break;
case ir_binop_mul:
+ /* Check for equal types, or unequal types involving scalars */
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|| op0_scalar || op1_scalar) {
for (unsigned c = 0, c0 = 0, c1 = 0;
assert(0);
}
}
- } else
- /* FINISHME: Support vector/matrix and matrix multiplication. */
- return;
+ } else {
+ assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
+
+ /* Multiply an N-by-M matrix with an M-by-P matrix. Since either
+ * matrix can be a GLSL vector, either N or P can be 1.
+ *
+ * For vec*mat, the vector is treated as a row vector. This
+ * means the vector is a 1-row x M-column matrix.
+ *
+ * For mat*vec, the vector is treated as a column vector. Since
+ * matrix_columns is 1 for vectors, this just works.
+ */
+ const unsigned n = op[0]->type->is_vector()
+ ? 1 : op[0]->type->vector_elements;
+ const unsigned m = op[1]->type->vector_elements;
+ const unsigned p = op[1]->type->matrix_columns;
+ for (unsigned j = 0; j < p; j++) {
+ for (unsigned i = 0; i < n; i++) {
+ for (unsigned k = 0; k < m; k++) {
+ data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
+ }
+ }
+ }
+ }
break;
case ir_binop_div: