Broadwell adds support for sampling from stencil.
- *
- * See the comments above concerning x/y offset alignment for the
- * destination surface.
- *
- * TODO: what if this makes the texture size too large?
- */
- surf_retile_w_to_y(brw, ¶ms.src);
-
- wm_prog_key.src_tiled_w = true;
- }
-
- /* tex_samples and rt_samples are the sample counts that are set up in
- * SURFACE_STATE.
- */
- wm_prog_key.tex_samples = params.src.surf.samples;
- wm_prog_key.rt_samples = params.dst.surf.samples;
-
- /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
- * use to access the source and destination surfaces.
- */
- wm_prog_key.tex_layout = params.src.surf.msaa_layout;
- wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
-
- if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
- /* We are blitting from a multisample buffer to a multisample buffer, so
- * we must preserve samples within a pixel. This means we have to
- * arrange for the WM program to run once per sample rather than once
- * per pixel.
- */
- wm_prog_key.persample_msaa_dispatch = true;
- }
-
- brw_blorp_get_blit_kernel(brw, ¶ms, &wm_prog_key);
-
- for (unsigned i = 0; i < 4; i++) {
- params.src.view.channel_select[i] =
- swizzle_to_scs(GET_SWZ(src_swizzle, i));
- }
-
- brw_blorp_exec(brw, ¶ms);
-}