--- /dev/null
+/* original source code from Hackers-Delight
+ https://github.com/hcs0/Hackers-Delight
+*/
+/* This divides an n-word dividend by an m-word divisor, giving an
+n-m+1-word quotient and m-word remainder. The bignums are in arrays of
+words. Here a "word" is 32 bits. This routine is designed for a 64-bit
+machine which has a 64/64 division instruction. */
+
+#include <stdio.h>
+#include <stdlib.h> //To define "exit", req'd by XLC.
+
+#define max(x, y) ((x) > (y) ? (x) : (y))
+
+int nlz(unsigned x) {
+ int n;
+
+ if (x == 0) return(32);
+ n = 0;
+ if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
+ if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
+ if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
+ if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
+ if (x <= 0x7FFFFFFF) {n = n + 1;}
+ return n;
+}
+
+void dumpit(char *msg, int n, unsigned v[]) {
+ int i;
+ printf(msg);
+ for (i = n-1; i >= 0; i--) printf(" %08x", v[i]);
+ printf("\n");
+}
+
+/* q[0], r[0], u[0], and v[0] contain the LEAST significant words.
+(The sequence is in little-endian order).
+
+This is a fairly precise implementation of Knuth's Algorithm D, for a
+binary computer with base b = 2**32. The caller supplies:
+ 1. Space q for the quotient, m - n + 1 words (at least one).
+ 2. Space r for the remainder (optional), n words.
+ 3. The dividend u, m words, m >= 1.
+ 4. The divisor v, n words, n >= 2.
+The most significant digit of the divisor, v[n-1], must be nonzero. The
+dividend u may have leading zeros; this just makes the algorithm take
+longer and makes the quotient contain more leading zeros. A value of
+NULL may be given for the address of the remainder to signify that the
+caller does not want the remainder.
+ The program does not alter the input parameters u and v.
+ The quotient and remainder returned may have leading zeros. The
+function itself returns a value of 0 for success and 1 for invalid
+parameters (e.g., division by 0).
+ For now, we must have m >= n. Knuth's Algorithm D also requires
+that the dividend be at least as long as the divisor. (In his terms,
+m >= 0 (unstated). Therefore m+n >= n.) */
+
+int divmnu(unsigned q[], unsigned r[],
+ const unsigned u[], const unsigned v[],
+ int m, int n) {
+
+ const unsigned long long b = 4294967296LL; // Number base (2**32).
+ unsigned *un, *vn; // Normalized form of u, v.
+ unsigned long long qhat; // Estimated quotient digit.
+ unsigned long long rhat; // A remainder.
+ unsigned long long p; // Product of two digits.
+ long long t, k;
+ int s, i, j;
+
+ if (m < n || n <= 0 || v[n-1] == 0)
+ return 1; // Return if invalid param.
+
+ if (n == 1) { // Take care of
+ k = 0; // the case of a
+ for (j = m - 1; j >= 0; j--) { // single-digit
+ q[j] = (k*b + u[j])/v[0]; // divisor here.
+ k = (k*b + u[j]) - q[j]*v[0];
+ }
+ if (r != NULL) r[0] = k;
+ return 0;
+ }
+
+ /* Normalize by shifting v left just enough so that its high-order
+ bit is on, and shift u left the same amount. We may have to append a
+ high-order digit on the dividend; we do that unconditionally. */
+
+ s = nlz(v[n-1]); // 0 <= s <= 31.
+ vn = (unsigned *)alloca(4*n);
+ for (i = n - 1; i > 0; i--)
+ vn[i] = (v[i] << s) | ((unsigned long long)v[i-1] >> (32-s));
+ vn[0] = v[0] << s;
+
+ un = (unsigned *)alloca(4*(m + 1));
+ un[m] = (unsigned long long)u[m-1] >> (32-s);
+ for (i = m - 1; i > 0; i--)
+ un[i] = (u[i] << s) | ((unsigned long long)u[i-1] >> (32-s));
+ un[0] = u[0] << s;
+
+ for (j = m - n; j >= 0; j--) { // Main loop.
