+2008-06-13 Jerry DeLisle <jvdelisle@gcc.gnu.org>
+
+ PR fortran/35863
+ * libgfortran.h: Change l8_to_l4_offset to big_endian and add endian_off.
+ * runtime/main.c: Fix error in comment. Change l8_to_l4_offset to
+ big_endian. (determine_endianness): Add endian_off and set its value
+ according to big_endian.
+ * gfortran.map: Add symbol for new _gfortran_transfer_character_wide.
+ * io/io.h: Add prototype declarations for new functions.
+ * io/list_read.c (list_formatted_read_scalar): Modify to handle kind=4.
+ (list_formatted_read): Calculate stride based on kind for character type
+ and use it when calling list_formatted_read_scalar.
+ * io/inquire.c (inquire_via_unit): Change l8_to_l4_offset to big_endian.
+ * io/open.c (st_open): Change l8_to_l4_offset to big_endian.
+ * io/read.c (read_a_char4): New function to handle formatted read.
+ * io/write.c: Define GFC_CHAR4(x) to improve readability of code.
+ (write_a_char4): New function to handle formatted write.
+ (write_character): Modify to accept the kind parameter and adjust for
+ endianess of the machine. (list_formatted_write): Calculate the stride
+ resulting from the kind and adjust the list_formatted_write_scalar call
+ accordingly. (nml_write_obj): Adjust calls to write_character.
+ (namelist_write): Likewise.
+ * io/transfer.c (formatted_transfer_scaler): Rename 'len' argument to
+ 'kind' argument to better describe what it is. Add calls to new
+ functions for kind == 4. (formatted_transfer): Modify to handle the case
+ of type character and kind equals 4 to pass in the kind to the transfer
+ routines. (transfer_character_wide): Add this new function.
+ (transfer_array): Don't set kind to the character string length. Adjust
+ strides bases on character kind.
+ (unformatted_read): Adjust size based on kind for character types.
+ (unformatted_write): Likewise. (data_transfer_init): Change
+ l8_to_l4_offset to big_endian.
+
2008-06-13 Tobias Burnus <burnus@net-b.de>
* configure.ac (AM_CFLAGS): Remove -Werror again.
_gfortran_string_trim_char4;
_gfortran_string_verify_char4;
_gfortran_st_wait;
+ _gfortran_transfer_character_wide;
_gfortran_transpose_char4;
_gfortran_unpack0_char4;
_gfortran_unpack1_char4;
/* Moving to the left past the flushed marked would imply moving past
the left tab limit, which is never allowed. So return error if
that is attempted. */
- if (pos < u->fbuf->flushed)
+ if (pos < (gfc_offset) u->fbuf->flushed)
return -1;
u->fbuf->pos = pos;
return 0;
case ENCODING_DEFAULT:
p = "UNKNOWN";
break;
- /* TODO: Enable UTF-8 case here when implemented.
