--- /dev/null
+/*
+ * Copyright © 2019 Valve Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+/**
+ * Although it's called a load/store "vectorization" pass, this also combines
+ * intersecting and identical loads/stores. It currently supports derefs, ubo,
+ * ssbo and push constant loads/stores.
+ *
+ * This doesn't handle copy_deref intrinsics and assumes that
+ * nir_lower_alu_to_scalar() has been called and that the IR is free from ALU
+ * modifiers. It also assumes that derefs have explicitly laid out types.
+ *
+ * After vectorization, the backend may want to call nir_lower_alu_to_scalar()
+ * and nir_lower_pack(). Also this creates cast instructions taking derefs as a
+ * source and some parts of NIR may not be able to handle that well.
+ *
+ * There are a few situations where this doesn't vectorize as well as it could:
+ * - It won't turn four consecutive vec3 loads into 3 vec4 loads.
+ * - It doesn't do global vectorization.
+ * Handling these cases probably wouldn't provide much benefit though.
+*/
+
+#include "nir.h"
+#include "nir_deref.h"
+#include "nir_builder.h"
+#include "nir_worklist.h"
+#include "util/u_dynarray.h"
+
+#include <stdlib.h>
+
+struct intrinsic_info {
+ nir_variable_mode mode; /* 0 if the mode is obtained from the deref. */
+ nir_intrinsic_op op;
+ bool is_atomic;
+ /* Indices into nir_intrinsic::src[] or -1 if not applicable. */
+ int resource_src; /* resource (e.g. from vulkan_resource_index) */
+ int base_src; /* offset which it loads/stores from */
+ int deref_src; /* deref which is loads/stores from */
+ int value_src; /* the data it is storing */
+};
+
+static const struct intrinsic_info *
+get_info(nir_intrinsic_op op) {
+ switch (op) {
+#define INFO(mode, op, atomic, res, base, deref, val) \
+case nir_intrinsic_##op: {\
+ static const struct intrinsic_info op##_info = {mode, nir_intrinsic_##op, atomic, res, base, deref, val};\
+ return &op##_info;\
+}
+#define LOAD(mode, op, res, base, deref) INFO(mode, load_##op, false, res, base, deref, -1)
+#define STORE(mode, op, res, base, deref, val) INFO(mode, store_##op, false, res, base, deref, val)
+#define ATOMIC(mode, type, op, res, base, deref, val) INFO(mode, type##_atomic_##op, true, res, base, deref, val)
+ LOAD(nir_var_mem_push_const, push_constant, -1, 0, -1)
+ LOAD(nir_var_mem_ubo, ubo, 0, 1, -1)
+ LOAD(nir_var_mem_ssbo, ssbo, 0, 1, -1)
+ STORE(nir_var_mem_ssbo, ssbo, 1, 2, -1, 0)
+ LOAD(0, deref, -1, -1, 0)
+ STORE(0, deref, -1, -1, 0, 1)
+ LOAD(nir_var_mem_shared, shared, -1, 0, -1)
+ STORE(nir_var_mem_shared, shared, -1, 1, -1, 0)
+ ATOMIC(nir_var_mem_ssbo, ssbo, add, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, imin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, umin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, imax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, umax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, and, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, or, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, xor, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, exchange, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, comp_swap, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, fadd, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, fmin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, fmax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_ssbo, ssbo, fcomp_swap, 0, 1, -1, 2)
+ ATOMIC(0, deref, add, -1, -1, 0, 1)
+ ATOMIC(0, deref, imin, -1, -1, 0, 1)
+ ATOMIC(0, deref, umin, -1, -1, 0, 1)
+ ATOMIC(0, deref, imax, -1, -1, 0, 1)
+ ATOMIC(0, deref, umax, -1, -1, 0, 1)
+ ATOMIC(0, deref, and, -1, -1, 0, 1)
+ ATOMIC(0, deref, or, -1, -1, 0, 1)
+ ATOMIC(0, deref, xor, -1, -1, 0, 1)
+ ATOMIC(0, deref, exchange, -1, -1, 0, 1)
+ ATOMIC(0, deref, comp_swap, -1, -1, 0, 1)
+ ATOMIC(0, deref, fadd, -1, -1, 0, 1)
+ ATOMIC(0, deref, fmin, -1, -1, 0, 1)
+ ATOMIC(0, deref, fmax, -1, -1, 0, 1)
+ ATOMIC(0, deref, fcomp_swap, -1, -1, 0, 1)
+ ATOMIC(nir_var_mem_shared, shared, add, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, imin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, umin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, imax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, umax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, and, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, or, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, xor, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, exchange, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, comp_swap, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, fadd, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, fmin, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, fmax, 0, 1, -1, 2)
+ ATOMIC(nir_var_mem_shared, shared, fcomp_swap, 0, 1, -1, 2)
+ default:
+ break;
+#undef ATOMIC
+#undef STORE
+#undef LOAD
+#undef INFO
+ }
+ return NULL;
+}
+
+/*
+ * Information used to compare memory operations.
+ * It canonically represents an offset as:
+ * `offset_defs[0]*offset_defs_mul[0] + offset_defs[1]*offset_defs_mul[1] + ...`
+ * "offset_defs" is sorted in ascenting order by the ssa definition's index.
+ * "resource" or "var" may be NULL.