+ // Compute estimate qhat of q[j].
+ qhat = (un[j+n]*b + un[j+n-1])/vn[n-1];
+ rhat = (un[j+n]*b + un[j+n-1]) - qhat*vn[n-1];
+again:
+ if (qhat >= b || qhat*vn[n-2] > b*rhat + un[j+n-2])
+ { qhat = qhat - 1;
+ rhat = rhat + vn[n-1];
+ if (rhat < b) goto again;
+ }
+
+ // Multiply and subtract.
+ k = 0;
+ for (i = 0; i < n; i++) {
+ p = qhat*vn[i];
+ t = un[i+j] - k - (p & 0xFFFFFFFFLL);
+ un[i+j] = t;
+ k = (p >> 32) - (t >> 32);
+ }
+ t = un[j+n] - k;
+ un[j+n] = t;
+
+ q[j] = qhat; // Store quotient digit.
+ if (t < 0) { // If we subtracted too
+ q[j] = q[j] - 1; // much, add back.
+ k = 0;
+ for (i = 0; i < n; i++) {
+ t = (unsigned long long)un[i+j] + vn[i] + k;
+ un[i+j] = t;
+ k = t >> 32;
+ }
+ un[j+n] = un[j+n] + k;
+ }
+ } // End j.
+ // If the caller wants the remainder, unnormalize
+ // it and pass it back.
+ if (r != NULL) {
+ for (i = 0; i < n-1; i++)
+ r[i] = (un[i] >> s) | ((unsigned long long)un[i+1] << (32-s));
+ r[n-1] = un[n-1] >> s;
+ }
+ return 0;
+}
+
+int errors;
+
+void check(unsigned q[], unsigned r[],
+ unsigned u[], unsigned v[],
+ int m, int n,
+ unsigned cq[], unsigned cr[]) {
+ int i, szq;
+
+ szq = max(m - n + 1, 1);
+ for (i = 0; i < szq; i++) {
+ if (q[i] != cq[i]) {
+ errors = errors + 1;
+ dumpit("Error, dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ dumpit("For quotient, got:", m-n+1, q);
+ dumpit(" Should get:", m-n+1, cq);
+ return;
+ }
+ }
+ for (i = 0; i < n; i++) {
+ if (r[i] != cr[i]) {
+ errors = errors + 1;
+ dumpit("Error, dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ dumpit("For remainder, got:", n, r);
+ dumpit(" Should get:", n, cr);
+ return;
+ }
+ }
+ return;
+}
+
+int main() {
+ static unsigned test[] = {
+ // m, n, u..., v..., cq..., cr....
+ 1, 1, 3, 0, 1, 1, // Error, divide by 0.
+ 1, 2, 7, 1,3, 0, 7,0, // Error, n > m.
+ 2, 2, 0,0, 1,0, 0, 0,0, // Error, incorrect remainder cr.