case ENCODING_UTF8:
p = "UTF-8";
- break; */
+ break;
default:
internal_error (&iqp->common, "inquire_via_unit(): Bad encoding");
}
else
switch (u->flags.convert)
{
- /* l8_to_l4_offset is 0 for little-endian, 1 for big-endian. */
+ /* big_endian is 0 for little-endian, 1 for big-endian. */
case GFC_CONVERT_NATIVE:
- p = l8_to_l4_offset ? "BIG_ENDIAN" : "LITTLE_ENDIAN";
+ p = big_endian ? "BIG_ENDIAN" : "LITTLE_ENDIAN";
break;
case GFC_CONVERT_SWAP:
- p = l8_to_l4_offset ? "LITTLE_ENDIAN" : "BIG_ENDIAN";
+ p = big_endian ? "LITTLE_ENDIAN" : "BIG_ENDIAN";
break;
default:
extern void read_a (st_parameter_dt *, const fnode *, char *, int);
internal_proto(read_a);
+extern void read_a_char4 (st_parameter_dt *, const fnode *, char *, int);
+internal_proto(read_a);
+
extern void read_f (st_parameter_dt *, const fnode *, char *, int);
internal_proto(read_f);
extern void write_a (st_parameter_dt *, const fnode *, const char *, int);
internal_proto(write_a);
+extern void write_a_char4 (st_parameter_dt *, const fnode *, const char *, int);
+internal_proto(write_a_char4);
+
extern void write_b (st_parameter_dt *, const fnode *, const char *, int);
internal_proto(write_b);
int kind, size_t size)
{
char c;
- int m;
+ gfc_char4_t *q;
+ int i, m;
jmp_buf eof_jump;
dtp->u.p.namelist_mode = 0;
case BT_CHARACTER:
if (dtp->u.p.saved_string)
- {
+ {
m = ((int) size < dtp->u.p.saved_used)
? (int) size : dtp->u.p.saved_used;
- memcpy (p, dtp->u.p.saved_string, m);
- }
+ if (kind == 1)
+ memcpy (p, dtp->u.p.saved_string, m);
+ else
+ {
+ q = (gfc_char4_t *) p;
+ for (i = 0; i < m; i++)
+ q[i] = (unsigned char) dtp->u.p.saved_string[i];
+ }
+ }
else
/* Just delimiters encountered, nothing to copy but SPACE. */
m = 0;
if (m < (int) size)
- memset (((char *) p) + m, ' ', size - m);
+ {
+ if (kind == 1)
+ memset (((char *) p) + m, ' ', size - m);
+ else
+ {
+ q = (gfc_char4_t *) p;
+ for (i = m; i < (int) size; i++)
+ q[i] = (unsigned char) ' ';
+ }
+ }
break;
case BT_NULL:
{
size_t elem;
char *tmp;
+ size_t stride = type == BT_CHARACTER ?
+ size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
tmp = (char *) p;
for (elem = 0; elem < nelems; elem++)
{
dtp->u.p.item_count++;
- list_formatted_read_scalar (dtp, type, tmp + size*elem, kind, size);
+ list_formatted_read_scalar (dtp, type, tmp + stride*elem, kind, size);
}
}
static const st_option encoding_opt[] =
{
- /* TODO { "utf-8", ENCODING_UTF8}, */
+ { "utf-8", ENCODING_UTF8},
{ "default", ENCODING_DEFAULT},
{ NULL, 0}
};
conv = compile_options.convert;
}
- /* We use l8_to_l4_offset, which is 0 on little-endian machines
+ /* We use big_endian, which is 0 on little-endian machines
and 1 on big-endian machines. */
switch (conv)
{
break;
case GFC_CONVERT_BIG:
- conv = l8_to_l4_offset ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
+ conv = big_endian ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
break;
case GFC_CONVERT_LITTLE:
- conv = l8_to_l4_offset ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
+ conv = big_endian ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
break;
default:
memset (p + m, ' ', n);
}
+void
+read_a_char4 (st_parameter_dt *dtp, const fnode *f, char *p, int length)
+{
+ char *s;
+ gfc_char4_t *dest;
+ int m, n, wi, status;
+ size_t w;
+
+ wi = f->u.w;
+ if (wi == -1) /* '(A)' edit descriptor */
+ wi = length;
+
+ w = wi;
+
+ s = gfc_alloca (w);
+
+ /* Read in w bytes, treating comma as not a separator. */
+ dtp->u.p.sf_read_comma = 0;
+ status = read_block_form (dtp, s, &w);
+ dtp->u.p.sf_read_comma =
+ dtp->u.p.decimal_status == DECIMAL_COMMA ? 0 : 1;
+
+ if (status == FAILURE)
+ return;
+ if (w > (size_t) length)
+ s += (w - length);
+
+ m = ((int) w > length) ? length : (int) w;
+
+ dest = (gfc_char4_t *) p;
+
+ for (n = 0; n < m; n++, dest++, s++)
+ *dest = (unsigned char ) *s;