+ */
+struct entry_key {
+ nir_ssa_def *resource;
+ nir_variable *var;
+ unsigned offset_def_count;
+ nir_ssa_def **offset_defs;
+ uint64_t *offset_defs_mul;
+};
+
+/* Information on a single memory operation. */
+struct entry {
+ struct list_head head;
+ unsigned index;
+
+ struct entry_key *key;
+ union {
+ uint64_t offset; /* sign-extended */
+ int64_t offset_signed;
+ };
+ uint32_t best_align;
+
+ nir_instr *instr;
+ nir_intrinsic_instr *intrin;
+ const struct intrinsic_info *info;
+ enum gl_access_qualifier access;
+ bool is_store;
+
+ nir_deref_instr *deref;
+};
+
+struct vectorize_ctx {
+ nir_variable_mode modes;
+ nir_should_vectorize_mem_func callback;
+ struct list_head entries[nir_num_variable_modes];
+ struct hash_table *loads[nir_num_variable_modes];
+ struct hash_table *stores[nir_num_variable_modes];
+};
+
+static uint32_t hash_entry_key(const void *key_)
+{
+ /* this is careful to not include pointers in the hash calculation so that
+ * the order of the hash table walk is deterministic */
+ struct entry_key *key = (struct entry_key*)key_;
+
+ uint32_t hash = _mesa_fnv32_1a_offset_bias;
+ if (key->resource)
+ hash = _mesa_fnv32_1a_accumulate(hash, key->resource->index);
+ if (key->var) {
+ hash = _mesa_fnv32_1a_accumulate(hash, key->var->index);
+ unsigned mode = key->var->data.mode;
+ hash = _mesa_fnv32_1a_accumulate(hash, mode);
+ }
+
+ for (unsigned i = 0; i < key->offset_def_count; i++)
+ hash = _mesa_fnv32_1a_accumulate(hash, key->offset_defs[i]->index);
+
+ hash = _mesa_fnv32_1a_accumulate_block(
+ hash, key->offset_defs_mul, key->offset_def_count * sizeof(uint64_t));
+
+ return hash;
+}
+
+static bool entry_key_equals(const void *a_, const void *b_)
+{
+ struct entry_key *a = (struct entry_key*)a_;
+ struct entry_key *b = (struct entry_key*)b_;
+
+ if (a->var != b->var || a->resource != b->resource)
+ return false;
+
+ if (a->offset_def_count != b->offset_def_count)
+ return false;
+
+ size_t offset_def_size = a->offset_def_count * sizeof(nir_ssa_def *);
+ size_t offset_def_mul_size = a->offset_def_count * sizeof(uint64_t);
+ if (a->offset_def_count &&
+ (memcmp(a->offset_defs, b->offset_defs, offset_def_size) ||
+ memcmp(a->offset_defs_mul, b->offset_defs_mul, offset_def_mul_size)))
+ return false;
+
+ return true;
+}
+
+static void delete_entry_dynarray(struct hash_entry *entry)
+{
+ struct util_dynarray *arr = (struct util_dynarray *)entry->data;
+ ralloc_free(arr);
+}
+
+static int sort_entries(const void *a_, const void *b_)
+{
+ struct entry *a = *(struct entry*const*)a_;
+ struct entry *b = *(struct entry*const*)b_;
+
+ if (a->offset_signed > b->offset_signed)
+ return 1;
+ else if (a->offset_signed < b->offset_signed)
+ return -1;
+ else
+ return 0;
+}
+
+static unsigned
+get_bit_size(struct entry *entry)
+{
+ unsigned size = entry->is_store ?
+ entry->intrin->src[entry->info->value_src].ssa->bit_size :
+ entry->intrin->dest.ssa.bit_size;
+ return size == 1 ? 32u : size;
+}
+
+/* If "def" is from an alu instruction with the opcode "op" and one of it's
+ * sources is a constant, update "def" to be the non-constant source, fill "c"
+ * with the constant and return true. */
+static bool
+parse_alu(nir_ssa_def **def, nir_op op, uint64_t *c)
+{
+ nir_ssa_scalar scalar;
+ scalar.def = *def;
+ scalar.comp = 0;
+
+ if (!nir_ssa_scalar_is_alu(scalar) || nir_ssa_scalar_alu_op(scalar) != op)
+ return false;
+
+ nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
+ nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
+ if (op != nir_op_ishl && nir_ssa_scalar_is_const(src0) && src1.comp == 0) {
+ *c = nir_ssa_scalar_as_uint(src0);
+ *def = src1.def;
+ } else if (nir_ssa_scalar_is_const(src1) && src0.comp == 0) {
+ *c = nir_ssa_scalar_as_uint(src1);
+ *def = src0.def;
+ } else {
+ return false;
+ }
+ return true;
+}
+
+/* Parses an offset expression such as "a * 16 + 4" and "(a * 16 + 4) * 64 + 32". */
+static void
+parse_offset(nir_ssa_def **base, uint64_t *base_mul, uint64_t *offset)
+{
+ if ((*base)->parent_instr->type == nir_instr_type_load_const) {
+ *offset = nir_src_comp_as_uint(nir_src_for_ssa(*base), 0);
+ *base = NULL;
+ return;
+ }
+
+ uint64_t mul = 1;
+ uint64_t add = 0;
+ bool progress = false;
+ do {
+ uint64_t mul2 = 1, add2 = 0;
+
+ progress = parse_alu(base, nir_op_imul, &mul2);
+ mul *= mul2;
+
+ mul2 = 0;
+ progress |= parse_alu(base, nir_op_ishl, &mul2);
+ mul <<= mul2;
+
+ progress |= parse_alu(base, nir_op_iadd, &add2);
+ add += add2 * mul;
+ } while (progress);
+
+ *base_mul = mul;
+ *offset = add;
+}
+
+static unsigned
+type_scalar_size_bytes(const struct glsl_type *type)
+{
+ assert(glsl_type_is_vector_or_scalar(type) ||
+ glsl_type_is_matrix(type));
+ return glsl_type_is_boolean(type) ? 4u : glsl_get_bit_size(type) / 8u;
+}
+
+static int
+get_array_stride(const struct glsl_type *type)
+{
+ unsigned explicit_stride = glsl_get_explicit_stride(type);
+ if ((glsl_type_is_matrix(type) &&
+ glsl_matrix_type_is_row_major(type)) ||
+ (glsl_type_is_vector(type) && explicit_stride == 0))
+ return type_scalar_size_bytes(type);
+ return explicit_stride;
+}
+
+static uint64_t
+mask_sign_extend(uint64_t val, unsigned bit_size)
+{
+ return (int64_t)(val << (64 - bit_size)) >> (64 - bit_size);
+}
+
+static unsigned
+add_to_entry_key(nir_ssa_def **offset_defs, uint64_t *offset_defs_mul,
+ unsigned offset_def_count, nir_ssa_def *def, uint64_t mul)
+{
+ mul = mask_sign_extend(mul, def->bit_size);
+
+ for (unsigned i = 0; i <= offset_def_count; i++) {
+ if (i == offset_def_count || def->index > offset_defs[i]->index) {
+ /* insert before i */
+ memmove(offset_defs + i + 1, offset_defs + i,
+ (offset_def_count - i) * sizeof(nir_ssa_def *));