+ 1, 1, 3, 2, 1, 1,
+ 1, 1, 3, 3, 1, 0,
+ 1, 1, 3, 4, 0, 3,
+ 1, 1, 0, 0xffffffff, 0, 0,
+ 1, 1, 0xffffffff, 1, 0xffffffff, 0,
+ 1, 1, 0xffffffff, 0xffffffff, 1, 0,
+ 1, 1, 0xffffffff, 3, 0x55555555, 0,
+ 2, 1, 0xffffffff,0xffffffff, 1, 0xffffffff,0xffffffff, 0,
+ 2, 1, 0xffffffff,0xffffffff, 0xffffffff, 1,1, 0,
+ 2, 1, 0xffffffff,0xfffffffe, 0xffffffff, 0xffffffff,0, 0xfffffffe,
+ 2, 1, 0x00005678,0x00001234, 0x00009abc, 0x1e1dba76,0, 0x6bd0,
+ 2, 2, 0,0, 0,1, 0, 0,0,
+ 2, 2, 0,7, 0,3, 2, 0,1,
+ 2, 2, 5,7, 0,3, 2, 5,1,
+ 2, 2, 0,6, 0,2, 3, 0,0,
+ 1, 1, 0x80000000, 0x40000001, 0x00000001, 0x3fffffff,
+ 2, 1, 0x00000000,0x80000000, 0x40000001, 0xfffffff8,0x00000001, 0x00000008,
+ 2, 2, 0x00000000,0x80000000, 0x00000001,0x40000000, 0x00000001, 0xffffffff,0x3fffffff,
+ 2, 2, 0x0000789a,0x0000bcde, 0x0000789a,0x0000bcde, 1, 0,0,
+ 2, 2, 0x0000789b,0x0000bcde, 0x0000789a,0x0000bcde, 1, 1,0,
+ 2, 2, 0x00007899,0x0000bcde, 0x0000789a,0x0000bcde, 0, 0x00007899,0x0000bcde,
+ 2, 2, 0x0000ffff,0x0000ffff, 0x0000ffff,0x0000ffff, 1, 0,0,
+ 2, 2, 0x0000ffff,0x0000ffff, 0x00000000,0x00000001, 0x0000ffff, 0x0000ffff,0,
+ 3, 2, 0x000089ab,0x00004567,0x00000123, 0x00000000,0x00000001, 0x00004567,0x00000123, 0x000089ab,0,
+ 3, 2, 0x00000000,0x0000fffe,0x00008000, 0x0000ffff,0x00008000, 0xffffffff,0x00000000, 0x0000ffff,0x00007fff, // Shows that first qhat can = b + 1.
+ 3, 3, 0x00000003,0x00000000,0x80000000, 0x00000001,0x00000000,0x20000000, 0x00000003, 0,0,0x20000000, // Adding back step req'd.
+ 3, 3, 0x00000003,0x00000000,0x00008000, 0x00000001,0x00000000,0x00002000, 0x00000003, 0,0,0x00002000, // Adding back step req'd.
+ 4, 3, 0,0,0x00008000,0x00007fff, 1,0,0x00008000, 0xfffe0000,0, 0x00020000,0xffffffff,0x00007fff, // Add back req'd.
+ 4, 3, 0,0x0000fffe,0,0x00008000, 0x0000ffff,0,0x00008000, 0xffffffff,0, 0x0000ffff,0xffffffff,0x00007fff, // Shows that mult-sub quantity cannot be treated as signed.
+ 4, 3, 0,0xfffffffe,0,0x80000000, 0x0000ffff,0,0x80000000, 0x00000000,1, 0x00000000,0xfffeffff,0x00000000, // Shows that mult-sub quantity cannot be treated as signed.
+ 4, 3, 0,0xfffffffe,0,0x80000000, 0xffffffff,0,0x80000000, 0xffffffff,0, 0xffffffff,0xffffffff,0x7fffffff, // Shows that mult-sub quantity cannot be treated as signed.
+ };
+ int i, n, m, ncases, f;
+ unsigned q[10], r[10];
+ unsigned *u, *v, *cq, *cr;
+
+ printf("divmnu:\n");
+ i = 0;
+ ncases = 0;
+ while (i < sizeof(test)/4) {
+ m = test[i];
+ n = test[i+1];
+ u = &test[i+2];
+ v = &test[i+2+m];
+ cq = &test[i+2+m+n];
+ cr = &test[i+2+m+n+max(m-n+1, 1)];
+
+ f = divmnu(q, r, u, v, m, n);
+ if (f) {
+ dumpit("Error return code for dividend u =", m, u);
+ dumpit(" divisor v =", n, v);
+ errors = errors + 1;
+ }
+ else
+ check(q, r, u, v, m, n, cq, cr);
+ i = i + 2 + m + n + max(m-n+1, 1) + n;
+ ncases = ncases + 1;
+ }
+
+ printf("%d errors out of %d cases; there should be 3.\n", errors, ncases);
+ return 0;
+}