@code{ABS(X)} computes the absolute value of @code{X}.
@item @emph{Standard}:
-F77 and later, has overloads that are GNU extensions
+Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{CABS(Z)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab F77 and later
-@item @code{DABS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
-@item @code{IABS(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later
+@item @code{CABS(Z)} @tab @code{COMPLEX(4) Z} @tab @code{REAL(4)} @tab Fortran 77 and later
+@item @code{DABS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
+@item @code{IABS(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{ZABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDABS(Z)} @tab @code{COMPLEX(8) Z} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
in the @acronym{ASCII} collating sequence.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
-@code{RESULT = ACHAR(I)}
+@code{RESULT = ACHAR(I [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
-@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{I} @tab The type shall be @code{INTEGER(*)}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+ expression indicating the kind parameter of
+ the result.
@end multitable
@item @emph{Return value}:
@code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}).
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
Spaces are inserted at the end of the string as needed.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
Spaces are inserted at the start of the string as needed.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
strongly discouraged.
@item @emph{Standard}:
-F77 and later, has overloads that are GNU extensions
+Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@code{AINT(X [, KIND])} truncates its argument to a whole number.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
in the array along dimension @var{DIM}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{ALLOCATED(X)} checks the status of whether @var{X} is allocated.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
@end smallexample
@item @emph{See also}:
-F95 elemental function: @ref{IAND}
+Fortran 95 elemental function: @ref{IAND}
@end table
@code{ANINT(X [, KIND])} rounds its argument to the nearest whole number.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DNINT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
@var{MASK} along dimension @var{DIM} are @code{.TRUE.}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}).
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DASIN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
or if @var{PTR} is associated with the target @var{TGT}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
@code{ATAN(X)} computes the arctangent of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
@math{X + i Y}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DATAN2(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
represented by the type of @var{I}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
in @var{I} is set.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{CEILING(X)} returns the least integer greater than or equal to @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
0.0. If @var{X} is complex then @var{Y} must not be present.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
then the result is @code{(x, -y)}
@item @emph{Standard}:
-F77 and later, has overloads that are GNU extensions
+Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@code{COS(X)} computes the cosine of @var{X}.
@item @emph{Standard}:
-F77 and later, has overloads that are GNU extensions
+Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
-@item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F77 and later
+@item @code{DCOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
+@item @code{CCOS(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
is the rank of @var{MASK}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Transformational function
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Subroutine
shifted out one end of each rank one section are shifted back in the other end.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@end multitable
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Subroutine
@code{DBLE(X)} Converts @var{X} to double precision real type.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
floating point representation, a default real number would likely return 24.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
otherwise returns zero.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab F77 and later
-@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab F77 and later
+@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X,Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later
+@item @code{DDIM(X,Y)} @tab @code{REAL(8) X,Y} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@end table
vectors are @code{LOGICAL}, the result is @code{ANY(X.AND.Y)}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{DPROD(X,Y)} returns the product @code{X*Y}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@end multitable
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{EPSILON(X)} returns a nearly negligible number relative to @code{1}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
@code{EXP(X)} computes the base @math{e} exponential of @var{X}.
@item @emph{Standard}:
-F77 and later, has overloads that are GNU extensions
+Fortran 77 and later, has overloads that are GNU extensions
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
-@item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F77 and later
+@item @code{DEXP(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
+@item @code{CEXP(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDEXP(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
is zero the value returned is zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{FLOAT(I)} converts the integer @var{I} to a default real value.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@code{FLOOR(X)} returns the greatest integer less than or equal to @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
representation of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
the model of the type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
in the first character position of @code{C}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
Bitwise logical @code{AND}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@var{POS} set to zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
value @code{BIT_SIZE(I)}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@var{POS} set to one.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
the same across different GNU Fortran implementations.
@item @emph{Standard}:
-F95 and later
+Fortan 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@var{J}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
start of the last occurrence rather than the first.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
Convert to integer type
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab F77 and later
-@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab F77 and later
+@item @code{IFIX(A)} @tab @code{REAL(4) A} @tab @code{INTEGER} @tab Fortran 77 and later
+@item @code{IDINT(A)} @tab @code{REAL(8) A} @tab @code{INTEGER} @tab Fortran 77 and later
@end multitable
@end table
The @code{SHORT} intrinsic is equivalent to @code{INT2}.
@item @emph{Standard}:
-GNU extension.
+GNU extension
@item @emph{Class}:
Elemental function
@code{KIND=8}, and is only included for backwards compatibility.
@item @emph{Standard}:
-GNU extension.
+GNU extension
@item @emph{Class}:
Elemental function
@var{J}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
Determine whether a unit is connected to a terminal device.
@item @emph{Standard}:
-GNU extension.
+GNU extension
@item @emph{Class}:
Function
lost; zeros are shifted in from the opposite end.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
equivalent to @code{BIT_SIZE(I)}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{KIND(X)} returns the kind value of the entity @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
Returns the lower bounds of an array, or a single lower bound
along the @var{DIM} dimension.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
only the length, not the content, of @var{STRING} is needed.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
Returns the length of a character string, ignoring any trailing blanks.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
ordering.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
ordering.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
ordering.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
ordering.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@code{LOG(X)} computes the logarithm of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@code{LOG10(X)} computes the base 10 logarithm of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F95 and later
-@item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later
+@item @code{ALOG10(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 95 and later
+@item @code{DLOG10(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@end table
Converts one kind of @code{LOGICAL} variable to another.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
included for backwards compatibility.
@item @emph{Standard}:
-GNU extension.