+ memmove(offset_defs_mul + i + 1, offset_defs_mul + i,
+ (offset_def_count - i) * sizeof(uint64_t));
+ offset_defs[i] = def;
+ offset_defs_mul[i] = mul;
+ return 1;
+ } else if (def->index == offset_defs[i]->index) {
+ /* merge with offset_def at i */
+ offset_defs_mul[i] += mul;
+ return 0;
+ }
+ }
+ unreachable("Unreachable.");
+ return 0;
+}
+
+static struct entry_key *
+create_entry_key_from_deref(void *mem_ctx,
+ struct vectorize_ctx *ctx,
+ nir_deref_path *path,
+ uint64_t *offset_base)
+{
+ unsigned path_len = 0;
+ while (path->path[path_len])
+ path_len++;
+
+ nir_ssa_def *offset_defs_stack[32];
+ uint64_t offset_defs_mul_stack[32];
+ nir_ssa_def **offset_defs = offset_defs_stack;
+ uint64_t *offset_defs_mul = offset_defs_mul_stack;
+ if (path_len > 32) {
+ offset_defs = malloc(path_len * sizeof(nir_ssa_def *));
+ offset_defs_mul = malloc(path_len * sizeof(uint64_t));
+ }
+ unsigned offset_def_count = 0;
+
+ struct entry_key* key = ralloc(mem_ctx, struct entry_key);
+ key->resource = NULL;
+ key->var = NULL;
+ *offset_base = 0;
+
+ for (unsigned i = 0; i < path_len; i++) {
+ nir_deref_instr *parent = i ? path->path[i - 1] : NULL;
+ nir_deref_instr *deref = path->path[i];
+
+ switch (deref->deref_type) {
+ case nir_deref_type_var: {
+ assert(!parent);
+ key->var = deref->var;
+ break;
+ }
+ case nir_deref_type_array:
+ case nir_deref_type_ptr_as_array: {
+ assert(parent);
+ nir_ssa_def *index = deref->arr.index.ssa;
+ uint32_t stride;
+ if (deref->deref_type == nir_deref_type_ptr_as_array)
+ stride = nir_deref_instr_ptr_as_array_stride(deref);
+ else
+ stride = get_array_stride(parent->type);
+
+ nir_ssa_def *base = index;
+ uint64_t offset = 0, base_mul = 1;
+ parse_offset(&base, &base_mul, &offset);
+ offset = mask_sign_extend(offset, index->bit_size);
+
+ *offset_base += offset * stride;
+ if (base) {
+ offset_def_count += add_to_entry_key(offset_defs, offset_defs_mul,
+ offset_def_count,
+ base, base_mul * stride);
+ }
+ break;
+ }
+ case nir_deref_type_struct: {
+ assert(parent);
+ int offset = glsl_get_struct_field_offset(parent->type, deref->strct.index);
+ *offset_base += offset;
+ break;
+ }
+ case nir_deref_type_cast: {
+ if (!parent)
+ key->resource = deref->parent.ssa;
+ break;
+ }
+ default:
+ unreachable("Unhandled deref type");
+ }
+ }
+
+ key->offset_def_count = offset_def_count;
+ key->offset_defs = ralloc_array(mem_ctx, nir_ssa_def *, offset_def_count);
+ key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, offset_def_count);
+ memcpy(key->offset_defs, offset_defs, offset_def_count * sizeof(nir_ssa_def *));
+ memcpy(key->offset_defs_mul, offset_defs_mul, offset_def_count * sizeof(uint64_t));
+
+ if (offset_defs != offset_defs_stack)
+ free(offset_defs);
+ if (offset_defs_mul != offset_defs_mul_stack)
+ free(offset_defs_mul);
+
+ return key;
+}
+
+static unsigned
+parse_entry_key_from_offset(struct entry_key *key, unsigned size, unsigned left,
+ nir_ssa_def *base, uint64_t base_mul, uint64_t *offset)
+{
+ uint64_t new_mul;
+ uint64_t new_offset;
+ parse_offset(&base, &new_mul, &new_offset);
+ *offset += new_offset * base_mul;
+
+ if (!base)
+ return 0;
+
+ base_mul *= new_mul;
+
+ assert(left >= 1);
+
+ if (left >= 2) {
+ nir_ssa_scalar scalar;
+ scalar.def = base;
+ scalar.comp = 0;
+ if (nir_ssa_scalar_is_alu(scalar) && nir_ssa_scalar_alu_op(scalar) == nir_op_iadd) {
+ nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
+ nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
+ if (src0.comp == 0 && src1.comp == 0) {
+ unsigned amount = parse_entry_key_from_offset(key, size, left - 1, src0.def, base_mul, offset);
+ amount += parse_entry_key_from_offset(key, size + amount, left - amount, src1.def, base_mul, offset);
+ return amount;
+ }
+ }
+ }
+
+ return add_to_entry_key(key->offset_defs, key->offset_defs_mul, size, base, base_mul);
+}
+
+static struct entry_key *
+create_entry_key_from_offset(void *mem_ctx, nir_ssa_def *base, uint64_t base_mul, uint64_t *offset)
+{
+ struct entry_key *key = ralloc(mem_ctx, struct entry_key);
+ key->resource = NULL;
+ key->var = NULL;
+ if (base) {
+ nir_ssa_def *offset_defs[32];
+ uint64_t offset_defs_mul[32];
+ key->offset_defs = offset_defs;
+ key->offset_defs_mul = offset_defs_mul;
+
+ key->offset_def_count = parse_entry_key_from_offset(key, 0, 32, base, base_mul, offset);
+
+ key->offset_defs = ralloc_array(mem_ctx, nir_ssa_def *, key->offset_def_count);
+ key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, key->offset_def_count);
+ memcpy(key->offset_defs, offset_defs, key->offset_def_count * sizeof(nir_ssa_def *));
+ memcpy(key->offset_defs_mul, offset_defs_mul, key->offset_def_count * sizeof(uint64_t));
+ } else {
+ key->offset_def_count = 0;
+ key->offset_defs = NULL;
+ key->offset_defs_mul = NULL;
+ }
+ return key;
+}
+
+static nir_variable_mode
+get_variable_mode(struct entry *entry)
+{
+ if (entry->info->mode)
+ return entry->info->mode;
+ assert(entry->deref);
+ return entry->deref->mode;
+}
+
+static struct entry *
+create_entry(struct vectorize_ctx *ctx,
+ const struct intrinsic_info *info,
+ nir_intrinsic_instr *intrin)
+{
+ struct entry *entry = rzalloc(ctx, struct entry);
+ entry->intrin = intrin;
+ entry->instr = &intrin->instr;
+ entry->info = info;
+ entry->best_align = UINT32_MAX;
+ entry->is_store = entry->info->value_src >= 0;
+
+ if (entry->info->deref_src >= 0) {
+ entry->deref = nir_src_as_deref(intrin->src[entry->info->deref_src]);
+ nir_deref_path path;
+ nir_deref_path_init(&path, entry->deref, NULL);
+ entry->key = create_entry_key_from_deref(entry, ctx, &path, &entry->offset);
+ nir_deref_path_finish(&path);
+ } else {
+ nir_ssa_def *base = entry->info->base_src >= 0 ?