+
+ for (n = 0; n < length - (int) w; n++, dest++)
+ *dest = (unsigned char) ' ';
+}
/* eat_leading_spaces()-- Given a character pointer and a width,
* ignore the leading spaces. */
transfer_integer
transfer_logical
transfer_character
+ transfer_character_wide
transfer_real
transfer_complex
extern void transfer_character (st_parameter_dt *, void *, int);
export_proto(transfer_character);
+extern void transfer_character_wide (st_parameter_dt *, void *, int, int);
+export_proto(transfer_character_wide);
+
extern void transfer_complex (st_parameter_dt *, void *, int);
export_proto(transfer_complex);
static void
unformatted_read (st_parameter_dt *dtp, bt type,
- void *dest, int kind __attribute__((unused)),
- size_t size, size_t nelems)
+ void *dest, int kind, size_t size, size_t nelems)
{
size_t i, sz;
- /* Currently, character implies size=1. */
if (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE
- || size == 1 || type == BT_CHARACTER)
+ || size == 1)
{
sz = size * nelems;
+ if (type == BT_CHARACTER)
+ sz *= GFC_SIZE_OF_CHAR_KIND(kind);
read_block_direct (dtp, dest, &sz);
}
else
{
char buffer[16];
char *p;
-
+
+ p = dest;
+
+ /* Handle wide chracters. */
+ if (type == BT_CHARACTER && kind != 1)
+ {
+ nelems *= size;
+ size = kind;
+ }
+
/* Break up complex into its constituent reals. */
if (type == BT_COMPLEX)
{
nelems *= 2;
size /= 2;
}
- p = dest;
/* By now, all complex variables have been split into their
constituent reals. */
- for (i=0; i<nelems; i++)
+ for (i = 0; i < nelems; i++)
{
read_block_direct (dtp, buffer, &size);
reverse_memcpy (p, buffer, size);
static void
unformatted_write (st_parameter_dt *dtp, bt type,
- void *source, int kind __attribute__((unused)),
- size_t size, size_t nelems)
+ void *source, int kind, size_t size, size_t nelems)
{
if (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE ||
- size == 1 || type == BT_CHARACTER)
+ size == 1)
{
- size *= nelems;
- write_buf (dtp, source, size);
+ size_t stride = type == BT_CHARACTER ?
+ size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
+
+ write_buf (dtp, source, stride * nelems);
}
else
{
char buffer[16];
char *p;
size_t i;
+
+ p = source;
+
+ /* Handle wide chracters. */
+ if (type == BT_CHARACTER && kind != 1)
+ {
+ nelems *= size;
+ size = kind;
+ }
/* Break up complex into its constituent reals. */
if (type == BT_COMPLEX)
size /= 2;
}
- p = source;
-
/* By now, all complex variables have been split into their
constituent reals. */
-
- for (i=0; i<nelems; i++)
+ for (i = 0; i < nelems; i++)
{
reverse_memcpy(buffer, p, size);
- p+= size;
+ p += size;
write_buf (dtp, buffer, size);
}
}
of the next element, then comes back here to process it. */
static void
-formatted_transfer_scalar (st_parameter_dt *dtp, bt type, void *p, int len,
+formatted_transfer_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
size_t size)
{
char scratch[SCRATCH_SIZE];
return;
if (dtp->u.p.mode == READING)
- read_decimal (dtp, f, p, len);
+ read_decimal (dtp, f, p, kind);
else
- write_i (dtp, f, p, len);
+ write_i (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_radix (dtp, f, p, len, 2);
+ read_radix (dtp, f, p, kind, 2);
else
- write_b (dtp, f, p, len);
+ write_b (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_radix (dtp, f, p, len, 8);
+ read_radix (dtp, f, p, kind, 8);
else
- write_o (dtp, f, p, len);
+ write_o (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_radix (dtp, f, p, len, 16);
+ read_radix (dtp, f, p, kind, 16);
else
- write_z (dtp, f, p, len);
+ write_z (dtp, f, p, kind);
break;
if (n == 0)
goto need_data;
+ /* It is possible to have FMT_A with something not BT_CHARACTER such
+ as when writing out hollerith strings, so check both type
+ and kind before calling wide character routines. */
if (dtp->u.p.mode == READING)
- read_a (dtp, f, p, len);