+GNU extension
@item @emph{Class}:
Elemental function
Performs a matrix multiplication on numeric or logical arguments.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
Returns the argument with the largest (most positive) value.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{MAX0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later
-@item @code{AMAX0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab F77 and later
-@item @code{MAX1(X)} @tab @code{REAL(*) X} @tab @code{INT(MAX(X))} @tab F77 and later
-@item @code{AMAX1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F77 and later
-@item @code{DMAX1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{MAX0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later
+@item @code{AMAX0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later
+@item @code{MAX1(X)} @tab @code{REAL(*) X} @tab @code{INT(MAX(X))} @tab Fortran 77 and later
+@item @code{AMAX1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
+@item @code{DMAX1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
result value for that row is zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
a string of nulls if @var{ARRAY} is of character type.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@var{FSOURCE} if it is @code{.FALSE.}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
Returns the argument with the smallest (most negative) value.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{MIN0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab F77 and later
-@item @code{AMIN0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab F77 and later
-@item @code{MIN1(X)} @tab @code{REAL(*) X} @tab @code{INT(MIN(X))} @tab F77 and later
-@item @code{AMIN1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab F77 and later
-@item @code{DMIN1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F77 and later
+@item @code{MIN0(I)} @tab @code{INTEGER(4) I} @tab @code{INTEGER(4)} @tab Fortran 77 and later
+@item @code{AMIN0(I)} @tab @code{INTEGER(4) I} @tab @code{REAL(MIN(X))} @tab Fortran 77 and later
+@item @code{MIN1(X)} @tab @code{REAL(*) X} @tab @code{INT(MIN(X))} @tab Fortran 77 and later
+@item @code{AMIN1(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)} @tab Fortran 77 and later
+@item @code{DMIN1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable
@item @emph{See also}:
type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
result value for that row is zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@var{ARRAY} is of character type.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
calculated as @code{A - (INT(A/P) * P)}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Arguments @tab Return type @tab Standard
-@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab F95 and later
-@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab F95 and later
+@item @code{AMOD(A,P)} @tab @code{REAL(4)} @tab @code{REAL(4)} @tab Fortran 95 and later
+@item @code{DMOD(A,P)} @tab @code{REAL(8)} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@end table
@code{MODULO(A,P)} computes the @var{A} modulo @var{P}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{BIT_SIZE(FROM)}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental subroutine
to @code{X} in the direction indicated by the sign of @code{S}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{NINT(X)} rounds its argument to the nearest whole number.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later, with @var{KIND} argument Fortran 90 and later
@item @emph{Class}:
Elemental function
@item @emph{Syntax}:
-@code{RESULT = NINT(X)}
+@code{RESULT = NINT(X [, KIND])}
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type of the argument shall be @code{REAL}.
+@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
+ expression indicating the kind parameter of
+ the result.
@end multitable
@item @emph{Return value}:
@item @emph{Specific names}:
@multitable @columnfractions .25 .25 .25
@item Name @tab Argument @tab Standard
-@item @code{IDNINT(X)} @tab @code{REAL(8)} @tab F95 and later
+@item @code{IDNINT(X)} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@code{NOT} returns the bitwise boolean inverse of @var{I}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
includes cases where it is required.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@end smallexample
@item @emph{See also}:
-F95 elemental function: @ref{IOR}
+Fortran 95 elemental function: @ref{IOR}
@end table
@var{VECTOR}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
Determines whether an optional dummy argument is present.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{RADIX(X)} returns the base of the model representing the entity @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
consider employing a dedicated parallel random number generator instead.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Subroutine
seed based on the system's time.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Subroutine
type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
and its use is strongly discouraged.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
Concatenates @var{NCOPIES} copies of a string.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
as defined by @var{ORDER}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
model numbers near @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@code{SCALE(X,I)} returns @code{X * RADIX(X)**I}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
result is zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
this range, @code{SELECTED_INT_KIND} returns @math{-1}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
range greater at least @code{R}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
is that that of @var{X} and whose exponent part is @var{I}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
Determines the shape of an array.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
@code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@code{SIN(X)} computes the sine of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@code{SINH(X)} computes the hyperbolic sine of @var{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later
+@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
or the total number of elements in @var{ARRAY} if @var{DIM} is absent.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
that is specific to one type for @var{A}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
adjacent number of the same type.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Elemental function
dimension @var{DIM}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{SQRT(X)} computes the square root of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later
-@item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab F95 and later
+@item @code{DSQRT(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
+@item @code{CSQRT(X)} @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 95 and later
@item @code{ZSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
the corresponding element in @var{MASK} is @code{TRUE}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@var{COUNT_RATE} and @var{COUNT_MAX} are set to zero
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Subroutine
@code{TAN(X)} computes the tangent of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later
+@item @code{DTAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
@item @emph{Standard}:
-F77 and later
+Fortran 77 and later
@item @emph{Class}:
Elemental function
@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name @tab Argument @tab Return type @tab Standard
-@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab F95 and later
+@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab Fortran 95 and later
@end multitable
@item @emph{See also}:
in the model of the type of @code{X}.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Inquiry function
type to another.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
@code{MATRIX(j, i)}, for all i, j.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
Removes trailing blank characters of a string.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
Returns the upper bounds of an array, or a single upper bound
along the @var{DIM} dimension.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Inquiry function
Store the elements of @var{VECTOR} in an array of higher rank.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later
@item @emph{Class}:
Transformational function
result is zero.
@item @emph{Standard}:
-F95 and later
+Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later
@item @emph{Class}:
Elemental function
@end smallexample
@item @emph{See also}:
-F95 elemental function: @ref{IEOR}
+Fortran 95 elemental function: @ref{IEOR}
@end table