+ intrin->src[entry->info->base_src].ssa : NULL;
+ uint64_t offset = 0;
+ if (nir_intrinsic_infos[intrin->intrinsic].index_map[NIR_INTRINSIC_BASE])
+ offset += nir_intrinsic_base(intrin);
+ entry->key = create_entry_key_from_offset(entry, base, 1, &offset);
+ entry->offset = offset;
+
+ if (base)
+ entry->offset = mask_sign_extend(entry->offset, base->bit_size);
+ }
+
+ if (entry->info->resource_src >= 0)
+ entry->key->resource = intrin->src[entry->info->resource_src].ssa;
+
+ if (nir_intrinsic_infos[intrin->intrinsic].index_map[NIR_INTRINSIC_ACCESS])
+ entry->access = nir_intrinsic_access(intrin);
+ else if (entry->key->var)
+ entry->access = entry->key->var->data.access;
+
+ uint32_t restrict_modes = nir_var_shader_in | nir_var_shader_out;
+ restrict_modes |= nir_var_shader_temp | nir_var_function_temp;
+ restrict_modes |= nir_var_uniform | nir_var_mem_push_const;
+ restrict_modes |= nir_var_system_value | nir_var_mem_shared;
+ if (get_variable_mode(entry) & restrict_modes)
+ entry->access |= ACCESS_RESTRICT;
+
+ return entry;
+}
+
+static nir_deref_instr *
+cast_deref(nir_builder *b, unsigned num_components, unsigned bit_size, nir_deref_instr *deref)
+{
+ if (glsl_get_components(deref->type) == num_components &&
+ type_scalar_size_bytes(deref->type)*8u == bit_size)
+ return deref;
+
+ enum glsl_base_type types[] = {
+ GLSL_TYPE_UINT8, GLSL_TYPE_UINT16, GLSL_TYPE_UINT, GLSL_TYPE_UINT64};
+ enum glsl_base_type base = types[ffs(bit_size / 8u) - 1u];
+ const struct glsl_type *type = glsl_vector_type(base, num_components);
+
+ if (deref->type == type)
+ return deref;
+
+ return nir_build_deref_cast(b, &deref->dest.ssa, deref->mode, type, 0);
+}
+
+/* Return true if the write mask "write_mask" of a store with "old_bit_size"
+ * bits per element can be represented for a store with "new_bit_size" bits per
+ * element. */
+static bool
+writemask_representable(unsigned write_mask, unsigned old_bit_size, unsigned new_bit_size)
+{
+ while (write_mask) {
+ int start, count;
+ u_bit_scan_consecutive_range(&write_mask, &start, &count);
+ start *= old_bit_size;
+ count *= old_bit_size;
+ if (start % new_bit_size != 0)
+ return false;
+ if (count % new_bit_size != 0)
+ return false;
+ }
+ return true;
+}
+
+static uint64_t
+gcd(uint64_t a, uint64_t b)
+{
+ while (b) {
+ uint64_t old_b = b;
+ b = a % b;
+ a = old_b;
+ }
+ return a;
+}
+
+static uint32_t
+get_best_align(struct entry *entry)
+{
+ if (entry->best_align != UINT32_MAX)
+ return entry->best_align;
+
+ uint64_t best_align = entry->offset;
+ for (unsigned i = 0; i < entry->key->offset_def_count; i++) {
+ if (!best_align)
+ best_align = entry->key->offset_defs_mul[i];
+ else if (entry->key->offset_defs_mul[i])
+ best_align = gcd(best_align, entry->key->offset_defs_mul[i]);
+ }
+
+ if (nir_intrinsic_infos[entry->intrin->intrinsic].index_map[NIR_INTRINSIC_ALIGN_MUL])
+ best_align = MAX2(best_align, nir_intrinsic_align(entry->intrin));
+
+ /* ensure the result is a power of two that fits in a int32_t */
+ entry->best_align = gcd(best_align, 1u << 30);
+
+ return entry->best_align;
+}
+
+/* Return true if "new_bit_size" is a usable bit size for a vectorized load/store
+ * of "low" and "high". */
+static bool
+new_bitsize_acceptable(struct vectorize_ctx *ctx, unsigned new_bit_size,
+ struct entry *low, struct entry *high, unsigned size)
+{
+ if (size % new_bit_size != 0)
+ return false;
+
+ unsigned new_num_components = size / new_bit_size;
+ if (new_num_components > NIR_MAX_VEC_COMPONENTS)
+ return false;
+
+ unsigned high_offset = high->offset_signed - low->offset_signed;
+
+ /* check nir_extract_bits limitations */
+ unsigned common_bit_size = MIN2(get_bit_size(low), get_bit_size(high));
+ common_bit_size = MIN2(common_bit_size, new_bit_size);
+ if (high_offset > 0)
+ common_bit_size = MIN2(common_bit_size, (1u << (ffs(high_offset * 8) - 1)));
+ if (new_bit_size / common_bit_size > NIR_MAX_VEC_COMPONENTS)
+ return false;
+
+ if (!ctx->callback(get_best_align(low), new_bit_size, new_num_components,
+ high_offset, low->intrin, high->intrin))
+ return false;
+
+ if (low->is_store) {
+ unsigned low_size = low->intrin->num_components * get_bit_size(low);
+ unsigned high_size = high->intrin->num_components * get_bit_size(high);
+
+ if (low_size % new_bit_size != 0)
+ return false;
+ if (high_size % new_bit_size != 0)
+ return false;
+
+ unsigned write_mask = nir_intrinsic_write_mask(low->intrin);
+ if (!writemask_representable(write_mask, low_size, new_bit_size))
+ return false;
+
+ write_mask = nir_intrinsic_write_mask(high->intrin);
+ if (!writemask_representable(write_mask, high_size, new_bit_size))
+ return false;
+ }
+
+ return true;
+}
+
+/* Updates a write mask, "write_mask", so that it can be used with a
+ * "new_bit_size"-bit store instead of a "old_bit_size"-bit store. */
+static uint32_t
+update_writemask(unsigned write_mask, unsigned old_bit_size, unsigned new_bit_size)
+{
+ uint32_t res = 0;
+ while (write_mask) {
+ int start, count;