+ {
+ if (type == BT_CHARACTER && kind == 4)
+ read_a_char4 (dtp, f, p, size);
+ else
+ read_a (dtp, f, p, size);
+ }
else
- write_a (dtp, f, p, len);
-
+ {
+ if (type == BT_CHARACTER && kind == 4)
+ write_a_char4 (dtp, f, p, size);
+ else
+ write_a (dtp, f, p, size);
+ }
break;
case FMT_L:
goto need_data;
if (dtp->u.p.mode == READING)
- read_l (dtp, f, p, len);
+ read_l (dtp, f, p, kind);
else
- write_l (dtp, f, p, len);
+ write_l (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
else
- write_d (dtp, f, p, len);
+ write_d (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
else
- write_e (dtp, f, p, len);
+ write_e (dtp, f, p, kind);
break;
case FMT_EN:
return;
if (dtp->u.p.mode == READING)
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
else
- write_en (dtp, f, p, len);
+ write_en (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
else
- write_es (dtp, f, p, len);
+ write_es (dtp, f, p, kind);
break;
return;
if (dtp->u.p.mode == READING)
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
else
- write_f (dtp, f, p, len);
+ write_f (dtp, f, p, kind);
break;
switch (type)
{
case BT_INTEGER:
- read_decimal (dtp, f, p, len);
+ read_decimal (dtp, f, p, kind);
break;
case BT_LOGICAL:
- read_l (dtp, f, p, len);
+ read_l (dtp, f, p, kind);
break;
case BT_CHARACTER:
- read_a (dtp, f, p, len);
+ if (kind == 4)
+ read_a_char4 (dtp, f, p, size);
+ else
+ read_a (dtp, f, p, size);
break;
case BT_REAL:
- read_f (dtp, f, p, len);
+ read_f (dtp, f, p, kind);
break;
default:
goto bad_type;
switch (type)
{
case BT_INTEGER:
- write_i (dtp, f, p, len);
+ write_i (dtp, f, p, kind);
break;
case BT_LOGICAL:
- write_l (dtp, f, p, len);
+ write_l (dtp, f, p, kind);
break;
case BT_CHARACTER:
- write_a (dtp, f, p, len);
+ if (kind == 4)
+ write_a_char4 (dtp, f, p, size);
+ else
+ write_a (dtp, f, p, size);
break;
case BT_REAL:
if (f->u.real.w == 0)
- write_real (dtp, p, len);
+ write_real (dtp, p, kind);
else
- write_d (dtp, f, p, len);
+ write_d (dtp, f, p, kind);
break;
default:
bad_type:
char *tmp;
tmp = (char *) p;
-
+ size_t stride = type == BT_CHARACTER ?
+ size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
/* Big loop over all the elements. */
for (elem = 0; elem < nelems; elem++)
{
dtp->u.p.item_count++;
- formatted_transfer_scalar (dtp, type, tmp + size*elem, kind, size);
+ formatted_transfer_scalar (dtp, type, tmp + stride*elem, kind, size);
}
}
if (len == 0 && p == NULL)
p = empty_string;
- /* Currently we support only 1 byte chars, and the library is a bit
- confused of character kind vs. length, so we kludge it by setting
- kind = length. */
- dtp->u.p.transfer (dtp, BT_CHARACTER, p, len, len, 1);
+ /* Set kind here to 1. */
+ dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
+}
+
+void
+transfer_character_wide (st_parameter_dt *dtp, void *p, int len, int kind)
+{
+ static char *empty_string[0];
+
+ if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
+ return;
+
+ /* Strings of zero length can have p == NULL, which confuses the
+ transfer routines into thinking we need more data elements. To avoid
+ this, we give them a nice pointer. */
+ if (len == 0 && p == NULL)
+ p = empty_string;
+
+ /* Here we pass the actual kind value. */
+ dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
}
break;
case GFC_DTYPE_CHARACTER:
iotype = BT_CHARACTER;
- /* FIXME: Currently dtype contains the charlen, which is
- clobbered if charlen > 2**24. That's why we use a separate
- argument for the charlen. However, if we want to support
- non-8-bit charsets we need to fix dtype to contain
- sizeof(chartype) and fix the code below. */
size = charlen;
- kind = charlen;
break;
case GFC_DTYPE_DERIVED:
internal_error (&dtp->common,
for (n = 0; n < rank; n++)
{
count[n] = 0;
- stride[n] = desc->dim[n].stride;
+ stride[n] = iotype == BT_CHARACTER ?
+ desc->dim[n].stride * GFC_SIZE_OF_CHAR_KIND(kind) :
+ desc->dim[n].stride;
extent[n] = desc->dim[n].ubound + 1 - desc->dim[n].lbound;
/* If the extent of even one dimension is zero, then the entire
if (conv == GFC_CONVERT_NONE)
conv = compile_options.convert;
- /* We use l8_to_l4_offset, which is 0 on little-endian machines
+ /* We use big_endian, which is 0 on little-endian machines
and 1 on big-endian machines. */
switch (conv)
{
break;
case GFC_CONVERT_BIG:
- conv = l8_to_l4_offset ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
+ conv = big_endian ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
break;
case GFC_CONVERT_LITTLE:
- conv = l8_to_l4_offset ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
+ conv = big_endian ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
break;
default:
#endif
}
+
+/* The primary difference between write_a_char4 and write_a is that we have to
+ deal with writing from the first byte of the 4-byte character and take care
+ of endianess. This currently implements encoding="default" which means we
+ write the lowest significant byte. If the 3 most significant bytes are
+ not representable emit a '?'. TODO: Implement encoding="UTF-8"
+ which will process all 4 bytes and translate to the encoded output. */
+
+void
+write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
+{
+ int wlen;
+ char *p;
+ gfc_char4_t *q;
+
+ wlen = f->u.string.length < 0
+ || (f->format == FMT_G && f->u.string.length == 0)
+ ? len : f->u.string.length;
+
+ q = (gfc_char4_t *) source;
+#ifdef HAVE_CRLF
+ /* If this is formatted STREAM IO convert any embedded line feed characters
+ to CR_LF on systems that use that sequence for newlines. See F2003
+ Standard sections 10.6.3 and 9.9 for further information. */
+ if (is_stream_io (dtp))
+ {
+ const char crlf[] = "\r\n";
+ int i, j, bytes;
+ gfc_char4_t *qq;
+ bytes = 0;
+
+ /* Write out any padding if needed. */
+ if (len < wlen)
+ {
+ p = write_block (dtp, wlen - len);
+ if (p == NULL)
+ return;
+ memset (p, ' ', wlen - len);
+ }
+
+ /* Scan the source string looking for '\n' and convert it if found. */
+ qq = (gfc_char4_t *) source;
+ for (i = 0; i < wlen; i++)
+ {
+ if (qq[i] == '\n')
+ {
+ /* Write out the previously scanned characters in the string. */
+ if (bytes > 0)
+ {
+ p = write_block (dtp, bytes);
+ if (p == NULL)
+ return;
+ for (j = 0; j < bytes; j++)
+ p[j] = q[j] > 255 ? '?' : (unsigned char) q[j];
+ bytes = 0;
+ }
+
+ /* Write out the CR_LF sequence. */
+ p = write_block (dtp, 2);
+ if (p == NULL)
+ return;
+ memcpy (p, crlf, 2);
+ }
+ else
+ bytes++;
+ }
+