+ u_bit_scan_consecutive_range(&write_mask, &start, &count);
+ start = start * old_bit_size / new_bit_size;
+ count = count * old_bit_size / new_bit_size;
+ res |= ((1 << count) - 1) << start;
+ }
+ return res;
+}
+
+static nir_deref_instr *subtract_deref(nir_builder *b, nir_deref_instr *deref, int64_t offset)
+{
+ /* avoid adding another deref to the path */
+ if (deref->deref_type == nir_deref_type_ptr_as_array &&
+ nir_src_is_const(deref->arr.index) &&
+ offset % nir_deref_instr_ptr_as_array_stride(deref) == 0) {
+ unsigned stride = nir_deref_instr_ptr_as_array_stride(deref);
+ nir_ssa_def *index = nir_imm_intN_t(b, nir_src_as_int(deref->arr.index) - offset / stride,
+ deref->dest.ssa.bit_size);
+ return nir_build_deref_ptr_as_array(b, nir_deref_instr_parent(deref), index);
+ }
+
+ if (deref->deref_type == nir_deref_type_array &&
+ nir_src_is_const(deref->arr.index)) {
+ nir_deref_instr *parent = nir_deref_instr_parent(deref);
+ unsigned stride = glsl_get_explicit_stride(parent->type);
+ if (offset % stride == 0)
+ return nir_build_deref_array_imm(
+ b, parent, nir_src_as_int(deref->arr.index) - offset / stride);
+ }
+
+
+ deref = nir_build_deref_cast(b, &deref->dest.ssa, deref->mode,
+ glsl_scalar_type(GLSL_TYPE_UINT8), 1);
+ return nir_build_deref_ptr_as_array(
+ b, deref, nir_imm_intN_t(b, -offset, deref->dest.ssa.bit_size));
+}
+
+static bool update_align(struct entry *entry)
+{
+ bool has_align_index =
+ nir_intrinsic_infos[entry->intrin->intrinsic].index_map[NIR_INTRINSIC_ALIGN_MUL];
+ if (has_align_index) {
+ unsigned align = get_best_align(entry);
+ if (align != nir_intrinsic_align(entry->intrin)) {
+ nir_intrinsic_set_align(entry->intrin, align, 0);
+ return true;
+ }
+ }
+ return false;
+}
+
+static void
+vectorize_loads(nir_builder *b, struct vectorize_ctx *ctx,
+ struct entry *low, struct entry *high,
+ struct entry *first, struct entry *second,
+ unsigned new_bit_size, unsigned new_num_components,
+ unsigned high_start)
+{
+ unsigned low_bit_size = get_bit_size(low);
+ unsigned high_bit_size = get_bit_size(high);
+ bool low_bool = low->intrin->dest.ssa.bit_size == 1;
+ bool high_bool = high->intrin->dest.ssa.bit_size == 1;
+ nir_ssa_def *data = &first->intrin->dest.ssa;
+
+ b->cursor = nir_after_instr(first->instr);
+
+ /* update the load's destination size and extract data for each of the original loads */
+ data->num_components = new_num_components;
+ data->bit_size = new_bit_size;
+
+ nir_ssa_def *low_def = nir_extract_bits(
+ b, &data, 1, 0, low->intrin->num_components, low_bit_size);
+ nir_ssa_def *high_def = nir_extract_bits(
+ b, &data, 1, high_start, high->intrin->num_components, high_bit_size);
+
+ /* convert booleans */
+ low_def = low_bool ? nir_i2b(b, low_def) : nir_mov(b, low_def);
+ high_def = high_bool ? nir_i2b(b, high_def) : nir_mov(b, high_def);
+
+ /* update uses */
+ if (first == low) {
+ nir_ssa_def_rewrite_uses_after(&low->intrin->dest.ssa, nir_src_for_ssa(low_def),
+ high_def->parent_instr);
+ nir_ssa_def_rewrite_uses(&high->intrin->dest.ssa, nir_src_for_ssa(high_def));
+ } else {
+ nir_ssa_def_rewrite_uses(&low->intrin->dest.ssa, nir_src_for_ssa(low_def));
+ nir_ssa_def_rewrite_uses_after(&high->intrin->dest.ssa, nir_src_for_ssa(high_def),
+ high_def->parent_instr);
+ }
+
+ /* update the intrinsic */
+ first->intrin->num_components = new_num_components;
+
+ const struct intrinsic_info *info = first->info;
+
+ /* update the offset */
+ if (first != low && info->base_src >= 0) {
+ /* let nir_opt_algebraic() remove this addition. this doesn't have much
+ * issues with subtracting 16 from expressions like "(i + 1) * 16" because
+ * nir_opt_algebraic() turns them into "i * 16 + 16" */
+ b->cursor = nir_before_instr(first->instr);
+
+ nir_ssa_def *new_base = first->intrin->src[info->base_src].ssa;
+ new_base = nir_iadd(b, new_base, nir_imm_int(b, -(high_start / 8u)));
+
+ nir_instr_rewrite_src(first->instr, &first->intrin->src[info->base_src],
+ nir_src_for_ssa(new_base));
+ }
+
+ /* update the deref */
+ if (info->deref_src >= 0) {
+ b->cursor = nir_before_instr(first->instr);
+
+ nir_deref_instr *deref = nir_src_as_deref(first->intrin->src[info->deref_src]);
+ if (first != low && high_start != 0)
+ deref = subtract_deref(b, deref, high_start / 8u);
+ first->deref = cast_deref(b, new_num_components, new_bit_size, deref);
+
+ nir_instr_rewrite_src(first->instr, &first->intrin->src[info->deref_src],
+ nir_src_for_ssa(&first->deref->dest.ssa));
+ }
+
+ /* update base/align */
+ bool has_base_index =
+ nir_intrinsic_infos[first->intrin->intrinsic].index_map[NIR_INTRINSIC_BASE];
+
+ if (first != low && has_base_index)
+ nir_intrinsic_set_base(first->intrin, nir_intrinsic_base(low->intrin));
+
+ first->key = low->key;
+ first->offset = low->offset;
+ first->best_align = get_best_align(low);
+
+ update_align(first);
+
+ nir_instr_remove(second->instr);
+}
+
+static void
+vectorize_stores(nir_builder *b, struct vectorize_ctx *ctx,
+ struct entry *low, struct entry *high,