+ /* Write out any remaining bytes if no LF was found. */
+ if (bytes > 0)
+ {
+ p = write_block (dtp, bytes);
+ if (p == NULL)
+ return;
+ for (j = 0; j < bytes; j++)
+ p[j] = q[j] > 255 ? '?' : (unsigned char) q[j];
+ }
+ }
+ else
+ {
+#endif
+ int j;
+ p = write_block (dtp, wlen);
+ if (p == NULL)
+ return;
+
+ if (wlen < len)
+ {
+ for (j = 0; j < wlen; j++)
+ p[j] = q[j] > 255 ? '?' : (unsigned char) q[j];
+ }
+ else
+ {
+ memset (p, ' ', wlen - len);
+ for (j = wlen - len; j < wlen; j++)
+ p[j] = q[j] > 255 ? '?' : (unsigned char) q[j];
+ }
+#ifdef HAVE_CRLF
+ }
+#endif
+}
+
+
static GFC_INTEGER_LARGEST
extract_int (const void *p, int len)
{
the strings if the file has been opened in that mode. */
static void
-write_character (st_parameter_dt *dtp, const char *source, int length)
+write_character (st_parameter_dt *dtp, const char *source, int kind, int length)
{
int i, extra;
char *p, d;
+ gfc_char4_t *q;
+
switch (dtp->u.p.delim_status)
{
break;
}
- if (d == ' ')
- extra = 0;
- else
+ if (kind == 1)
{
- extra = 2;
+ if (d == ' ')
+ extra = 0;
+ else
+ {
+ extra = 2;
- for (i = 0; i < length; i++)
- if (source[i] == d)
- extra++;
- }
+ for (i = 0; i < length; i++)
+ if (source[i] == d)
+ extra++;
+ }
- p = write_block (dtp, length + extra);
- if (p == NULL)
- return;
+ p = write_block (dtp, length + extra);
+ if (p == NULL)
+ return;
+
+ if (d == ' ')
+ memcpy (p, source, length);
+ else
+ {
+ *p++ = d;
- if (d == ' ')
- memcpy (p, source, length);
+ for (i = 0; i < length; i++)
+ {
+ *p++ = source[i];
+ if (source[i] == d)
+ *p++ = d;
+ }
+
+ *p = d;
+ }
+ }
else
{
- *p++ = d;
-
- for (i = 0; i < length; i++)
+ /* We have to scan the source string looking for delimiters to determine
+ how large the write block needs to be. */
+ if (d == ' ')
+ extra = 0;
+ else
{
- *p++ = source[i];
- if (source[i] == d)
- *p++ = d;
+ extra = 2;
+
+ q = (gfc_char4_t *) source;
+ for (i = 0; i < length; i++, q++)
+ if (*q == (gfc_char4_t) d)
+ extra++;
}
- *p = d;
+ p = write_block (dtp, length + extra);
+ if (p == NULL)
+ return;
+
+ if (d == ' ')
+ {
+ q = (gfc_char4_t *) source;
+ for (i = 0; i < length; i++, q++)
+ p[i] = *q > 255 ? '?' : (unsigned char) *q;
+ }
+ else
+ {
+ *p++ = d;
+ q = (gfc_char4_t *) source;
+ for (i = 0; i < length; i++, q++)
+ {
+ *p++ = *q > 255 ? '?' : (unsigned char) *q;
+ if (*q == (gfc_char4_t) d)
+ *p++ = d;
+ }
+ *p = d;
+ }
}
}
write_logical (dtp, p, kind);
break;
case BT_CHARACTER:
- write_character (dtp, p, kind);
+ write_character (dtp, p, kind, size);
break;
case BT_REAL:
write_real (dtp, p, kind);
{
size_t elem;
char *tmp;
+ size_t stride = type == BT_CHARACTER ?