+ struct entry *first, struct entry *second,
+ unsigned new_bit_size, unsigned new_num_components,
+ unsigned high_start)
+{
+ ASSERTED unsigned low_size = low->intrin->num_components * get_bit_size(low);
+ assert(low_size % new_bit_size == 0);
+
+ b->cursor = nir_before_instr(second->instr);
+
+ /* get new writemasks */
+ uint32_t low_write_mask = nir_intrinsic_write_mask(low->intrin);
+ uint32_t high_write_mask = nir_intrinsic_write_mask(high->intrin);
+ low_write_mask = update_writemask(low_write_mask, get_bit_size(low), new_bit_size);
+ high_write_mask = update_writemask(high_write_mask, get_bit_size(high), new_bit_size);
+ high_write_mask <<= high_start / new_bit_size;
+
+ uint32_t write_mask = low_write_mask | high_write_mask;
+
+ /* convert booleans */
+ nir_ssa_def *low_val = low->intrin->src[low->info->value_src].ssa;
+ nir_ssa_def *high_val = high->intrin->src[high->info->value_src].ssa;
+ low_val = low_val->bit_size == 1 ? nir_b2i(b, low_val, 32) : low_val;
+ high_val = high_val->bit_size == 1 ? nir_b2i(b, high_val, 32) : high_val;
+
+ /* combine the data */
+ nir_ssa_def *data_channels[NIR_MAX_VEC_COMPONENTS];
+ for (unsigned i = 0; i < new_num_components; i++) {
+ bool set_low = low_write_mask & (1 << i);
+ bool set_high = high_write_mask & (1 << i);
+
+ if (set_low && (!set_high || low == second)) {
+ unsigned offset = i * new_bit_size;
+ data_channels[i] = nir_extract_bits(b, &low_val, 1, offset, 1, new_bit_size);
+ } else if (set_high) {
+ assert(!set_low || high == second);
+ unsigned offset = i * new_bit_size - high_start;
+ data_channels[i] = nir_extract_bits(b, &high_val, 1, offset, 1, new_bit_size);
+ } else {
+ data_channels[i] = nir_ssa_undef(b, 1, new_bit_size);
+ }
+ }
+ nir_ssa_def *data = nir_vec(b, data_channels, new_num_components);
+
+ /* update the intrinsic */
+ nir_intrinsic_set_write_mask(second->intrin, write_mask);
+ second->intrin->num_components = data->num_components;
+
+ const struct intrinsic_info *info = second->info;
+ assert(info->value_src >= 0);
+ nir_instr_rewrite_src(second->instr, &second->intrin->src[info->value_src],
+ nir_src_for_ssa(data));
+
+ /* update the offset */
+ if (second != low && info->base_src >= 0)
+ nir_instr_rewrite_src(second->instr, &second->intrin->src[info->base_src],
+ low->intrin->src[info->base_src]);
+
+ /* update the deref */
+ if (info->deref_src >= 0) {
+ b->cursor = nir_before_instr(second->instr);
+ second->deref = cast_deref(b, new_num_components, new_bit_size,
+ nir_src_as_deref(low->intrin->src[info->deref_src]));
+ nir_instr_rewrite_src(second->instr, &second->intrin->src[info->deref_src],
+ nir_src_for_ssa(&second->deref->dest.ssa));
+ }
+
+ /* update base/align */
+ bool has_base_index =
+ nir_intrinsic_infos[second->intrin->intrinsic].index_map[NIR_INTRINSIC_BASE];
+
+ if (second != low && has_base_index)
+ nir_intrinsic_set_base(second->intrin, nir_intrinsic_base(low->intrin));
+
+ second->key = low->key;
+ second->offset = low->offset;
+ second->best_align = get_best_align(low);
+
+ update_align(second);
+
+ list_del(&first->head);
+ nir_instr_remove(first->instr);
+}
+
+/* Returns true if it can prove that "a" and "b" point to different resources. */
+static bool
+resources_different(nir_ssa_def *a, nir_ssa_def *b)
+{
+ if (!a || !b)
+ return false;
+
+ if (a->parent_instr->type == nir_instr_type_load_const &&
+ b->parent_instr->type == nir_instr_type_load_const) {
+ return nir_src_as_uint(nir_src_for_ssa(a)) != nir_src_as_uint(nir_src_for_ssa(b));
+ }
+
+ if (a->parent_instr->type == nir_instr_type_intrinsic &&
+ b->parent_instr->type == nir_instr_type_intrinsic) {
+ nir_intrinsic_instr *aintrin = nir_instr_as_intrinsic(a->parent_instr);
+ nir_intrinsic_instr *bintrin = nir_instr_as_intrinsic(b->parent_instr);
+ if (aintrin->intrinsic == nir_intrinsic_vulkan_resource_index &&
+ bintrin->intrinsic == nir_intrinsic_vulkan_resource_index) {
+ return nir_intrinsic_desc_set(aintrin) != nir_intrinsic_desc_set(bintrin) ||
+ nir_intrinsic_binding(aintrin) != nir_intrinsic_binding(bintrin) ||
+ resources_different(aintrin->src[0].ssa, bintrin->src[0].ssa);
+ }
+ }
+
+ return false;
+}
+
+static int64_t
+compare_entries(struct entry *a, struct entry *b)
+{
+ if (!entry_key_equals(a->key, b->key))
+ return INT64_MAX;
+ return b->offset_signed - a->offset_signed;
+}
+
+static bool
+may_alias(struct entry *a, struct entry *b)
+{
+ assert(get_variable_mode(a) == get_variable_mode(b));
+
+ /* if the resources/variables are definitively different and both have
+ * ACCESS_RESTRICT, we can assume they do not alias. */
+ bool res_different = a->key->var != b->key->var ||
+ resources_different(a->key->resource, b->key->resource);
+ if (res_different && (a->access & ACCESS_RESTRICT) && (b->access & ACCESS_RESTRICT))
+ return false;
+
+ /* we can't compare offsets if the resources/variables might be different */
+ if (a->key->var != b->key->var || a->key->resource != b->key->resource)
+ return true;
+
+ /* use adjacency information */
+ /* TODO: we can look closer at the entry keys */
+ int64_t diff = compare_entries(a, b);
+ if (diff != INT64_MAX) {
+ /* with atomics, intrin->num_components can be 0 */
+ if (diff < 0)
+ return llabs(diff) < MAX2(b->intrin->num_components, 1u) * (get_bit_size(b) / 8u);
+ else
+ return diff < MAX2(a->intrin->num_components, 1u) * (get_bit_size(a) / 8u);
+ }
+
+ /* TODO: we can use deref information */
+
+ return true;
+}
+
+static bool
+check_for_aliasing(struct vectorize_ctx *ctx, struct entry *first, struct entry *second)
+{
+ nir_variable_mode mode = get_variable_mode(first);
+ if (mode & (nir_var_uniform | nir_var_system_value |
+ nir_var_mem_push_const | nir_var_mem_ubo))
+ return false;
+
+ unsigned mode_index = ffs(mode) - 1;
+ if (first->is_store) {
+ /* find first store that aliases "first" */
+ list_for_each_entry_from(struct entry, next, first, &ctx->entries[mode_index], head) {
+ if (next == first)
+ continue;
+ if (next == second)
+ return false;
+ if (next->is_store && may_alias(first, next))
+ return true;
+ }
+ } else {
+ /* find previous store that aliases this load */
+ list_for_each_entry_from_rev(struct entry, prev, second, &ctx->entries[mode_index], head) {
+ if (prev == second)
+ continue;
+ if (prev == first)
+ return false;
+ if (prev->is_store && may_alias(second, prev))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool
+is_strided_vector(const struct glsl_type *type)
+{
+ if (glsl_type_is_vector(type)) {
+ return glsl_get_explicit_stride(type) !=
+ type_scalar_size_bytes(glsl_get_array_element(type));
+ } else {
+ return false;
+ }
+}
+
+static bool
+try_vectorize(nir_function_impl *impl, struct vectorize_ctx *ctx,
+ struct entry *low, struct entry *high,
+ struct entry *first, struct entry *second)
+{
+ if (check_for_aliasing(ctx, first, second))
+ return false;
+
+ /* we can only vectorize non-volatile loads/stores of the same type and with
+ * the same access */
+ if (first->info != second->info || first->access != second->access ||
+ (first->access & ACCESS_VOLATILE) || first->info->is_atomic)
+ return false;
+
+ /* don't attempt to vectorize accesses of row-major matrix columns */
+ if (first->deref) {
+ const struct glsl_type *first_type = first->deref->type;
+ const struct glsl_type *second_type = second->deref->type;
+ if (is_strided_vector(first_type) || is_strided_vector(second_type))
+ return false;
+ }
+
+ /* gather information */
+ uint64_t diff = high->offset_signed - low->offset_signed;
+ unsigned low_bit_size = get_bit_size(low);
+ unsigned high_bit_size = get_bit_size(high);
+ unsigned low_size = low->intrin->num_components * low_bit_size;
+ unsigned high_size = high->intrin->num_components * high_bit_size;
+ unsigned new_size = MAX2(diff * 8u + high_size, low_size);
+
+ /* find a good bit size for the new load/store */
+ unsigned new_bit_size = 0;
+ if (new_bitsize_acceptable(ctx, low_bit_size, low, high, new_size)) {
+ new_bit_size = low_bit_size;
+ } else if (low_bit_size != high_bit_size &&
+ new_bitsize_acceptable(ctx, high_bit_size, low, high, new_size)) {
+ new_bit_size = high_bit_size;
+ } else {
+ new_bit_size = 64;
+ for (; new_bit_size >= 8; new_bit_size /= 2) {
+ /* don't repeat trying out bitsizes */
+ if (new_bit_size == low_bit_size || new_bit_size == high_bit_size)
+ continue;
+ if (new_bitsize_acceptable(ctx, new_bit_size, low, high, new_size))
+ break;
+ }
+ if (new_bit_size < 8)
+ return false;
+ }
+ unsigned new_num_components = new_size / new_bit_size;
+
+ /* vectorize the loads/stores */
+ nir_builder b;
+ nir_builder_init(&b, impl);
+
+ if (first->is_store)
+ vectorize_stores(&b, ctx, low, high, first, second,
+ new_bit_size, new_num_components, diff * 8u);
+ else
+ vectorize_loads(&b, ctx, low, high, first, second,
+ new_bit_size, new_num_components, diff * 8u);
+
+ return true;
+}
+
+static bool
+vectorize_entries(struct vectorize_ctx *ctx, nir_function_impl *impl, struct hash_table *ht)
+{
+ if (!ht)
+ return false;
+
+ bool progress = false;
+ hash_table_foreach(ht, entry) {
+ struct util_dynarray *arr = entry->data;
+ if (!arr->size)
+ continue;
+
+ qsort(util_dynarray_begin(arr),
+ util_dynarray_num_elements(arr, struct entry *),
+ sizeof(struct entry *), &sort_entries);
+
+ unsigned i = 0;
+ for (; i < util_dynarray_num_elements(arr, struct entry*) - 1; i++) {
+ struct entry *low = *util_dynarray_element(arr, struct entry *, i);
+ struct entry *high = *util_dynarray_element(arr, struct entry *, i + 1);
+
+ uint64_t diff = high->offset_signed - low->offset_signed;
+ if (diff > get_bit_size(low) / 8u * low->intrin->num_components) {
+ progress |= update_align(low);
+ continue;
+ }
+
+ struct entry *first = low->index < high->index ? low : high;
+ struct entry *second = low->index < high->index ? high : low;
+
+ if (try_vectorize(impl, ctx, low, high, first, second)) {
+ *util_dynarray_element(arr, struct entry *, i) = NULL;
+ *util_dynarray_element(arr, struct entry *, i + 1) = low->is_store ? second : first;