+ size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
tmp = (char *) p;
for (elem = 0; elem < nelems; elem++)
{
dtp->u.p.item_count++;
- list_formatted_write_scalar (dtp, type, tmp + size*elem, kind, size);
+ list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
}
}
if (obj->type != GFC_DTYPE_DERIVED)
{
#ifdef HAVE_CRLF
- write_character (dtp, "\r\n ", 3);
+ write_character (dtp, "\r\n ", 1, 3);
#else
- write_character (dtp, "\n ", 2);
+ write_character (dtp, "\n ", 1, 2);
#endif
len = 0;
if (base)
for (dim_i = 0; dim_i < (index_type) strlen (base_name); dim_i++)
{
cup = toupper (base_name[dim_i]);
- write_character (dtp, &cup, 1);
+ write_character (dtp, &cup, 1, 1);
}
}
for (dim_i =len; dim_i < (index_type) strlen (obj->var_name); dim_i++)
{
cup = toupper (obj->var_name[dim_i]);
- write_character (dtp, &cup, 1);
+ write_character (dtp, &cup, 1, 1);
}
- write_character (dtp, "=", 1);
+ write_character (dtp, "=", 1, 1);
}
/* Counts the number of data output on a line, including names. */
if (rep_ctr > 1)
{
sprintf(rep_buff, " %d*", rep_ctr);
- write_character (dtp, rep_buff, strlen (rep_buff));
+ write_character (dtp, rep_buff, 1, strlen (rep_buff));
dtp->u.p.no_leading_blank = 1;
}
num++;
dtp->u.p.delim_status = DELIM_QUOTE;
if (dtp->u.p.nml_delim == '\'')
dtp->u.p.delim_status = DELIM_APOSTROPHE;
- write_character (dtp, p, obj->string_length);
+ write_character (dtp, p, 1, obj->string_length);
dtp->u.p.delim_status = tmp_delim;
break;
to column 2. Reset the repeat counter. */
dtp->u.p.no_leading_blank = 0;
- write_character (dtp, &semi_comma, 1);
+ write_character (dtp, &semi_comma, 1, 1);
if (num > 5)
{
num = 0;
#ifdef HAVE_CRLF
- write_character (dtp, "\r\n ", 3);
+ write_character (dtp, "\r\n ", 1, 3);
#else
- write_character (dtp, "\n ", 2);
+ write_character (dtp, "\n ", 1, 2);
#endif
}
rep_ctr = 1;
/* Temporarily disable namelist delimters. */
dtp->u.p.delim_status = DELIM_NONE;
- write_character (dtp, "&", 1);
+ write_character (dtp, "&", 1, 1);
/* Write namelist name in upper case - f95 std. */
for (i = 0 ;i < dtp->namelist_name_len ;i++ )
{
c = toupper (dtp->namelist_name[i]);
- write_character (dtp, &c ,1);
+ write_character (dtp, &c, 1 ,1);
}
if (dtp->u.p.ionml != NULL)
}
#ifdef HAVE_CRLF
- write_character (dtp, " /\r\n", 5);
+ write_character (dtp, " /\r\n", 1, 5);
#else
- write_character (dtp, " /\n", 4);
+ write_character (dtp, " /\n", 1, 4);
#endif
/* Restore the original delimiter. */
simply equal to the kind parameter itself. */
#define GFC_SIZE_OF_CHAR_KIND(kind) (kind)
-
/* This will be 0 on little-endian machines and one on big-endian machines. */
-extern int l8_to_l4_offset;
-internal_proto(l8_to_l4_offset);
+extern int big_endian;
+internal_proto(big_endian);
#define GFOR_POINTER_TO_L1(p, kind) \
- (l8_to_l4_offset * (kind - 1) + (GFC_LOGICAL_1 *)(p))
+ (big_endian * (kind - 1) + (GFC_LOGICAL_1 *)(p))
#define GFC_INTEGER_1_HUGE \
(GFC_INTEGER_1)((((GFC_UINTEGER_1)1) << 7) - 1)
return;
}
-/* This is the offset (in bytes) required to cast from logical(8)* to
- logical(4)*. and still get the same result. Will be 0 for little-endian
- machines and 4 for big-endian machines. */
-int l8_to_l4_offset = 0;
+/* This will be 0 for little-endian
+ machines and 1 for big-endian machines. */
+int big_endian = 0;
/* Figure out endianness for this machine. */
u.l8 = 1;
if (u.l4[0])
- l8_to_l4_offset = 0;
+ big_endian = 0;
else if (u.l4[1])
- l8_to_l4_offset = 1;
+ big_endian = 1;
else
runtime_error ("Unable to determine machine endianness");
}