+ progress = true;
+ } else {
+ progress |= update_align(low);
+ }
+ }
+
+ struct entry *last = *util_dynarray_element(arr, struct entry *, i);
+ progress |= update_align(last);
+ }
+
+ _mesa_hash_table_clear(ht, delete_entry_dynarray);
+
+ return progress;
+}
+
+static bool
+handle_barrier(struct vectorize_ctx *ctx, bool *progress, nir_function_impl *impl, nir_instr *instr)
+{
+ unsigned modes = 0;
+ bool acquire = true;
+ bool release = true;
+ if (instr->type == nir_instr_type_intrinsic) {
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+ switch (intrin->intrinsic) {
+ case nir_intrinsic_group_memory_barrier:
+ case nir_intrinsic_memory_barrier:
+ modes = nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global;
+ break;
+ /* prevent speculative loads/stores */
+ case nir_intrinsic_discard_if:
+ case nir_intrinsic_discard:
+ modes = nir_var_all;
+ break;
+ case nir_intrinsic_memory_barrier_buffer:
+ modes = nir_var_mem_ssbo | nir_var_mem_global;
+ break;
+ case nir_intrinsic_memory_barrier_shared:
+ modes = nir_var_mem_shared;
+ break;
+ case nir_intrinsic_scoped_memory_barrier:
+ modes = nir_intrinsic_memory_modes(intrin);
+ acquire = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE;
+ release = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_RELEASE;
+ switch (nir_intrinsic_memory_scope(intrin)) {
+ case NIR_SCOPE_INVOCATION:
+ case NIR_SCOPE_SUBGROUP:
+ /* a barier should never be required for correctness with these scopes */
+ modes = 0;
+ break;
+ default:
+ break;
+ }
+ break;
+ default:
+ return false;
+ }
+ } else if (instr->type == nir_instr_type_call) {
+ modes = nir_var_all;
+ } else {
+ return false;
+ }
+
+ while (modes) {
+ unsigned mode_index = u_bit_scan(&modes);
+
+ if (acquire)
+ *progress |= vectorize_entries(ctx, impl, ctx->loads[mode_index]);
+ if (release)
+ *progress |= vectorize_entries(ctx, impl, ctx->stores[mode_index]);
+ }
+
+ return true;
+}
+
+static bool
+process_block(nir_function_impl *impl, struct vectorize_ctx *ctx, nir_block *block)
+{
+ bool progress = false;
+
+ for (unsigned i = 0; i < nir_num_variable_modes; i++) {
+ list_inithead(&ctx->entries[i]);
+ if (ctx->loads[i])
+ _mesa_hash_table_clear(ctx->loads[i], delete_entry_dynarray);
+ if (ctx->stores[i])
+ _mesa_hash_table_clear(ctx->stores[i], delete_entry_dynarray);
+ }
+
+ /* create entries */
+ unsigned next_index = 0;
+
+ nir_foreach_instr_safe(instr, block) {
+ if (handle_barrier(ctx, &progress, impl, instr))
+ continue;
+
+ /* gather information */
+ if (instr->type != nir_instr_type_intrinsic)
+ continue;
+ nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+
+ const struct intrinsic_info *info = get_info(intrin->intrinsic);
+ if (!info)
+ continue;
+
+ nir_variable_mode mode = info->mode;
+ if (!mode)
+ mode = nir_src_as_deref(intrin->src[info->deref_src])->mode;
+ if (!(mode & ctx->modes))
+ continue;
+ unsigned mode_index = ffs(mode) - 1;
+
+ /* create entry */
+ struct entry *entry = create_entry(ctx, info, intrin);
+ entry->index = next_index++;
+
+ list_addtail(&entry->head, &ctx->entries[mode_index]);
+
+ /* add the entry to a hash table */
+
+ struct hash_table *adj_ht = NULL;
+ if (entry->is_store) {
+ if (!ctx->stores[mode_index])
+ ctx->stores[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
+ adj_ht = ctx->stores[mode_index];
+ } else {
+ if (!ctx->loads[mode_index])
+ ctx->loads[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
+ adj_ht = ctx->loads[mode_index];
+ }
+
+ uint32_t key_hash = hash_entry_key(entry->key);
+ struct hash_entry *adj_entry = _mesa_hash_table_search_pre_hashed(adj_ht, key_hash, entry->key);
+ struct util_dynarray *arr;
+ if (adj_entry && adj_entry->data) {
+ arr = (struct util_dynarray *)adj_entry->data;
+ } else {
+ arr = ralloc(ctx, struct util_dynarray);
+ util_dynarray_init(arr, arr);
+ _mesa_hash_table_insert_pre_hashed(adj_ht, key_hash, entry->key, arr);
+ }
+ util_dynarray_append(arr, struct entry *, entry);
+ }
+
+ /* sort and combine entries */
+ for (unsigned i = 0; i < nir_num_variable_modes; i++) {
+ progress |= vectorize_entries(ctx, impl, ctx->loads[i]);
+ progress |= vectorize_entries(ctx, impl, ctx->stores[i]);
+ }
+
+ return progress;
+}
+
+bool
+nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
+ nir_should_vectorize_mem_func callback)
+{
+ bool progress = false;
+
+ struct vectorize_ctx *ctx = rzalloc(NULL, struct vectorize_ctx);
+ ctx->modes = modes;
+ ctx->callback = callback;
+
+ nir_index_vars(shader, NULL, modes);
+
+ nir_foreach_function(function, shader) {
+ if (function->impl) {
+ if (modes & nir_var_function_temp)
+ nir_index_vars(shader, function->impl, nir_var_function_temp);
+
+ nir_foreach_block(block, function->impl)
+ progress |= process_block(function->impl, ctx, block);
+
+ nir_metadata_preserve(function->impl,
+ nir_metadata_block_index |
+ nir_metadata_dominance |
+ nir_metadata_live_ssa_defs);
+ }
+ }
+
+ ralloc_free(ctx);
+ return progress;
+}